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Abstract

SGGS (Semantically-Guided Goal-Sensitive theorem proving) is a clausal theorem-proving method,

with a seemingly rare combination of properties: it is first order, DPLL-style model based, semantically

guided, goal sensitive, and proof confluent. SGGS works with constrained clauses, and uses a sequence

of constrained clauses to represent a tentative model of the given set of clauses. A basic building

block in SGGS inferences is splitting, which partitions a clause into clauses that have the same set

of ground instances. Splitting introduces constraints and their manipulation, which is the subject of

this paper. Specifically, splitting a clause with respect to another clause requires to compute their

difference, which captures the ground instances of one that are not ground instances of the other. We

give a set of inference rules to compute clause difference, and reduce SGGS constraints to standard

form, and we prove that it is guaranteed to terminate, provided the standardization rules are applied

within the clause difference computation.

Introduction

The SGGS theorem-proving method combines instance generation, resolution, and constraint
solving in a model-based framework. It works with a set S of first-order clauses to be refuted
and an initial interpretation I for semantic guidance. The features of SGGS can be seen as
an attempt to build a model of S, distinct from I. The search for a model of S is done by
constructing an SGGS derivation, which is a series Γ0 ⊢ Γ1 ⊢ Γ2 ⊢ . . . of objects Γ, called SGGS
clause sequences. After Γ0, which is empty, each Γi is obtained from the previous one by an
SGGS inference rule.

An SGGS derivation terminates, if either a refutation is found, or no more inference rules can
be applied. SGGS is refutationally complete: if S is unsatisfiable, there exist SGGS derivations
from S that terminate with the generation of the empty clause. If S is satisfiable, the derivation
may be infinite, and if so will in the limit represent a model of S. At each step the new clause
sequence replaces the old one, so that only one clause sequence exists at any time, and SGGS
is proof confluent: performing an inference will never prevent it from finding a refutation, so
that there is no need for backtracking.

A key property of SGGS is that an SGGS clause sequence represents a candidate partial
model. While in propositional logic, a model is represented by a sequence of literals (e.g., as in
DPLL), in SGGS a first-order model is represented by a sequence of constrained clauses, each of
which has a selected literal. The model I[Γ] represented by a sequence Γ is given by the initial
interpretation I modified to satisfy ground instances of selected literals. Informally, the literal
L selected in the n-th clause C in Γ contributes to I[Γ] its ground instances Lσ that are needed
(Cσ is not already true in the model induced by the first n − 1 clauses of Γ) and consistent
(¬Lσ is not true in the model induced by the first n− 1 clauses of Γ). Formally, I[Γ] is defined
inductively on the length of the sequence [2, 1].

The inference rules of SGGS implement a search for a model thus represented. The main
rule is extension, which adds to the current clause sequence an instance of a clause in S: the
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objective is to find a model of all instances of all clauses in S, and if some are not satisfied,
they must be added.

It may happen that selected literals have ground instances in common. If the literals have
opposite sign, this would make the model inconsistent: SGGS features a restricted form of
resolution, called SGGS-resolution, to remove such contradictions. SGGS-resolution represents
an implicit sort of backtracking over the set of possible models of S. The resolvent is a lemma,
that constrains the model, because the model must satisfy it, and intuitively captures a portion
of the search space of models that has been explored. If resolution generates the empty clause,
no model can be found.

If selected literals have ground instances in common, and have the same sign, there is
duplication. SGGS features splitting rules that partition a clause with respect to another clause.
The clause that gets partitioned, or split, is replaced by other clauses, that have its same set of
ground instances, in such a way that the duplicated literals are isolated and can be removed.

The splitting rules of SGGS are the motivation for this paper. The splitting of a clause with
respect to another clause can be computed by computing unification of selected literals, and
the difference between two clauses. Intuitively, the splitting of C with respect to D replaces
C by a set of clauses one of which captures the (constrained) ground instances of C that are
also (constrained) ground instances of D, while the others capture the (constrained) ground
instances of C that are not (constrained) ground instances of D. The latter form the difference
between C and D, which is what matters in practice, since we want to remove the duplication.

