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Second-Order Unification

Variables may have arguments: f (F (a),F (a)) ?= F (f (a, a))
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Instances of variables may use their arguments. . .
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Instances of variables may use their arguments. . .
. . . just once like in F 7→ λx . x
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Variables may have arguments: f (F (a),F (a)) ?= F (f (a, a))
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Instances of variables may use their arguments. . .
. . . just once like in F 7→ λx . x

. . . twice like in F 7→ λx . f (x , x)
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Second-Order Unification

Variables may have arguments: f (F (a),F (a)) ?= F (f (a, a))
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Instances of variables may use their arguments. . .
. . . just once like in F 7→ λx . x

. . . twice like in F 7→ λx . f (x , x)

. . . or more times like in F 7→ λx . f (f (x , x), f (x , x))
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Variants of Second-Order Unification

Depending on the number of times instances may use variables we
have

Unrestricted: General Second-Order Unification (SOU)

Just once: Linear Second-Order Unification (LSOU)
Or Context Unification (CU) when variables may have at
most one argument

At most once: Bounded Second-Order Unification
(BSOU)

All variants are infinitary:

F (f (a)) ?= f (F (a))

{[F 7→ λx . f ( n. . . f (x) . . . )]}n≥0
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Depending on the number of times instances may use variables we
have
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General Un/Decidability Results

General SOU:

[Gould 1966] Decidability of SO Matching
[Lucchesi 1972 and Huet 1973] Third-Order Unification is
undecidable
[Pietrzykowski 1973] Complete SOU procedure
[Jensen and Pietrzykowski 1976] Complete HOU procedure
[Goldfarb 1981] SOU is undecidable
[Farmer 1988] SOU is decidable if all function symbols are
unary (Monadic SOU)
[Levy, Schmidt-Schauß, Villaret 2004] NP-completeness of
Monadic SOU

CU and LSOU:

[Comon 1993 and Schmidt-Schauss 1995] introduction of CU
[Levy 1996] Complete LSOU procedure
[de Groote 2000] Decidability of Linear HO Matching
[Jez 2014] Decidability of CU

BSOU:

[Schmidt-Schauß 2004] Decidability of BSOU
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General Un/Decidability Results

General SOU:

[Gould 1966] Decidability of SO Matching

[Lucchesi 1972 and Huet 1973] Third-Order Unification is
undecidable

[Pietrzykowski 1973] Complete SOU procedure

[Jensen and Pietrzykowski 1976] Complete HOU procedure

[Goldfarb 1981] SOU is undecidable

CU and LSOU:

[Comon 1993 and Schmidt-Schauss 1995] introduction of CU

[Levy 1996] Complete LSOU procedure

[de Groote 2000] Decidability of Linear HO Matching

[Jez 2014] Decidability of CU

BSOU:

[Schmidt-Schauß 2004] Decidability of BSOU

[Levy, Schmidt-Schauß, Villaret 2006] NP-completeness of
BSOU
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SO Pre-Unification [Huet 1975]

Simplif.: {f(t1,..., tn)
?= f(u1,..., un)} ∪ E ⇒

{t1
?= u1,..., tn

?= un} ∪ E

Imitation: {X(t1,..., tn)
?= f(u1,..., um)} ∪ E ⇒

(

{X ′(t1,..., tn)
?= u1,...,X

′(t1,..., tn)
?= um} ∪ E

)

ρ

ρ = [X 7→ λy1,..., yn . f (X
′
1(y1,..., yn),...,X

′
m(y1,..., yn))]

Projection: {X(t1,..., tn)
?= f(u1,..., um)} ∪ E ⇒

(

{ti
?= f (u1,..., um)} ∪ E

)

ρ

ρ = [X 7→ λy1,..., yn . yi ]

Flex-flex equations trivially solvable:

{X1(...)
?= Y1(...), . . . ,Xn(...)

