
Extensible Symbolic
Analysis of Systems

José Meseguer

University of Illinois at Urbana-Champaign

Meseguer Extensible Symbolic System Analysis

Motivation

Many distributed systems such as:
distributed cyber-physical systems; and

secure distributed systems

are open, interacting with an external, possibly hostile,
environment; and are often safety-critical.

At present, analyzing such systems with methods that are
scalable and amenable to automation is difficult because:

1 they are highly concurrent, and often infinite-state;

2 the external enviroment they interact with is highly
non-deterministic.

Meseguer Extensible Symbolic System Analysis

Some Partial Answers

Several symbolic, formal analysis techniques provide certain
ways to automatically analyze open systems, with varying
degrees of scalability:

1 Automata-Based Model Checking, where possibly
infinite sets of behaviors and/or states are symbolically
represented by various kinds of automata;

2 SMT Solving, where, for domains having decidable
theories, possibly infinite sets of states are symbolically
represented as constraints; and

3 Rewriting and Narrowing Modulo Theories, where,
modulo an equational theory E , E-equivalence classes of
states, or even patterns defining infinite sets of such
equivalence classes modulo E are represented as terms,
and their transitions as rewrite rules.

Meseguer Extensible Symbolic System Analysis

The Extensibility Problem

What we lack are extensibility techniques that can combine the
power of SMT solving, rewriting- and narrowing-based analysis,
and automata-based model checking; and new formal tools that
can apply these symbolic techniques together.

The needed combinations are summarized in the “cube” below
as vector additions.

Meseguer Extensible Symbolic System Analysis

Plan of This Talk

In the rest of this talk I will present some recent work towards
completing the above cube within the context of Maude and
rewriting logic, including:

Explaining techniques we are developing for rewriting and
narrowing modulo E for a rich variety of equational
theories, and model checking methods based on that.

Explaining techniques we are developing for rewriting
modulo E + SMT , and model checking methods based on
that.

Acknowledgements. The work presented is joint work with
Andrew Cholewa, Kyungmin Bae, Steven Eker, Santiago
Escobar, Vijay Ganesh, Catherine Meadows, César Muñoz,
Paliath Narendran, Camilo Rocha, Ralf Sasse, Carolyn Talcott
and Fan Yang.

Meseguer Extensible Symbolic System Analysis

Outline

1 Explicit-State Model Checking in Rewriting Logic

2 Modeling Open Systems with Rewrite Theories

3 Symbolic Reachabilty Analysis by Narrowing Modulo

4 Variant Narrowing and Variant Unification

5 The Maude-NPA

6 Narrowing-Based Model Checking in Rewriting Logic

7 Rewriting Modulo SMT and Open System Analysis

8 Conclusion

Meseguer Extensible Symbolic System Analysis

Rewriting Logic in a Nutshell

Rewriting logic is a flexible logical framework to specify
concurrent systems.

A concurrent system specified as rewrite theory
R = (Σ,E ,R) where:

Σ is signature defining the syntax of the system and of its
states

E is a set of equations defining system’s states as an
algebraic data type

R is a set of rewrite rules of the form t → t ′, specifying
system’s local concurrent transitions.

Rewriting logic deduction consists of applying rewriting
rules R concurrently, modulo the equations E .

Maude, CafeOBJ and Elan are rewrite engines capable of
executing rewrite theories. Maude provides several model
checkers and theorem proving tools.

Meseguer Extensible Symbolic System Analysis

Rewriting Modulo E and Model Checking

This is the area where we have the longest experience.

A concurrent system is represented as a rewrite theory
R = (Σ,G ∪ B,R), where E = G ∪ B, the equational theory we
rewrite modulo, can be any convergent and coherent theory
modulo B, with B any combination of A, C, and U axioms.

Thanks to the requirement that the rewrite rules R describing
the system’s transitions are coherent with G modulo B, rewriting
with R modulo E can be achieved by rewriting with R modulo B.

Model checking temporal logic properties of the system
axiomatized by R = (Σ,G ∪ B,R) can be done not only for
state-based LTL properties, but, as developed in joint work with
Kyungmin Bae, for state/event properties in the linear temporal
logic of rewriting LTLR, and under parameterized fairness
conditions.