In this paper, we illustrate the ingredients of SGGS that are relevant to constraint solving:
SGGS constraints, constrained clauses, and the concepts of splitting of clauses and difference
between clauses. We give a system of rules for constraint manipulation to compute clause
differences, whence splittings, and reduce SGGS constraints to standard form. Then we discuss
termination: while unrestricted applications of the standardization rules may not terminate,
the computation of clause difference, and restoration of standard form during the computation
of clause difference, are proved to terminate.

For the interested reader, a technical presentation of SGGS, including inference system,
fairness, and proofs of refutational completeness and goal-sensitivity, is available in [2]. A non-
technical exposition is offered in [3]. The representation of models by SGGS clause sequences
is studied in its own right in [1].

Constrained Clauses and Splitting

We assume standard concepts and notations in clausal theorem proving. In addition, ≡ is
syntactic identity; top(t) is the top symbol of term t; at(L) is the atom of literal L; at(T ) =
{at(L) : L ∈ T } for T a set of literals; vars(C) is the set of variables in clause C, and the
same notation applies to terms; clauses are variants, if made identical by a variable renaming,
similar, if made identical by a substitution that replaces variables by variables, but may replace
distinct variables by the same.

SGGS Constraints

In SGGS, an atomic constraint is either empty, denoted by true, or an expression of the form
x ≡ y or top(t) = f , where x and y are variables, f is a function symbol, and t is a term.
Then, a constraint is either an atomic constraint, or the negation, conjunction, or disjunction
of constraints.

SGGS constraints assume Herbrand interpretations: let |= mean truth in all Herbrand in-
terpretations; then, |= t ≡ u for ground terms t and u if t and u are the same element of the
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Herbrand universe; and |= top(t) = f if the top symbol of ground term t is f . Thus, if Aϑ is a
ground instance of a constraint A, either |= Aϑ or |= ¬Aϑ.

SGGS constraints are a variant of Herbrand constraints: they are Herbrand constraints with
the addition of atomic constraints of the form top(t) = f , which allow us to avoid existential
quantifiers in the constraints, since top(t) = f replaces ∃x1 . . . ∃xn. t ≡ f(x1, . . . , xn).

An SGGS constraint is in standard form, if it is a conjunction of distinct atomic constraints
of the form x 6≡ y and top(x) 6= f , where x and y are variables. A constraint top(x) 6= f says
that x cannot be replaced by a term whose top function symbol is f , while a constraint x 6≡ y

specifies that x and y may not be replaced by identical terms.
A constrained clause is a formula A ✄ C, where A is a constraint and C is a clause; a

variable that appears in A but not in C is implicitly existentially quantified. A constrained
clause A✄C may have a selected literal L, written A✄C[L]. A✄L is called constrained literal.
By convention, if L is selected in C, and C′ ≡ Cϑ, then L′ ≡ Lϑ is selected in C′.

The constrained ground instances (cgi) of A✄ C are the ground instances of C that satisfy
the constraints: Gr(A✄C) = {Cϑ : |= Aϑ, Cϑ ground}, where |= means truth in all Herbrand
interpretations. Similarly, Gr(A ✄ L) = {Lϑ : |= Aϑ, Lϑ ground}. For example, P (a, b) ∈
Gr(x 6≡ y✄P (x, y)), but P (b, b) 6∈ Gr(x 6≡ y✄P (x, y)). A constrained clause (literal) represents
its constrained ground instances.

Partition, Splitting, and Difference

Since SGGS uses constrained literals and clauses to exhibit a partial model, it needs to know
when constrained literals have instances in common: A✄ L and B ✄M intersect if at(Gr(A✄

L))∩ at(Gr(B✄M)) 6= ∅, and are disjoint, otherwise. Intersection does not require the literals
to have the same sign, because it is defined based on atoms.

