On the Limits of Second-Order Unification

Jordi Levy
IIA, CSIC, Barcelona, Spain

Joint work with Mateu Villaret,
Margus Veanes,
Manfred Schmidt-Schauss,
Temur Kutsia,. ..

UNIF'14, Viena

Jordi Levy On the Limits of Second-Order Unification

Second-Order Unification

Variables may have arguments: f(F(a), F(a)) = F(f(a, a))

(f)
@ @ @ @

Instances of variables may use their arguments. . .

Jordi Levy On the Limits of Second-Order Unification

Second-Order Unification

Variables may have arguments: f(F(a), F(a)) = F(f(a, a))
F

@ @ @ @

Instances of variables may use their arguments. . .
...just once like in F — Ax.x

Jordi Levy On the Limits of Second-Order Unification

Second-Order Unification

Variables may have arguments: f(F(a), F(a)) = F(f(a, a))
F

(f)
@ @ @ @

Instances of variables may use their arguments. . .
...just once like in F — Ax.x
.. .twice like in F — Ax.f(x,x)

Jordi Levy On the Limits of Second-Order Unification

Second-Order Unification

Variables may have arguments: f(F(a), F(a)) = F(f(a, a))
F

@ @

Instances of variables may use their arguments. . .
...just once like in F — Ax.x

.. .twice like in F — Ax.f(x,x)

...or more times like in F — Ax.f(f(x, x), f(x,x))

Jordi Levy On the Limits of Second-Order Unification

Variants of Second-Order Unification

Depending on the number of times instances may use variables we
have

@ Unrestricted: General Second-Order Unification (SOU)

Jordi Levy On the Limits of Second-Order Unification

Variants of Second-Order Unification

Depending on the number of times instances may use variables we
have

@ Unrestricted: General Second-Order Unification (SOU)

@ Just once: Linear Second-Order Unification (LSOU)
Or Context Unification (CU) when variables may have at
most one argument

Jordi Levy On the Limits of Second-Order Unification

Variants of Second-Order Unification

Depending on the number of times instances may use variables we
have

@ Unrestricted: General Second-Order Unification (SOU)

@ Just once: Linear Second-Order Unification (LSOU)
Or Context Unification (CU) when variables may have at
most one argument

@ At most once: Bounded Second-Order Unification
(BSOU)

Jordi Levy On the Limits of Second-Order Unification

Variants of Second-Order Unification

Depending on the number of times instances may use variables we
have

@ Unrestricted: General Second-Order Unification (SOU)

@ Just once: Linear Second-Order Unification (LSOU)
Or Context Unification (CU) when variables may have at
most one argument

@ At most once: Bounded Second-Order Unification
(BSOU)

All variants are infinitary:

F(f(a)) = f(F(a)

{[F = Ax A2 F(x) - Y oso

Jordi Levy On the Limits of Second-Order Unification

General Un/Decidability Results

General SOU:

@ [Gould 1966] Decidability of SO Matching

® [Lucchesi 1972 and Huet 1973] Third-Order Unification is
undecidable

@ [Pietrzykowski 1973] Complete SOU procedure

@ [Jensen and Pietrzykowski 1976] Complete HOU procedure

@ [Goldfarb 1981] SOU is undecidable

@ [Farmer 1988] SOU is decidable if all function symbols are
unary (Monadic SOU)

® [Levy, Schmidt-SchauB, Villaret 2004] NP-completeness of
Monadic SOU

Jordi Levy On the Limits of Second-Order Unification

General Un/Decidability Results

General SOU:
@ [Gould 1966] Decidability of SO Matching
® [Lucchesi 1972 and Huet 1973] Third-Order Unification is
undecidable
@ [Pietrzykowski 1973] Complete SOU procedure
@ [Jensen and Pietrzykowski 1976] Complete HOU procedure
@ [Goldfarb 1981] SOU is undecidable
@ [Farmer 1988] SOU is decidable if all function symbols are
unary (Monadic SOU)
® [Levy, Schmidt-SchauB, Villaret 2004] NP-completeness of
Monadic SOU
CU and LSOU:
@ [Comon 1993 and Schmidt-Schauss 1995] introduction of CU
@ [Levy 1996] Complete LSOU procedure
@ [de Groote 2000] Decidability of Linear HO Matching
@ [Jez 2014] Decidability of CU

Jordi Levy On the Limits of Second-Order Unification

General Un/Decidability Results

General SOU:
@ [Gould 1966] Decidability of SO Matching
@ [Lucchesi 1972 and Huet 1973] Third-Order Unification is
undecidable
@ [Pietrzykowski 1973] Complete SOU procedure
@ [Jensen and Pietrzykowski 1976] Complete HOU procedure
@ [Goldfarb 1981] SOU is undecidable
CU and LSOU:
@ [Comon 1993 and Schmidt-Schauss 1995] introduction of CU
@ [Levy 1996] Complete LSOU procedure
@ [de Groote 2000] Decidability of Linear HO Matching
@ [Jez 2014] Decidability of CU
BSOU:
@ [Schmidt-SchauB3 2004] Decidability of BSOU
® [Levy, Schmidt-SchauB, Villaret 2006] NP-completeness of
BSOU

Jordi Levy On the Limits of Second-Order Unification

SO Pre-Unification [Huet 1975]

Simplif.: {f(t1,.., tn) = f(u1,.., un) } UE =

{tl é uy, ., tn é Un} U E
Imitation: {X(t1,.., tn) = f(u1,., Um)} UE =

({X’(tl,..., tn) £ U1, s X' (t1, oy tn) Z U} U E) p

p =X = A1y Y F(XT (V15 Y0)y ooy Xy (V15 s V)]
Projection: {X(t1,.., tn) = f(u1,., Um)} U E =