Meseguer Extensible Symbolic System Analysis

Outline

1 Explicit-State Model Checking in Rewriting Logic

2 Modeling Open Systems with Rewrite Theories

3 Symbolic Reachabilty Analysis by Narrowing Modulo

4 Variant Narrowing and Variant Unification

5 The Maude-NPA

6 Narrowing-Based Model Checking in Rewriting Logic

7 Rewriting Modulo SMT and Open System Analysis

8 Conclusion

Meseguer Extensible Symbolic System Analysis

Modeling Open Systems with Rewrite Theories

Q: How is the fact that a distributed system is open, i.e.,
interacts with a non-deterministic environment, modeled in the
rewrite theory R = (Σ,G ∪ B,R)?

A: It is modeled by the fact that the (possibly conditional) rewrite
rules in R, axiomatizing the system transitions may have extra
variables ~y in their righthand side. I.e., rules have the form:

t(~x)→ t ′(~x , ~y) if C

Such rules appear naturally in:
rules with non-equational rewrite conditions;
rules describing interactions with an environment, e.g.,
time (Real-Time Maude “tick” rules), and values of sensors;
probabilistic rewrite rules, where the ~y are chosen with a
probability distribution modeling the environment.

Meseguer Extensible Symbolic System Analysis

Outline

1 Explicit-State Model Checking in Rewriting Logic

2 Modeling Open Systems with Rewrite Theories

3 Symbolic Reachabilty Analysis by Narrowing Modulo

4 Variant Narrowing and Variant Unification

5 The Maude-NPA

6 Narrowing-Based Model Checking in Rewriting Logic

7 Rewriting Modulo SMT and Open System Analysis

8 Conclusion

Meseguer Extensible Symbolic System Analysis

Symbolic Reachabilty Analysis by Narrowing Modulo

Given a rewrite theory R = (Σ,G ∪B,R), the narrowing modulo
G ∪ B relation

t ;R,(G∪B) t ′

is defined if there is:
a non-variable position p ∈ Pos(t);
a rule l → r in R; and
a (G ∪ B)-unifier σ such that σ(t |p) =(G∪B) σ(l), and
t ′ = σ(t [r]p).

As shown by Meseguer and Thati, if R is a topmost rewrite
theory, narrowing modulo G ∪ B is a complete reachability
analysis method to solve queries of the form:

(∃~x) t −→∗ t ′

Note that narrowing can be performed with non-deterministic
rules t(~x)→ t ′(~x , ~y) in R.

Meseguer Extensible Symbolic System Analysis

Technical Challenges of Narrowing Modulo G ∪ B

In order to make narrowing modulo G ∪ B a practical symbolic
method to analyze a system specified by R = (Σ,G ∪ B,R),
two important questions had to be answered:

1 How can unification modulo G∪B be efficiently supported?

2 How can not just symbolic reachability analysis but
narrowing-based LTL model checking be supported?

Question (1) has been answered by Escobar, Meseguer and
Sasse: (G ∪ B)-unifiers can be optimally computed by folding
variant narrowing for any convergent and coherent G modulo B.

Question (2) has been answered by Bae, Escobar and
Meseguer by developing narrowing-based LTL and LTLR model
checking algorithms and model checkers.

Meseguer Extensible Symbolic System Analysis

Outline

1 Explicit-State Model Checking in Rewriting Logic

2 Modeling Open Systems with Rewrite Theories

3 Symbolic Reachabilty Analysis by Narrowing Modulo

4 Variant Narrowing and Variant Unification

5 The Maude-NPA

6 Narrowing-Based Model Checking in Rewriting Logic

7 Rewriting Modulo SMT and Open System Analysis

8 Conclusion

Meseguer Extensible Symbolic System Analysis

Folding Variant Narrowing in a Nutshell

If G is coherent and convergent modulo B, Jouannaud, K.
Kirchner, and H. Kirchner proved that narrowing modulo B
provides a complete (G ∪ B)-unification procedure.

Narrowing can be very inefficient. When the set B of axioms is
empty, Hullot’s basic narrowing has been used as an efficient,
complete strategy.

Even for AC basic narrowing is incomplete. No efficient strategy
was known in the terra incognita of narrowing modulo B.

Folding variant narrowing is an optimally terminating, complete
strategy for narrowing with G modulo B:

if any complete strategy terminates on an input problem,
folding variant narrowing will also;
even for B = ∅, folding variant narrowing terminates strictly
more often than basic narrowing.

Meseguer Extensible Symbolic System Analysis

Folding Variant Narrowing in a Nutshell (II)

Folding variant narrowing has been developed by Escobar,
Meseguer, and Sasse, using the Comon-Delaune notion of
variant for G convergent and coherent equations modulo B.