If A ✄ L and B ✄M do not share variables, they intersect if and only if at(L) and at(M)
unify and (A∧B)σ is satisfiable, where σ is the mgu (most general unifier) of at(L) and at(M).
The intersection is given by at(Gr(A ✄ L)) ∩ at(Gr(B ✄ M)) = at(Gr((A ∧ B)σ ✄ Mσ)) =
Gr((A ∧B)σ ✄ at(M)σ).

A partition of A✄C[L], where A is satisfiable, is a set {Ai✄Ci[Li]}ni=1
such that Gr(A✄C) =⋃n

i=1
{Gr(Ai ✄Ci[Li])}, the Ai✄Li’s are pairwise disjoint, the Ai’s are satisfiable, and the Li’s

are chosen consistently with L.
For example, {true✄P (f(z), y), top(x) 6= f✄P (x, y)} is a partition of true✄P (x, y) (which

can of course be written simply P (x, y)). Similarly,

{true✄ [P (f(z), y)] ∨Q(f(z), y), top(x) 6= f ✄ [P (x, y)] ∨Q(x, y)}

is a partition of true✄ [P (x, y)] ∨Q(x, y). On the other hand,

{true✄ P (f(z), y) ∨ [Q(f(z), y)], top(x) 6= f ✄ P (x, y) ∨ [Q(x, y)]}

is not a partition of true✄[P (x, y)]∨Q(x, y), because selected literals are not chosen consistently.
If clauses A✄C[L] and B ✄D[M ] in an SGGS clause sequence have selected literals L and

M that intersect, SGGS features inference rules that replace A✄C[L] by split(C,D), that is a
partition of C[L], where all cgi’s of L that are also cgi’s of M are isolated in one of the clauses of
the partition. Formally, a splitting of A✄C[L] by B✄D[M ], denoted split(C,D), is a partition
{Ai ✄ Ci〈Li〉}ni=1

of A✄ C[L] such that:

1. ∃j, 1 ≤ j ≤ n, such that at(Gr(Aj ✄ Lj)) ⊆ at(Gr(B ✄M)), and

2. ∀i, 1 ≤ i 6= j ≤ n, at(Gr(Ai ✄ Li)) and at(Gr(B ✄M)) are disjoint.
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The difference C −D is split(C,D) with Cj removed. Clause Cj is the representative of D in
split(C,D): at(Gr(Aj ✄ Lj)) is the intersection of A ✄ L and B ✄M , while C − D captures
the cgi’s of L that are not cgi’s of M . We write Gr(C −D) for

⋃n

i=1,i6=j Gr(Ci).
For example, a splitting of true ✄ P (x, y) by true✄ P (f(w), g(z)) is

{true✄ P (f(w), g(z)), top(x) 6= f ✄ P (x, y), top(y) 6= g ✄ P (f(x), y)}

and their difference is {top(x) 6= f ✄ P (x, y), top(y) 6= g ✄ P (f(x), y)}. On the other hand,

{true✄ P (f(w), g(z)), top(x) 6= f ✄ P (x, y), top(y) 6= g ✄ P (x, y)}

is not a splitting of true ✄ P (x, y) by true✄ P (f(w), g(z)), because it is not a partition, since
top(x) 6= f ✄ P (x, y) and top(y) 6= g ✄ P (x, y) intersect: for instance, P (a, b) is a cgi of both.
In the correct splitting, P (a, b) is a cgi of top(x) 6= f ✄ P (x, y), not of top(y) 6= g ✄ P (f(x), y).

As this example shows, computing split(C,D) and C −D introduces constraints, including
non-standard ones, even when C and D have empty constraints to begin with. This is precisely
why SGGS works with constrained clauses.