?= Yn(...)}
Intantiate Xi ,Yi 7→ λx1,..., xn.a
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BSO Pre-Unification

Simplif.: {f(t1,..., tn)
?= f(u1,..., un)} ∪ E ⇒

{t1
?= u1,..., tn

?= un} ∪ E

Imitation: {X(t1,..., tn)
?= f(u1,..., um)} ∪ E ⇒

(

{X ′(t
π(1),..., tπ(r))

?= u1,...,X
′(t

π(s),..., tπ(n))
?= um} ∪ E

)

ρ

ρ = [X 7→ λy1,..., yn . f (X
′
1(yπ(1),..., yπ(r)),...,X

′
m(yπ(s),..., yπ(n)))]

for some permutation π

Projection: {X(t1,..., tn)
?= f(u1,..., um)} ∪ E ⇒

(

{ti
?= f (u1,..., um)} ∪ E

)

ρ

ρ = [X 7→ λy1,..., yn . yi ]

Flex-flex equations trivially solvable
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LSO Unification [Levy 1996]

Simplif.: {f(t1,..., tn)
?= f(u1,..., un)} ∪ E ⇒

{t1
?= u1,..., tn

?= un} ∪ E

Imitation: {X(t1,..., tn)
?= f(u1,..., um)} ∪ E ⇒

(

{X ′(t
π(1),..., tπ(r))

?= u1,...,X
′(t

π(s),..., tπ(n))
?= um} ∪ E

)

ρ

ρ = [X 7→ λy1,..., yn . f (X
′
1(yπ(1),..., yπ(r)),...,X

′
m(yπ(s),..., yπ(n)))]

for some permutation π

Projection: {X(t) ?= f(u1,..., um)} ∪ E ⇒
(

{t ?= f (u1,..., um)} ∪ E
)

ρ

ρ = [X 7→ λy . y ]

Flex-flex: {X(t1,..., tn)
?= Y(u1,..., um)} ∪ E ⇒

(

{F ′
1(tπ(1),...)

?= u
τ(1),..., tπ(r)

?= G ′
1(uτ(s),...) ∪ E

)

ρ

ρ = X 7→ λy1,..., yn .H(F ′
1(yπ(1),...) ,..., y

π(r) ,...)

Y 7→ λz1,..., zm .H(z
τ(1) ,..., G ′

1(zτ(s),...) ,...)
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To Imitate or To Project?

Source of NP-hardness:

Reduce: 1-IN-3SAT −→ SOU

Boolean variable x −→ SO variable X

X 7→ λx . f (x) −→ x is true
X 7→ λx . x −→ x is false

x ∨ y ∨ z −→ X(Y(Z(a))) ?= f(a)

(If necessary) force variables to use their argument:
X(Y(Z(b))) ?= f(b)

This proves NP-hardness of SO matching, Monadic SOU, CU and
BSOU
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To Imitate or To Project?

Source of NP-hardness:

Reduce: 1-IN-3SAT −→ SOU

1-IN-3SAT:

Clauses with 3 disjunctive variables

Satisfiable if exists an assignment making true just one variable in
each clause

Boolean variable x −→ SO variable X

X 7→ λx . f (x) −→ x is true
X 7→ λx . x −→ x is false

x ∨ y ∨ z −→ X(Y(Z(a))) ?= f(a)
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Non-Termination of Imitation
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Non-Termination of Imitation
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F 7→ λx . f (a, . . . )
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Non-Termination of Imitation
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F 7→ λx . f (a, f (a, . . . ))
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Non-Termination of Imitation
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Non-Termination of Imitation
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F 7→ λx . f (a, f (a, f (a, . . . )))
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Non-Termination of Imitation

F f

a f

a f

a

F

f

a f

a f

a f

a
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Non-Termination of Imitation

F f

a f

a f

a

F

f

a f

a f

a f

a

F 7→ λx . f (a, f (a, f (a, . . . )))

F 7→ λx . [f (a, •)]n . . .
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Non-Termination of Imitation

F f

a f

a f

a

F

f

a f

a f

a f

a

F 7→ λx . [f (a, •)]n . . .