A G/B-variant of a term t is a pair (u, θ) with θ a substitution
and u a G/B-canonical form of tθ. Variants are naturally
(pre-)ordered by a B-subsumption relation. G ∪ B has the finite
variant property (FVP) if there is a finite set of most general
variants.

Folding variant narrowing only keeps those narrowing steps

t
θ

;∗G,B u where: (i) (u, θ) is a variant; (ii) θ is G/B-normalized,
and (iii) no earlier computed variant subsumes (u, θ). This
provides an optimally terminating narrowing-based
G ∪ B-unification procedure, which is finitary iff G ∪ B is FVP.

Meseguer Extensible Symbolic System Analysis

Folding Variant Narrowing in a Nutshell (III)

Maude 2.7 (soon to be released) supports variant-based
unification for any equations G that are convergent modulo B,
with B a combination of A, C and U axioms, except A without C.

The number of generated unifiers is always finite for G ∪ B FVP.

Theorem. (Σ,G ∪ B) is FVP iff for each f ∈ Σ, f (x1, . . . , xn) has
a finite number of variants, denoted |variants(f (x1, . . . , xn))| 2

Definition. Let (Σ,G ∪ B) be convergent modulo B. Its variant
complexity is the number

Σf∈Σ|variants(f (x1, . . . , xn))|

or∞ if |variants(f (x1, . . . , xn))| infinite for some f ∈ Σ.

Meseguer Extensible Symbolic System Analysis

Outline

1 Explicit-State Model Checking in Rewriting Logic

2 Modeling Open Systems with Rewrite Theories

3 Symbolic Reachabilty Analysis by Narrowing Modulo

4 Variant Narrowing and Variant Unification

5 The Maude-NPA

6 Narrowing-Based Model Checking in Rewriting Logic

7 Rewriting Modulo SMT and Open System Analysis

8 Conclusion

Meseguer Extensible Symbolic System Analysis

The Maude-NPA Crypto Protocol Analyzer

Narrowing modulo G ∪ B with the rules R of a rewrite theory
R = (Σ,G ∪ B,R) has been implemented in Maude for G ∪ B
FVP. This is the basis of the Maude-NPA tool of Escobar,
Meadows and Meseguer, where a crypto protocol modeled as
P = (Σ,G ∪ B,R) is analyzed modulo G ∪ B.

Many protocols have been or are being analyzed modulo
non-trivial theories such as: (i) encryption-decryption; (ii)
exclusive or; (iii) Diffie-Hellman exponentiation; (iv) abelian
groups, (v) homomorphic encryptions, and combinations of
such theories.

Although Maude-NPA deals with unbounded sessions for which
reachability is undecidable, its use of very effective symbolic
state space reduction techiques often makes the state space
finite, allowing full verification.

Meseguer Extensible Symbolic System Analysis

The Maude-NPA Crypto Protocol Analyzer (II)

Homomorphic encryption is challenging: the theories H and
AGH are not FVP, and combining their unification algorithms
with those of other theories is computationally expensive.

In recent work of Yang et al. (PPDP14), a host of FVP theories
of homomorphic encryption have been identified and used with
protocols in Maude-NPA with a clear tradeoff between accuracy
and variant complexity.

P GAAHD38
&

((
kHD29 // HD1 // HD13

&
// P GHD26

&
//

77

AP GHD26
&

// AP GAAHD38
&

// 2AGHD2279 // // 2XORHD51

P GAAH22
&

((

88

kH4

OO

// H1

OO

// H8
&

OO

// P GH20
&

OO

//

77

AP GH20
&

//

gg

AP GAAH32
&

OO

// 2AGH2276

OO

✏✏✏✏

// // 2XORH48

OO

✏✏✏✏
AGH1 // // XORH1

Figure 1. Relations between the theories discussed in this paper

since encryption with a specific key is implicitly captured by the
definition of the encryption operator e. 2XORH denotes homomor-
phic encryption over two Xor operators, which is an over approxi-
mation of 2AGH. In all cases the axioms B are either B = ; or the
union of all the equations defining C and AC properties. We also
note that in many cases we completed the theory to ensure conver-
gence; these are described in detail in Section 4. The superscript
number of each theory denotes the “variant complexity” and de-
notes the sum of the number of variants obtained for each function
symbol in the theory (excluding constants). If the superscript is 1,
this means that the theory doesn’t have FVP.

