
A Categorical Perspective on Pattern Unification

(Extended Abstract)

Andrea Vezzosi and Andreas Abel

Department of Computer Science and Engineering
Chalmers University of Technology and Gothenburg University, Sweden

vezzosi@chalmers.se, andreas.abel@gu.se

Abstract

In 1991 Miller described a subset of the higher-order unification problem for the Simply Typed

Lambda Calculus which admits most general unifiers, called the pattern fragment. This subset has

been extended to more complex type theories and it is still used as the basis of modern unification

algorithms in applications like proof search and type inference. Our contribution is a new presentation

of the original unification algorithm that focuses on the abstract properties of the operations involved,

using category theory as a structuring principle. These properties characterize a class of languages for

which the algorithm can be reused.

1 Introduction

Pattern unification [Miller, 1991] is a restriction of higher-order unification where meta (uni-
fication) variables can only be applied to a list of distinct object (lambda bound) variables,
called a pattern. This restriction is motivated by how such an unification problem with a meta
variable at the head, M xy z = t, can essentially be read as a definition for the metavariable,
M := λx y z.t, as long as the resulting term is well-scoped.

The existence of most general unifiers guaranteed by the pattern restriction is important in
applications like type inference for dependently typed languages or execution of higher order
logic programs. In these cases, a common implementation strategy is to solve immediately
those unification problems that fall into the pattern fragment and suspend the others, hoping
that they will become tractable later when more meta variables have been solved [Reed, 2009,
Abel and Pientka, 2011].

The basic intuition of our presentation, which is not new, is that patterns correspond to
injective renamings and form a category; from there we go further and recognize how certain
operations on patterns of the unification algorithm correspond to basic concepts of category
theory like finite limits. The correctness of the resulting algorithm has been checked with a
formalization [Vezzosi, 2012] using the proof assistant Agda. Category Theory has been used
before to reason about first order unification by, for example, Goguen [Goguen, 1989].

2 The problem

We consider pattern unification in the Simply Typed Lambda Calculus (STLC) up to αβη-
equivalence. Without loss of generality, we can restrict our focus to terms in β-short η-long
normal form by making use of the so-called spine formulation [Cervesato and Pfenning, 2003].
We use de Brujin [1972] indexes for object variables. As a consequence, unification is to be
considered up to strict equality. Instead of a general application node (t t) we have (M p) and

1

A Categorical Perspective on Pattern Unification (Extended Abstract) Andrea Vezzosi and Andreas Abel

(x~t) where the head is a meta or object variable. For application of meta variables M p we
represent the arguments by p, a list of distinct object variables, to ensure the pattern condition.

Terms t ::= λt

| x~t (x~t has base type ι)
| M p (M p has base type ι)

Patterns p ::= ~x (xi 6= xj whenever i 6= j)
Object variables x ::= 0 | 1 + x

To match the way functions are always fully applied in terms, we define types in an uncurried
style, i.e., as a (possibly empty) list of argument types and a base type ι for the result. We will
simply write ι when there are no arguments.

Types τ ::= ~τ → ι
Object contexts ∆ ::= ~τ
Meta contexts Γ ::= . |M :τ,Γ (Variables M in Γ are not repeated)

Typing contexts ∆ for object variables are just lists of types. This identification between a
typing context and argument types is exploited in the typing rules for metas and patterns. In
the following, we list the rules for typing of variables ∆ ` x : τ , patterns ∆ ` p : ∆′, and normal
terms Γ; ∆ ` t : τ .

τ,∆ ` 0 : τ

∆ ` x : τ

τ ′,∆ ` 1 + x : τ ∆ ` . : .

∆ ` x : τ ∆ ` p : ∆′

∆ ` (x, p) : (τ,∆′)

Γ; τ,∆ ` t : ~τ → ι

Γ; ∆ ` λt : (τ, ~τ)→ ι

∆ ` x : ∆′ → ι Γ; ∆ ` ~t : ∆′

Γ; ∆ ` x~t : ι

M : (∆′ → ι) ∈ Γ ∆ ` p : ∆′

Γ; ∆ `M p : ι

As hinted in the introduction we can think of ∆2 ` p : ∆1 as an injective renaming from
variables in ∆1 to variables in ∆2, application to a variable p x is performed by considering x
from ∆1 as an index to the position in p of the resulting variable in ∆2. From this we form
the category Pat with contexts as objects and patterns as morphisms, composition is given by
(p1 ◦ p2)x = p1 (p2 x). We shall write ∆2 ` p : ∆1 as p : ∆1 → ∆2.

We define substitutions σ as finite maps from meta variables to terms. Update (σ,M := t)
is defined as the substitution σ′ such that σ′M = t and σ′N = σN for N 6= M . Since we
consider meta variables as living in a global scope, substitutions will produce terms without
free object variables, hence they will be typed with an empty ∆. We write Γ2 ` σ : Γ1, or
σ : Γ1 → Γ2, iff σM = t for some Γ2; . ` t : τ whenever (M :τ) ∈ Γ1.