This already happens in Word Unification

X . . .
?= a · X . . .

X 7→ an . . .
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Exponent of Periodicity

F 7→ λx . [f (a, •)]n . . .

This already happens in Word Unification

X . . .
?= a · X . . .

X 7→ an . . .

We can limit the value of n without affecting solvability

Lemma (SchmidtSchauß 2004)

For every problem E, every size-minimal unifier σ, and every

variable X , if Cn is a nonempty subcontext of σ(X ), then
n ≤ O(2|E |2).
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Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general/size-minimal solutions only use constants occurring
in the problem
Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem
[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
their restricted form with just one binary symbol
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Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general/size-minimal solutions only use constants occurring
in the problem
Hint: Replace non-original constants by fresh variables
Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem
[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
their restricted form with just one binary symbol
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Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general/size-minimal solutions only use constants occurring
in the problem
Even if all variables are unary, we may need n-ary variables
Hint: Consider X (a) ?= Y (b) and

solution X 7→ λx .Z (x , b),Y 7→ λy .Z (a, y)
This is a problem when representing most general solutions of CU
Restrict variables to be unary is not a problem
[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
their restricted form with just one binary symbol
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Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general/size-minimal solutions only use constants occurring
in the problem
Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem

h(X (g(a),Z )) ?= Y (b, f (X (c , d)))

. . . consider the most general unifier:
h(U(T (g(a), b, f (U(T (c , a, f (U(d))))))))
h(U(T (g(a), b, f (U(T (c , a, f (U(d))))))))

. . . by instantiating T 7→ λx , y , z .T ′(z):
h(U(T ′(f (U(T ′(f (U(d)))))))) = h(U(T ′(f (U(T ′(f (U(d))))))))

. . . we obtain a solution of the problem instantiated by
X 7→ λx , y .X ′(y)
Y 7→ λx , y .Y ′(y)

[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
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Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general/size-minimal solutions only use constants occurring
in the problem
Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem
[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
their restricted form with just one binary symbol
Hint: Translate f (t1, . . . , tn) −→ @(. . .@(f , t1) . . . , tn)

X (t) −→ X (t)
(a sort of partial curryfication)
This reduction is correct if variables do not “touch” like in X (Y (t))
We can guess head symbol in Y and avoid this situation
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Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general/size-minimal solutions only use constants occurring
in the problem
Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem
[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
their restricted form with just one binary symbol
[Levy Schmidt-Schauß Villaret 2004] Monadic SOU is NP-complete
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Monadic SOU is in NP [Levy Schmidt-Schauß Villaret 2004]

Represent one of the solutions in polynomial space

Prove that we can check if a substitution is a solution in
polynomial time on this representation
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Monadic SOU is in NP [Levy Schmidt-Schauß Villaret 2004]

Represent one of the solutions in polynomial space

Prove that we can check if a substitution is a solution in
polynomial time on this representation

Use the exponent of periodicity of size-minimal solutions (we
can represent exponents in linear space) [Makanin, Kościelski

and Pacholski]

Use (singleton) context free grammars to represent solutions

Given two singleton CFG we can check if they define the same
word in polynomial time [Plandowski]
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Monadic SOU is in NP (Some Details)

Lemma

If G defines w1, . . . ,wn, exists G
′ ⊇ G defining w = w1 . . .wn s.t.

|G ′| ≤ |G |+ n − 1

depth(G ′) ≤ depth(G ) + ⌈log n⌉

Lemma

If G defines w, for any n, exists G ′ ⊇ G defining wn s.t.

|G ′| ≤ |G |+ 2 ⌊log n⌋

depth(G ′) ≤ depth(G ) + ⌈log n⌉

Lemma

If G defines w, for any w ′ ≺ w, exists G ′ ⊇ G defining w ′ s.t.

|G ′| ≤ |G |+ depth(G )

depth(G ′) = depth(G )
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Monadic SOU is in NP (Some Details)

Define if X w1
?= Y w2 then X ≈ Y

One node for every ≈-equivalence class of variables.