If at(L) and at(M) do not unify, Gr(C − D) = Gr(C); if they unify with mgu σ, then
split(C,D) = (C −D) ∪ {Aσ ∧Bσ ✄C[L]σ}, and (C −D) = (C − (Aσ ∧Bσ ✄C[L]σ)). Thus,
if we have a way to compute C −D, we also have a way to compute split(C,D), and we can
restrict ourselves to compute C −D under the assumption that D is an instance of C.

Rules to Compute Clause Difference and Standardize Constraints

The following rules are sound, as premise and conclusion represent the same set of cgi’s. If a
conclusion has the form A1 ✄C1, . . . , An✄Cn, it is a disjunction, and represents

⋃n

i=1
Gr(Ai ✄

Ci). We begin with rules to compute C −D when D ≡ Cσ.

Rules for Clause Difference and Disjunctive Normal Form

If {x← f(x1, . . . , xn)} ⊆ σ for some x ∈ vars(C) and new variables xi, 1 ≤ i ≤ n, the DiffSim
rule applies {x← f(x1, . . . , xn)} to make C similar to D and on the other hand adds top(x) 6= f

to make them different:

(A✄ C)− (B ✄D)
(A✄ C){x← f(x1, . . . , xn)} − (B ✄D), A ∧ (top(x) 6= f)✄ C

If C and D are similar, and {x← y} ⊆ σ for distinct variables x, y ∈ vars(C), the DiffVar rule
applies {x ← y} to make C a variant of D and on the other hand adds x 6≡ y to make them
different:

(A✄ C)− (B ✄D)
(A✄ C){x← y} − (B ✄D), (x 6≡ y ∧ A)✄ C

If C and D are variants but not identical, the DiffId rule makes them identical:

(A✄ C)− (B ✄D)
(A✄ C)σ − (B ✄D)

The DiffElim rule replaces difference by negation:

(A✄ C)− (B ✄ C)
(A ∧ ¬B)✄ C
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Since B is a conjunction of constraints, ¬B is a disjunction of their negations. The next rules
restore disjunctive normal form (DNF). The Equiv rule replaces a constraint by its DNF:

A✄ C

dnf(A)✄ C

where dnf(A) is the disjunctive normal form of A; and the Div rule subdivides disjunction:

(A ∨B)✄ C

A✄ C, B ✄ C

Rules for Reduction to Standard Form

The rules for reduction to standard form comprise rules for identity and rules for top symbol.
The rules for identity eliminate or decompose all identity constraints, except those in standard
form x 6≡ y.
The ElimId1 rule eliminates a constraint between variable and term: if x 6∈ vars(s), then:

(A ∧ x ≡ s)✄ C

(A✄ C){x← s}

if x ∈ vars(s) and s is not a variable, then:

(A ∧ x ≡ s)✄ C

⊥

(A ∧ x 6≡ s)✄ C

(A✄ C)

The ElimId2 rule detects a conflict: if f 6= g, m ≥ 0, n ≥ 0, then:

(A ∧ f(s1, . . . , sn) ≡ g(t1, . . . , tm))✄ C

⊥

The ElimId3 rule eliminates a satisfied constraint: if f 6= g, m ≥ 0, n ≥ 0, then:

(A ∧ f(s1, . . . , sn) 6≡ g(t1, . . . , tm))✄ C

A✄ C

The ElimId4 rule decomposes an identity: if n ≥ 0, then:

(A ∧ f(s1, . . . , sn) ≡ f(t1, . . . , tn))✄ C

(A ∧ s1 ≡ t1 ∧ . . . ∧ sn ≡ tn)✄ C

The ElimId5 rule decomposes a negated identity: if n ≥ 0, then:

(A ∧ f(s1, . . . , sn) 6≡ f(t1, . . . , tn))✄ C

(A ∧ (s1 6≡ t1 ∨ . . . ∨ sn 6≡ tn))✄ C

The ElimId6 rule eliminates a negated identity between variable and non-variable term:

(A ∧ x 6≡ f(s1, . . . , sn))✄ C

A ∧ top(x) 6= f ✄ C, ((A ∧ f(s1, . . . , sn) 6≡ f(y1, . . . , yn))✄ C){x← f(y1, . . . , yn)}