Application of a substitution σ to a term, which we write [[σ]] t, is done structurally as usual,
except for nodes (M p) where we need to normalize the generated beta-redex. Since p is merely
a renaming, and our terms are η-long, normalizing amounts to stripping the outermost layer
of λ abstractions from (σM) and applying p to their body. We do not need to apply σ to p
because the latter does not contain meta variables.

[[σ]]M p = [p] t where σM = ~λt

In fact, from now on we will include the operation of stripping out the outer lambdas in the
application of a substitution to a meta variable. Thus, given Γ `M : ∆→ ι we will have σM
be a term t of type ι in the object context ∆, like the t in the equation above. This also allows
us to express the identity substitution idΓ : Γ→ Γ by simply idΓN = N id∆ for (N :∆→ ι) ∈ Γ.
We write the singleton substitution (id,M := t) simply as (M := t).

2

A Categorical Perspective on Pattern Unification (Extended Abstract) Andrea Vezzosi and Andreas Abel

With the usual notion of composition we can also form the category Sub where meta variable
contexts are the objects and substitutions are the morphisms.

Finally we observe that the set of terms with given type and contexts, Tm(Γ,∆, τ), is
functorial over both Sub and Pat, which is to say that application of renamings and substitu-
tions commute with the respective compositions and identities, and between themselves. The
category Type, is discrete, i.e., has types as objects but no morphisms except for identities.

Tm : Sub× Pat× Type→ Set
Tm(Γ,∆, τ) = {t ∈ Terms | Γ; ∆ ` t : τ}

[p1 ◦ p2] t = [p1] [p2] t [id∆] t = t
[[σ1 ◦ σ2]] t = [[σ1]] [[σ2]] t [[idΓ]] t = t
[[σ]] [p] t = [p] [[σ]] t

Definition 1 (Unifier). A substitution σ : Γ→ Γ1 is a unifier of two terms t1, t2 ∈ Tm(Γ,∆, τ)
whenever [[σ]] t1 = [[σ]] t2.

Definition 2 (More General Substitution). A substitution σ : Γ → Γ1 is more general than
ρ : Γ→ Γ2, written σ ≤ ρ, if there exists a substitution δ : Γ1 → Γ2 with ρ = δ ◦ σ.

Γ

Γ1
δ -

�

σ

Γ2

ρ
-

Definition 3 (Most General Unifier (MGU)). A unifier σ : Γ → Γ1 of t1, t2 ∈ Tm(Γ,∆, τ) is
most general if σ ≤ ρ for every other unifier ρ : Γ→ Γ2.

3 Finding a solution

We will find the most general unifier of t1 and t2, or decide there cannot be one, by recursion
on the terms themselves. In the following, we consider the possible cases.

3.1 Rigid-Rigid

Since we have that [[σ]]λt = λ([[σ]] t), finding the unifier of λt1 and λt2 amounts to finding the
one of t1 and t2. For variable applications, x1 ~t1 and x2 ~t2, it is almost the same, except that
we need to check whether x1 and x2 are equal, and if so recurse over the subterms updating
them with the unifier computed so far. In fact, we can abstract over both cases using a notion
of operator o ::= λ|x with decidable equality and arities, and such that [[σ]] (o~t) = o ([[σ]]~t).

3.2 Flex-Flex (Same Meta)

If the terms to unify are M p1 and M p2 things get more interesting. We can see that the
most general unifier is M := M ′ e where M ′ is a fresh meta variable and e is what is called
the equalizer of p1 and p2. In fact, for σ to be an unifier it has to satisfy [[σ]]M p1 = [[σ]]M p2

which reduces to M ′ (p1 ◦e) = M ′ (p2 ◦e) and the equalizer is the most general way to solve the
equation p1 ◦ e = p2 ◦ e. What is meant by most general here is that for every other renaming
q satisfying p1 ◦ q = p2 ◦ q there is a unique u such that q = e ◦ u. (See Figure 1.)

This property is all we need to show σ is most general, in fact, for any other unifier ρ we have
[p1] (ρM) = [p2] (ρM), and since the functor Tm preserves equalizers, i.e. [e] is the equalizer
of [p1] and [p2] , we have a unique t such that ρM = [e] t. That allows us to show σ ≤ ρ by
δ := (ρ,M ′ := t). Now (δ ◦ σ)M = [[δ]]M ′ e = [e] t = ρM and (δ ◦ σ)N = δ N = ρN for
N 6= M .

3

A Categorical Perspective on Pattern Unification (Extended Abstract) Andrea Vezzosi and Andreas Abel

∆e
e - ∆1

p1 -

p2

- ∆2

∆q

u

6
................

q

-

∆Q

∆P
r2

-

...u ...-

∆2

q2

-

∆1

r1

?

p1

-
q

1

-

∆

p2

?