For every X w1
?= a1 · · · an Y w2

L1 ∅ ∅ · · · ∅ L2
a1 a2 an

where X ∈ L1 and Y ∈ L2

For every X w1
?= a1 · · · an b

L ∅ ∅ · · · ∅ b
a1 a2 an

where X ∈ L
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Monadic SOU is in NP (Some Details)

Theorem

Let σ be a size-minimal lazy unifier of 〈E ,G 〉 with exponent not

exceeding k. Then exist X and G ′, deriving σ(X ) and s.t.

|G ′| ≤ |G |+O(|E |2 depth(G )+ log k)
depth(G ′) ≤ depth(G )+O(log k + log |E |)

Theorem

For any solvable equations 〈E , ∅〉, exists a lazy unifier 〈σ,G 〉 s.t.

|σ| = O(|E |)
|G | = O(|E |5)
depth(G ) = O(|E |2)
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Two Occurrences per Variable [Levy 1998]

Word Unification is trivially decidable when variables do not occur
more than twice:

Imitation: {X · w1
?= a · w2} ∪ E} ⇒

(

{X ′ · w1
?= w2} ∪ E}

)

ρ

where ρ = [X 7→ a · X ′]

Flex-flex: {X · w1
?= Y · w2} ∪ E} ⇒

(

{X ′ · w1
?= w2} ∪ E}

)

ρ

where ρ = [X 7→ Y · X ′]

[Levy 1996] LSOU is decidable when variables do not occur more
than twice
[Levy 1998] SOU is undecidable even when variables do not occur
more than twice

t1 → u1, . . . , tm → um ⊢ v → w

m

X (f (a, v), u1, . . . , um)
?= f (X (a, t1, . . . , tm),w) solvable

f and a are symbols not used in the rewriting system
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Two Occurrences per Variable

t1 → u1, . . . , tm → um ⊢ v → w

m

X (f (a, v), u1, . . . , um)
?= f (X (a, t1, . . . , tm),w) solvable

Example:

b → g(b) ⊢ b → g(g(g(b)))

X

b

g

b

f

f

f

f

g

gg

a

X

b

g

g

g

b

f

f

f

f

a

g

gg
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Encoding Sequences

b → g(b) ⊢

X

a

f

b

X

a

f

b

g

g

g
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Encoding Sequences

b → g(b) ⊢ b

X

a

f

b

X

a

f

b

f

b

g

g

g
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Encoding Sequences

b → g(b) ⊢ b → g(b)

X

a

f

b

f

b

g

X

a

f

b

f

b

g

g

g
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Encoding Sequences

b → g(b) ⊢ b → g(b)

X

a

f

b

f

b

g

X

a

f

b

f

b

g

f

b

g

g

g
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Encoding Sequences

b → g(b) ⊢ b → g(b) → g(g(b))

X

a

f

b

f

b

g

f

b

g

g

X

a

f

b

f

b

g

f

b

g

g

g
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Encoding Sequences

b → g(b) ⊢ b → g(b) → g(g(b))

X

a

f

b

f

b

g

f

b

g

g

X

a

f

b

f

b

g

f

b

g

g

f

b

g

g

g
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Encoding Sequences

b → g(b) ⊢ b → g(b) → g(g(b)) → g(g(g(b)))

X

a

f

b

f

b

g

f

b

g

g

f

b

g

g

g
X

a

f

b

f

b

g

f

b

g

g

f

b

g

g

g
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Just One Variable

[Levy Veanes 2000] SOU is reducible to SOU with just one
variable and the same (plus one) number of occurrences

⋃

1≤i≤m

⋃

1≤j≤ki

Fi (t
1
ij , . . . , t

n
ij )

?= uij ,

m
⋃

1≤i≤m

⋃

1≤j≤ki

G (t1ij , . . . , t
n
ij )