The rest of the paper is organized as follows. In Section 2 we
give the background on term rewriting and variant unification nec-
essary for understanding this paper. In Section 3 we give the mo-
tivation of FVP in terms of cryptographic protocol analysis. In ad-
dition we describe related work in unification and apply it to show
that none of the possible decompositions of AGH satisfy the neces-
sary conditions for variant unification. In Section 4 we present the
various homomorphic theories we investigated and their properties.
In Section 5 we present the results of performing experiments on
several representative theories, using Maude-NPA to analyze pro-
tocols specified using these theories. In Section 6 we conclude and
discuss future work.

2. Background on Term Rewriting
We follow the classical notation and terminology from [41] for term
rewriting and from [31, 32] for rewriting logic and order-sorted no-
tions. We assume an order-sorted signature ⌃. T⌃(X) denotes the
set of terms for variables X and T⌃ the set of ground terms. We
write Var(t) for the set of variables present in a term t. The sub-
term of t at position p is t|p, and t[u]p is the result of replacing t|p
by u in t. A substitution � is a sort-preserving mapping from a finite
subset of X to T⌃(X). The identity substitution is ◆. Application
of substitution � to a term t is denoted t�.

A ⌃-equation is an unoriented pair t = t0. Given a set B of
⌃-equations, order-sorted equational logic induces a congruence
relation =B on terms t, t0 2 T⌃(X); see [32]. A set B of ⌃-
equations is regular if for each t = t0 in B, Var(t) = Var(t0).
A set B of ⌃-equations is sort-preserving if for each t = t0 in B
and for each substitution �, t� has sort s iff t0� has sort s. A set
B of ⌃-equations uses top-sort variables if for each t = t0 in B,
each variable in Var(t) [Var(t0) has a top sort. For a set B of
⌃-equations, a B-unifier for a ⌃-equation t = t0 is a substitution
� s.t. �(t) =B �(t0). A complete set of B-unifiers of an equation
t = t0 is written CSUB(t = t0). We say CSUB(t = t0) is finitary if
it contains a finite number of B-unifiers.

A rewrite rule is an oriented pair l ! r, where l 62 X ,
Var(r) ✓ Var(l), and l, r 2 T⌃(X)s for some sort s 2 S. An
(unconditional) order-sorted rewrite theory is a triple (⌃, B, R)

with ⌃ an order-sorted signature, B a set of ⌃-equations, and R
a set of rewrite rules. A set R of rules is sort-decreasing if for
each t ! t0 in R, each sort s, and each substitution �, t0� has
sort s implies t� has sort s too. The relation !R,B on T⌃(X) is
defined as: t

p!R,B t0 (or !R,B) if p is a non-variable position of
t, l ! r 2 R, t|p =B �(l), and t0 = t[�(r)]p for some �.

A decomposition (⌃, B, R) of an equational theory E is a
rewrite theory that satisfies the following properties: (i) B is regu-
lar, sort-preserving and uses top-sort variables, (ii) B has a finitary
unification algorithm, and (iii) the rules R are convergent modulo
B, i.e., sort-decreasing, confluent, terminating, and coherent mod-
ulo B.

Given a decomposition E = (⌃, B, R), a variant of a term t is a
pair (t0, ✓) such that t0 is a !R,B-canonical form of the substitution
instance t✓, i.e., there is a term t00 such that t✓ !⇤

R,B t00, t00 is a
!R,B-normal form, and t0 =B t00. A decomposition (⌃, B, R)
has the finite variant property (FVP) if there is a complete and
finite set of variants for each term (see [15, 21] for details). If a
decomposition (⌃, B, R) of an equational theory E has the finite
variant property, there is an algorithm to compute a finite complete
set CSUE(t = t0) of E-unifiers [21].

3. Motivation and Related Work
In this section we discuss the related work that precedes and mo-
tivates the work in this paper. This is divided into two parts. The
first motivates our interest in FVP in terms of its application to
cryptographic protocol analysis. The second gives a brief history
of work on unification modulo one-sided distributivity that applies
to homomorphic encryption and uses these results to show that no
decomposition of AGH satisfies all the conditions necessary for
the finite variant property, and thus demonstrates the need for other
solutions such as theory approximations.