Equalizer (Same Meta) Pullback (Different Meta)

Figure 1: Equalizer and Pullback diagrams

3.3 Flex-Flex (Different Meta)

As a stepping stone to the next case we consider the unification of the terms M1 p1 and M2 p2

for M1 6= M2. In this case, the unifier is σ = (M1 := M ′ r1,M2 := M ′ r2) for a fresh M ′ so that
[[σ]]M1 p1 = [[σ]]M2 p2 reduces to M1 (p1 ◦ r1) = M2 (p2 ◦ r2) and we can find r1 and r2 through
another finite limit, the pullback of p1 and p2. (See Figure 1.)

3.4 Flex-Rigid

This is the main case to deal with, where we unify M p with a t which does not contain M . Since
σM will not be relevant for [[σ]] t we can decompose our candidate unifier σ into (π,M := s)
for a term s and another substitution π. The unification constraint [[σ]]M p = [[σ]] t becomes
[p] s = [[π]] t. For this equation to be solvable the term [[π]] t may only have free object variables
that appear in p. We distinguish free rigid variables, like x in x~t, from free pattern variables,
like x in p. The substitution π can eliminate the free pattern variables which are not in p by
so-called pruning.

Pruning. Pruning t with respect to p proceeds by recursion on t. In case t = M ′ q we return
the singleton substitution π = (M ′ := M ′′ r2) for some fresh M ′′ and pattern r2, so that
[[π]] t = M ′′ (q ◦ r2). The pattern q ◦ r2 must only contain free variables in p, which means there
must exist a r1 such that p ◦ r1 = q ◦ r2. The most general solution of this equation is again
the pullback of p and q, and with an argument similar to the Flex-Flex case this leads to π
being the most general pruning substitution. In case t = λt′ we update the pattern p to handle
the new bound variable, and recurse on t′. In case t = x~t we recursively compute the pruning
substitutions ~π for the subterms ~t and compose them by iteratively taking the pushout, i.e. the
categorical dual of a pullback.

Inversion. Finding s such that [p] s = [[π]] t, and thus uniquely solving the unification prob-
lem, is possible whenever the free rigid variables of t are contained in p. Specifically in the case
t = x~t the constraint reduces to [p] s = x ([[π]]~t), this is solved by s = y~t1 such that p y = x.

4

A Categorical Perspective on Pattern Unification (Extended Abstract) Andrea Vezzosi and Andreas Abel

3.5 Failed Occurs Check

The remaining case is when we are tying to unify M p with a term t where M appears in a
nested position, e.g. t = x (M q). Here we can conclude that there are no unifiers because the
height of the two terms will never match.

4 Towards Generic Pattern Unification

Practical applications of higher-order unification need to handle languages more complex than
STLC, e.g. with product and sum types, defined functions, and dependent types.

Our categorical view of the algorithm allows us to apply techniques from datatype generic
programming to abstract away from the specific syntax and types of STLC. Instead of Pat we
can consider a generic category Ctx having all the pullbacks and equalisers and whose arrows
are monomorphisms. And instead of the grammar of STLC we can use an arbitrary one defined
by a family of operators, as hinted in the Flex-Rigid section, as long as they are functorial
with respect to Ctx, have decidable equality, and provide operations that attempt to invert
the functorial action. From the functoriality of the operators we can derive the functoriality
of the whole syntax. From a formalization point of view we would use an Indexed Container
[Altenkirch and Morris, 2009] to describe the operators. It remains to be verified which language
features of interest can fit into this generalization.

References

A. Abel and B. Pientka. Higher-order dynamic pattern unification for dependent types and
records. In Proc. of the 10th Int. Conf. on Typed Lambda Calculi and Applications, TLCA
2011, volume 6690 of Lect. Notes in Comput. Sci., pages 10–26. Springer, 2011.

T. Altenkirch and P. Morris. Indexed containers. In Proc. of the 24nd IEEE Symp. on Logic
in Computer Science (LICS 2009), pages 277–285. IEEE Computer Soc. Press, 2009.

I. Cervesato and F. Pfenning. A linear spine calculus. J. Log. Comput., 13(5):639–688, 2003.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the Church-Rosser theorem. Indagationes Mathematicae,
34:381–392, 1972.

J. A. Goguen. What is unification? – A categorical view of substitution, equation and solution.
In Resolution of Equations in Algebraic Structures, Volume 1: Algebraic Techniques, pages
217–261. Academic, 1989.

D. Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. J. Log. Comput., 1(4):497–536, 1991.

J. Reed. Higher-order constraint simplification in dependent type theory. In 4th Int. Wksh. on
Logical Frameworks and Meta-languages: Theory and Practice (LFMTP 2009), pages 49–56.
ACM Press, 2009.

A. Vezzosi. Higher-order pattern unification in Agda, 2012. URL http://github.com/Saizan/

miller.

5

http://github.com/Saizan/miller
http://github.com/Saizan/miller

	Introduction
	The problem
	Finding a solution
	Rigid-Rigid
	Flex-Flex (Same Meta)
	Flex-Flex (Different Meta)
	Flex-Rigid
	Failed Occurs Check

	Towards Generic Pattern Unification