?= g( , . . . ,
︸ ︷︷ ︸

i−1

, uij , , . . . ,
︸ ︷︷ ︸

m−i

),

where G is a fresh variable,
g an appropriate constant, and
“ ” denotes fresh and distinct first-order variables

Plus G (c , . . . , c) ?= g( , . . . , ), if some tkij is a variable
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Just One Variable

F1(t1, u1)
?= u1

F1(t2, u2)
?= u2

F2(t3, u3)
?= u3

F2(t4, u4)
?= u4

(1)

G (t1, u1)
?= g(u1,X1)

G (t2, u2)
?= g(u2,X2)

G (t3, u3)
?= g(X3, u3)

G (t4, u4)
?= g(X4, u4)

(2)

⇒ If σ solves (1), then

G 7→ x , y . g(F1(x , y),F2(x , y)
X1 7→ F2(t1, u1)
X2 7→ F2(t2, u2)
X3 7→ F1(t3, u3)
X4 7→ F1(t4, u4)
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Just One Variable

F1(t1, u1)
?= u1

F1(t2, u2)
?= u2

F2(t3, u3)
?= u3

F2(t4, u4)
?= u4

(1)

G (t1, u1)
?= g(u1,X1)

G (t2, u2)
?= g(u2,X2)

G (t3, u3)
?= g(X3, u3)

G (t4, u4)
?= g(X4, u4)

(2)

⇐ If σ solves (2), and g is “inside” σ(G ), then
the imitation step G 7→ λx , y . g(G1(x , y),G2(x , y))
transforms (2) in (1)
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Just One Variable

The equation G (c , . . . , c) ?= g( , . . . , ) may be necessary

F1(X ) ?= a

F1(Y ) ?= b

F2(X ) ?= b

F2(Y ) ?= a

(1)

G (X ) ?= g(a,X1)

G (Y ) ?= g(b,X2)

G (X ) ?= g(X3, b)

G (Y ) ?= g(X4, a)

(2)

(1) is unsolvable
(2) is solvable

G 7→ λx . x

X 7→ g(a, b)
Y 7→ g(b, a)
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Ground Arguments

Encode execution of a (Universal) Turing Machine as a sequence
of pairs of states

((v1, v
+
1 ), (v2, v

+
2 ), . . . , (vk , v

+
k )
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Ground Arguments

Encode execution of a (Universal) Turing Machine as a sequence
of pairs of states

((v1, v
+
1 ), (v2, v

+
2 ), . . . , (vk , v

+
k )

Use 2 equations:

F (t, f (b, a)) ?= f (X ,F (u, a))

ensures vi+i = v+i
F (t, f (t ′, a)) encodes (v1, . . . , vk , b)
f (X ,F (u, a)) encodes (X , v+1 , . . . , v+k )
X encodes the initial state
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Ground Arguments

Encode execution of a (Universal) Turing Machine as a sequence
of pairs of states

((v1, v
+
1 ), (v2, v

+
2 ), . . . , (vk , v

+
k )

Use 2 equations:

F (t, f (b, a)) ?= f (X ,F (u, a))

ensures vi+i = v+i

G (l , f ′(a, a′)) ?= f ′(F (v , a),G (r , a′))

ensures v+i is successor of vi
l and r encode the transitions of the Turing Machine
t, u and v only depends on the alphabet
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Ground Arguments

Encode execution of a (Universal) Turing Machine as a sequence
of pairs of states

((v1, v
+
1 ), (v2, v

+
2 ), . . . , (vk , v

+
k )

Use 2 equations:

F (t, f (b, a)) ?= f (X ,F (u, a))

G (l , f ′(a, a′)) ?= f ′(F (v , a),G (r , a′))

Encodes Halting Problem of Universal TM on input X
Undecidability of SOU for 5 occurrences of one second-order
variable, even when the variable is only applied to ground terms
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Thanks for your attention!!
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