3.1 Motivation
Unification-based cryptographic protocol analysis tools are used
to analyze cryptographic protocols in which an attacker interact-
ing with the protocol may cause security properties to be violated.
Actions of principals are modeled symbolically using logical vari-
ables, and paths through protocols are computed by unifying mes-
sages expected by a principal with messages sent by a principal,
often modulo some equational theory that describes the properties
of the crypto algorithms used.

Any unification technique used in cryptographic protocol analy-
sis must satisfy two properties. First of all, it must behave well with
respect to composition, especially of disjoint theories, since crypto-
graphic protocols often combine different algorithms described by
different theories. Although methods for combining unification al-
gorithms of disjoint theories are well-known [6, 40], the solution in

Meseguer Extensible Symbolic System Analysis

Outline

1 Explicit-State Model Checking in Rewriting Logic

2 Modeling Open Systems with Rewrite Theories

3 Symbolic Reachabilty Analysis by Narrowing Modulo

4 Variant Narrowing and Variant Unification

5 The Maude-NPA

6 Narrowing-Based Model Checking in Rewriting Logic

7 Rewriting Modulo SMT and Open System Analysis

8 Conclusion

Meseguer Extensible Symbolic System Analysis

Maude’s Narrowing-Based LTL(R) Model Checker

Many concurrent systems are infinite-state.

The Maude Logical Bounded Model Checker tool developed by
K. Bae with S. Escobar and J. Meseguer is an infinite-state
model checker for LTL and LTLR properties supporting:

Symbolic representation of states and transitions through
narrowing.

Acceleration using folding

Abstraction using equational abstractions

bounded model checking, which can detect a finite
symbolic space to provide full verification.

Meseguer Extensible Symbolic System Analysis

Lamport’s Bakery Example

In Lamport’s Bakery protocol for mutual exclusion each state
with n processes:

i ; j ; [k1,m1] . . . [kn,mn]

i : the current number in the bakery’s number dispenser,
j : the number currently served,
[kl ,ml]: a process kl in a mode ml , either idle, wait(t),
or crit(t).

Behaviors:

rl [wake]: N ; M ; [K,idle] PS => s N ; M ; [K,wait(N)] PS .
rl [crit]: N ; M ; [K,wait(M)] PS => N ; M ; [K,crit(M)] PS .
rl [exit]: N ; M ; [K,crit(M)] PS => N ; s M ; [K,idle] PS .

Mutual exclusion: �ex? where:

eq N ; M ; [K1, crit(M1)] [K2, crit(M2)] PS |= ex? = false .

Meseguer Extensible Symbolic System Analysis

Lamport’s Bakery Example (II)

The commands below show the results of the bounded model
checking with depth 10, and of full model checking using an
equational abstraction, for an arbitrary number of processes.

Maude> (lmc [10] N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)

logical model check in BAKERY-SAFETY-SATISFACTION :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
no counterexample found within bound 10

Maude> (lfmc N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex? .)

logical folding model check in BAKERY-SAFETY-SATISFACTION-ABS :
N:Nat ; N:Nat ; IS:ProcIdleSet |= [] ex?

result:
true

The tool is available at
http://formal.cs.illinois.edu/kbae/lmc/

Meseguer Extensible Symbolic System Analysis

http://formal.cs.illinois.edu/kbae/lmc/

Unification-Based Predicate Abstraction

Predicate abstraction S/AP of system S with state predicates
AP and state-labeling function L has:

(i) set of states s ∈ AP, and (ii) transitions s → s′ ∈ S/AP iff ∃
concrete transition t → t ′ ∈ S with:

L(t) = s ∧ L(t ′) = s′

Then for ϕ any LTL formula, S/AP |= ϕ ⇒ S |= ϕ.

The problem is finding a witness for the existential quantifier.

In RTA 2014, K. Bae and J. Meseguer present a
unification-based method to automatically build S/AP or an
approximation of it for rewrite theories of the form:
R = (Σ,E ∪ B,R) with E convergent modulo B and R possibly
conditional rules.