5



Constraint Manipulation in SGGS M. P. Bonacina and D. A. Plaisted

where n ≥ 0, and the yi’s, 1 ≤ i ≤ n, are new variables.
The ElimId7 rule detects a conflict: if s is a variable or constant, then:

(A ∧ s 6≡ s)✄ C

⊥

As an example, consider computing split(C,D), where A ✄ C[L] is true ✄ P (x, f(x)) and
B✄D[M ] is x 6≡ y✄P (x, y). After renaming variables in the second clause, so that B✄D[M ]
becomes x′ 6≡ y ✄ P (x′, y), the unification of at(L) = P (x, f(x)) and at(M) = P (x′, y), yields
mgu σ = {x′ ← x, y ← f(x)}, so that Aσ ∧ Bσ ✄ C[L]σ is x 6≡ f(x) ✄ P (x, f(x)). The
ElimId1 rule reduces this clause to true ✄ P (x, f(x)), which is the same as A ✄ C[L]. Thus,
C −D = C − C, or the difference is empty, because indeed Gr(A ✄ C[L]) ⊆ Gr(B ✄D[M ]).
Accordingly, split(C,D) is A✄C[L] itself, or the splitting operation leaves the clause unchanged,
because we tried to split a clause by a more general one.

The rules for top symbol eliminate all top symbol constraints, except those in standard form
top(x) 6= f .
The ElimTop1 rule detects a conflict in a positive constraint: if f 6= g, n ≥ 0, then:

A ∧ top(f(s1, . . . , sn)) = g ✄ C

⊥

The ElimTop2 rule eliminates a satisfied positive constraint: if n ≥ 0, then:

A ∧ top(f(s1, . . . , sn)) = f ✄ C

A✄ C

The ElimTop3 rule eliminates a satisfied negative constraint: if f 6= g, n ≥ 0, then:

A ∧ top(f(s1, . . . , sn)) 6= g ✄ C

A✄ C

The ElimTop4 rule detects a conflict in a negated constraint: if n ≥ 0, then:

A ∧ top(f(s1, . . . , sn)) 6= f ✄ C

⊥

The ElimTop5 rule eliminates a positive constraint: if n ≥ 0, then:

A ∧ top(x) = f ✄ C

(A✄ C){x← f(x1, . . . , xn)}

where for all i, 1 ≤ i ≤ n, xi is a new variable.
The combined effect of all rules is to standardize all constraints.

Termination

The application of the identity rules may not terminate in general. For example, consider a
clause (x 6≡ f(y) ∧ y 6≡ f(x) ✄ P (x, y)): ElimId6 yields the two clauses (top(x) 6= f ∧ y 6≡
f(x))✄ P (x, y) and (f(z) 6≡ f(y) ∧ y 6≡ f(f(z))✄ P (f(z), y)). Using ElimId5, the latter clause
becomes (z 6≡ y∧y 6≡ f(f(z))✄P (f(z), y)), which by another application of ElimId6, yields the
two clauses (z 6≡ y∧top(y) 6= f)✄P (f(z), y)) and (z 6≡ f(w)∧f(w) 6≡ f(f(z))✄P (f(z), f(w))).
Using ElimId5 again, the latter clause becomes (z 6≡ f(w) ∧ w 6≡ f(z)✄ P (f(z), f(w))), whose
constraint is a variant of the original one.

Nonetheless, SGGS does not need that every series of applications of these rules terminate.
It suffices that the computation of clause difference terminates:
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Theorem 1. Given A✄C and B✄D, such that D ≡ Cσ, and A and B are in standard form,
any application of the clause difference rules to C −D, where (1) any application of DiffElim
or ElimId5 is followed by conversion to DNF, and (2) all constraints are restored to standard
form after every application of a clause difference rule, is guaranteed to terminate.