Meseguer Extensible Symbolic System Analysis

Outline

1 Explicit-State Model Checking in Rewriting Logic

2 Modeling Open Systems with Rewrite Theories

3 Symbolic Reachabilty Analysis by Narrowing Modulo

4 Variant Narrowing and Variant Unification

5 The Maude-NPA

6 Narrowing-Based Model Checking in Rewriting Logic

7 Rewriting Modulo SMT and Open System Analysis

8 Conclusion

Meseguer Extensible Symbolic System Analysis

Rewriting Modulo SMT

Camilo Rocha’s thesis and subsequent work by Rocha,
Meseguer and Muñoz consider rewrite theories R = (Σ,E ,R)
such that:

The signature Σ is ordered-sorted, there is a downward
closed sub-poset of sorts (S0,≤) and a subsignature Σ0
on (S0,≤) such that for each f : w → s ∈ Σ− Σ0,
s ∈ S − S0, and there are no subsort-overloaded operators
in common between Σ0 and Σ− Σ0.
The equations E are a disjoint union E = B] E0, with the
E0 Σ0-equations and the B regular and collapse-free
Σ− Σ0-axioms with a matching algorithm. Furthermore,
the theory of the initial algebra TΣ0/E0 is decidable.
The rules in R are topmost, with top sort in S − S0, and are
non-deterministic and conditional, having the form

t(~x)→ t ′(~x , ~y) if φ

with the sorts of variables ~y in S0, and φ a q.f. Σ0-formula.
Meseguer Extensible Symbolic System Analysis

Rewriting Modulo SMT (II)

Intuitively, such a theory specifies an open system whose
non-deterministic environment consists only of inputs and
outputs in the decidable theory of TΣ0/E0 .

Because of its non-determinism, the theory is not executable in
the usual sense. However, we can easily transform each
rewrite rule t(~x)→ t ′(~x , ~y) if φ in R, into an equivalent rule
where t and t ′ have no non-variable Σ0-subterms, and all
variables in S0 are linear.

This can be achieved by decomposing t as t = C[u1, . . . ,un],
and t ′ as t ′ = D[v1, . . . , vn, ~y], where the ui , vj , are maximal
Σ0-subterms and transforming the above rule into the rule:

t = C[~z]→ D[~z ′, ~y] if ~z = ~u ∧ ~z ′ = ~v ∧ φ.

where the ~z and ~z ′ are abstraction variables with sorts in S0.

Meseguer Extensible Symbolic System Analysis

Rewriting Modulo SMT (III)

Using such a transformation, we can define the, non-executable
but decidable, R-rewrite relation of ground terms u →R v iff
there is a rule t → t ′ if φ in R and a ground substitution θ of all
its variables such that: (i) u =E tθ and v =E t ′θ, and (ii)
TΣ0/E0 |= φθ.

Using an SMT solver, we can make rewriting in R executable in
a symbolic way by rewriting constrained terms of the form u | ψ,
with ψ a quantifier-free Σ0-formula; where the variables of t | ψ
all have sorts in S0, and are always disjoint from those of R.
We say that the SMT-rewriting relation

u | ψ ;R v | δ

holds iff there is a rule t → t ′ if φ in R and a substitution θ
such that: (i) u =B tθ and v =B t ′θ, with θ a renaming with fresh
new variables for all variables in t → t ′ if φ but not in t ; and (ii)
TΣ0/E0 |= δ ⇔ (ψ ∧ φθ). A Lifting Lemma holds, relating→R and
;R.

Meseguer Extensible Symbolic System Analysis

Symbolic Semantics of NASA’s PLEXIL Language

NASA’s PLEXIL Language for distributed programmig of robot
tasks has been used in:
Mars Drill

executive for the Drilling Automation for Mars Exploration
drilling application
used at the Haughton Crater on Devon Island, perhaps,
in the first fully automated drill rig

International Space Station
demonstrate automation for ISS operations

Habitat Demonstration Unit

automated control of several subsystems

Meseguer Extensible Symbolic System Analysis

Symbolic Semantics of NASA’s PLEXIL Language (II)

Although PLEXIL is a deterministic language, its interaction
with a physical environment through sensors and actuators
make it non-deterministic.

Muñoz and Rocha developed a formal executable semantics of
PLEXIL in Maude that is used regularly within NASA to analyze
PLEXIL programs and to design new versions of PLEXIL.
However, the non-determinism of the environment had to be
dealt with by assuming specific environment inputs.

Using rewriting modulo SMT and Rocha’s implementation of it
in Maude using CVC-3 as an oracle, full symbolic verification of
safety properties for PLEXIL programs such as absence of race
conditions can be performed for arbitrary environment inputs.

Meseguer Extensible Symbolic System Analysis

Analyzing the CASH Scheduling Algorithm

The CASH scheduling algorithm, of Caccamo, Buttazzo, and
Sha attempts to maximize system performance by maintaining
a queue of unused execution budgets that can be reused by
other jobs to maximize processor utilization. Unbounded data
types such as queues cannot be modeled in timed-automata.

Using Real-Time Maude, Ölveczky and Caccamo found a
subtle deadline miss in an optimized version of CASH by
explicit state model chacking.

However, the CASH algorithm is parameterized by: (i) the
number N of servers in the system, and (ii) the values of a
maximum budget bi and period pi , for each server 1 ≤ i ≤ N.
Even if we fix N, there are infinitely many initial states for N
servers, since the maximum budgets bi and periods pi range
over the natural numbers. Therefore, explicit state model
checking cannot perform a full analysis.

Meseguer Extensible Symbolic System Analysis

Analyzing the CASH Scheduling Algorithm (II)

Rewriting modulo SMT is useful for symbolically analyzing
infinite-state systems like CASH. Infinite sets of states are
symbolically described by terms which may involve
user-definable data structures such as queues, but whose only
variables range over decidable types for which an SMT solving
procedure is available.

The symbolic transitions of CASH are specified by 14
conditional rewrite rules whose conditions specify constraints
solvable by the SMT procedure. For example, the rule below
models the detection of a deadline miss for a server with
nonzero maximum budget.
crl [deadlineMiss] : [iB, < G : global | dead-miss |-> B, AtSG > <
O : server | state |-> St, usedOfBudget |-> iT, timeToDeadline |->
iT’, maxBudget |-> iNZT, AtS > Cnf] => [iB & iT >= c(0) & iNZT > c(0)
& iT’ > c(0) & iNZT > iT + iT’, <G:global |dead-miss|->true,AtSG>
<O : server | state |-> St, usedOfBudget |-> iT, timeToDeadline |->
iT’, maxBudget |-> iNZT, AtS> Cnf] if St =/= idle / check-sat(iB &
iT >= c(0) & iNZT > c(0) & iT’ > c(0) & iNZT > iT + iT’) .

Meseguer Extensible Symbolic System Analysis

Analyzing the CASH Scheduling Algorithm (III)

We want to verify symbolically the existence of missed
deadlines of the CASH algorithm for the infinite set of initial
configurations containing two server objects s0 and s1 with
maximum budgets b0 and b1 and periods p0 and p1 as
unspecified natural numbers, and such that each server’s
maximum budget is strictly smaller than its period (i.e.,
0 ≤ b0 < p0 ∧ 0 ≤ b1 < p1).

This infinite set of initial states is specified symbolically by the
equational definition (not shown) of term symbinit. Maude’s
search command can then be used to symbolically check if
there is a reachable state for any ground instance of symbinit
that misses the deadline.

Meseguer Extensible Symbolic System Analysis

Analyzing the CASH Scheduling Algorithm (IV)

A counterexample is found at (modeling) time two, after
exploring 233 symbolic states in less than 3 seconds. By using
a satisfiability witness of the constraint iB computed by the
search command, a concrete counterexample is found by
exploring only 54 ground states. This result compares
favorably, in both time and computational resources, with the
ground counterexample found by explicit-state model checking,
where more that 52,000 concrete states where explored before
finding a counterexample.

Meseguer Extensible Symbolic System Analysis

Outline

1 Explicit-State Model Checking in Rewriting Logic

2 Modeling Open Systems with Rewrite Theories

3 Symbolic Reachabilty Analysis by Narrowing Modulo

4 Variant Narrowing and Variant Unification

5 The Maude-NPA

6 Narrowing-Based Model Checking in Rewriting Logic

7 Rewriting Modulo SMT and Open System Analysis

8 Conclusion

Meseguer Extensible Symbolic System Analysis

Conclusion

Extensible, symbolic methods that combine the power of
automata-based model checking, SMT solving, and
rewriting/narrowing modulo theories can make the analysis of
open distributed system much more scalable and mostly
automatic. I have given a summary of recent work completing
the “cube” to combine such power.

But, as usual, much more work remains ahead.
Meseguer Extensible Symbolic System Analysis

	Explicit-State Model Checking in Rewriting Logic
	Modeling Open Systems with Rewrite Theories
	Symbolic Reachabilty Analysis by Narrowing Modulo
	Variant Narrowing and Variant Unification
	The Maude-NPA
	Narrowing-Based Model Checking in Rewriting Logic
	Rewriting Modulo SMT and Open System Analysis
	Conclusion