Proof. First we show that the rules for clause difference do not cause non-termination. DiffId
and DiffElim can be applied only once. DiffVar can be applied only a finite number of times,
because each application decreases the number of variables in C. Each DiffSim step applies to
C a substitution {x← f(x1, . . . xn)} from σ: since σ contains finitely many such pairs, DiffSim
can be applied only a finite number of times. Then we prove that standardization between an
application of a clause difference rule and the next is guaranteed to terminate:

1. DiffId only renames variables, which does not enable any other rule.

2. DiffVar adds an x 6≡ y, which is in standard form, and applies a substitution {x ← y},
whose only effect may be to replace an x 6≡ y by an x 6≡ x, eliminated by ElimId7.

3. DiffSim adds a top(x) 6= f , which is in standard form, and applies a substitution {x ←
f(x1, . . . , xn)}, which may have two effects. One is to replace the occurrence of x in a
constraint top(x) 6= g by f(x1, . . . , xn). This enables either ElimTop3 or ElimTop4, which
terminate. The other is to transform an x 6≡ y into an f(x1, . . . , xn) 6≡ y, enabling ElimId6.
This rule adds a top(x) 6= f , which is in standard form, and applies another substitution
of the same form, so that eventually a subset of the variables may be replaced by terms
f(x1, . . . , xn) where the xi’s are new. This can only be done a finite number of times,
because the new variables will never be replaced in this way. If two such substitutions are
applied to a z 6≡ w, an f(x1, . . . , xn) 6≡ f(y1, . . . , yn) may arise. ElimId5 applies to such
a constraint, followed by conversion to DNF. The result is a disjunction of constrained
clauses, each containing in its constraint an xi 6≡ yi, for some i, which is in standard form.

4. DiffElim yields (A ∧ ¬B) ✄ C, followed by conversion to DNF. The effect may be to add
x ≡ y (negation of x 6≡ y in B) or top(x) = f (negation of top(x) 6= f in B). In the
first case, ElimId1 applies {x← y}, covered in Case (2) of this proof. In the second case,
ElimTop5 applies {x← f(x1, . . . , xn)}, covered in Case (3) of this proof.

Discussion

We presented a set of inference rules to compute the difference between two constrained clauses,
and to reduce to standard form SGGS constraints. We showed by a counter-example that it
is not the case that any application of the inference rules for standardization is guaranteed to
terminate. Then we proved that computation of clause difference is guaranteed to terminate,
and that standardization in the context of computing clause differences is also guaranteed to
terminate.

SGGS is a new reasoning method that uses sequences of constrained clauses to represent
candidate partial models, during the search for a refutation, or a model, of a set of first-order
clauses. When clauses in the sequence contribute to the candidate partial model sets of ground
literals with non-empty intersection, there is a duplication. SGGS removes this duplication
by inferences that split a clause with respect to another. Computing this splitting requires to
compute unification of literals and differences of clauses, whence the interest for the difference
operation.

SGGS constraints are a variant of Herbrand constraints (e.g., [6, 7, 5, 4]): they feature
atomic constraints in the form top(t) = f , which allow one to avoid existential quantifiers in
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constraints. If top(t) = f is replaced with ∃x1 . . . ∃xn. t ≡ f(x1, . . . , xn), SGGS constraints fit
in the first-order logic of equations between trees.

Inference systems to decide the truth in the Herbrand universe of first-order formulæ with
equality as the only predicate symbol were given independently in [6, 7] and [5]. Our infer-
ence system and termination result are tailored for the SGGS reasoning method; they capture
what is needed precisely by SGGS, and therefore they are relevant to its understanding and
implementation. More study may clarify a more precise relationship between our work in this
paper and that in [6, 7] and [5]. Another possible topic for future investigation is the com-
plexity of these procedures. The research in [6, 7] and [5] was motivated primarily by logic
programming with constraints. It is interesting that those results may turn out to be useful for
a theorem-proving method after several years.
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