({8 £ F(ur,s um)} UE) p

[) == [X —)\ylv"'vyn .yl]

Flex-flex equations trivially solvable:

{X1(.) z Yi()s ooy Xn(e) z Yo()}
Intantiate X, Y; — Axg,..., x,.a

Jordi Levy On the Limits of Second-Order Unification

BSO Pre-Unification

Simplif.: {f(t1,.., tn) = f(u1,.., un) } UE =
{tl é uy, ., tn é Un} U E
Imitation: {X(t1,.., tn) = f(u1,., Um)} UE =
({X/(tw(l)v"'a tﬂ(r)) = ul)"'7X/(t7r(s)7"'7 tﬂ(n)) = uﬂ‘l} U E) p
p= [X = AV1, ey Vi - f(X{(yﬂ—(l),,yﬂ—(r))X,/n(yrr(s))/ﬂ'(n)))]
for some permutation 7
Projection: {X(t1,.., tn) = f(uy,.., um)} UE =
({ti = f(u1,eey im)} U E) p
p =X A1, Yn- i

Flex-flex equations trivially solvable

Jordi Levy On the Limits of Second-Order Unification

LSO Unification [Levy 1996]

Simplif.. {f(t1,.., t,) = f(u1,.., up)} U E =
{tl L ui,.., th == u,,} UE
Imitation: {X(t1,.., tn) = f(u1, ., um)} UE =
({X’(tﬂ(l),..., t7r(r)) = u1,...,X’(7(s)2 > Lr(n)) = Um} U E)
p = [X = A1, Yo - F(OXT V(1) Y ())5 oos Xin (Ve (s) 5 5 Yor(m))]
for some permutation m
Projection: {X(t) £ f(u1,..., um)} UE = ({t L F(uy, ., tm)} U E) p
p=[Xr—Ay.y]

Flex-flex: {X(t1,., ta) = Y(u1,., um)} UE =
(TR (Enayse) traysees tar) = Gl) UE) p

p= X= Ay, Yo HFL(Vr(1)s) 5 Ya(n))
Y —= Az1,0y Zm - H(Z,,.(l) g e G{(ZT(S)./...))

Jordi Levy On the Limits of Second-Order Unification

To Imitate or To Project?

Source of NP-hardness:

Reduce: 1-IN-3SAT — SOU

Jordi Levy On the Limits of Second-Order Unification

To Imitate or To Project?

Source of NP-hardness:

Reduce: 1-IN-3SAT — SOU
1-IN-3SAT:

Clauses with 3 disjunctive variables

Satisfiable if exists an assignment making true just one variable in
each clause

Jordi Levy On the Limits of Second-Order Unification

To Imitate or To Project?

Source of NP-hardness:
Reduce: 1-IN-3SAT — SOU

Boolean variable x — SO variable X

Jordi Levy On the Limits of Second-Order Unification

To Imitate or To Project?

Source of NP-hardness:
Reduce: 1-IN-3SAT — SOU

Boolean variable x — SO variable X

X = M. f(x) — xistrue
X = Ax.x — x is false

Jordi Levy On the Limits of Second-Order Unification

To Imitate or To Project?

Source of NP-hardness:
Reduce: 1-IN-3SAT — SOU

Boolean variable x — SO variable X

X = M. f(x) — xistrue
X = Ax.x — x is false

xVyvz — X(Y(Z(a))) = f(a)

Jordi Levy On the Limits of Second-Order Unification

To Imitate or To Project?

Source of NP-hardness:
Reduce: 1-IN-3SAT — SOU

Boolean variable x — SO variable X

X = M. f(x) — xistrue
X = Ax.x — x is false

xVyvz — X(Y(Z(a))) = f(a)

(If necessary) force variables to use their argument:
X(Y(Z(b))) = f(b)

Jordi Levy On the Limits of Second-Order Unification

To Imitate or To Project?

Source of NP-hardness:
Reduce: 1-IN-3SAT — SOU

Boolean variable x — SO variable X

X = M. f(x) — xistrue
X = Ax.x — x is false

xVyvz — X(Y(Z(a))) = f(a)

(If necessary) force variables to use their argument:
X(Y(Z(b))) = f(b)

This proves NP-hardness of SO matching, Monadic SOU, CU and
BSOU

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

F

@ F

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

@ @ F

F— Xx.f(a,...)

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

F— Xx.f(a,...)

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

F— Ax.f(a,f(a,...))

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

F— Ax.f(a,f(a,...))

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

@ @ F
@ @
@ @

F s Mx.f(a, f(a,f(a,...)))

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

F s Mx.f(a, f(a,f(a,...)))

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

F s Mx.f(a, f(a,f(a,...)))

F— Ax. [f(a,e)]"...

Jordi Levy On the Limits of Second-Order Unification

Non-Termination of Imitation

F— Ax. [f(a,®)]"...
This already happens in Word Unification
X...Za-X...

X—=a". ..

Jordi Levy On the Limits of Second-Order Unification

Exponent of Periodicity

F— Ax. [f(a,®)]"...
This already happens in Word Unification
X...=Za-X...

X—=a". ..

Jordi Levy On the Limits of Second-Order Unification

Exponent of Periodicity

F— Ax. [f(a,®)]"...
This already happens in Word Unification

X...Za-X...

X—=a. ..

We can limit the value of n without affecting solvability

Lemma (SchmidtSchauB 2004)

For every problem E, every size-minimal unifier o, and every
variable X, if C" is a nonempty subcontext of o(X), then
n < O(2IER).

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general /size-minimal solutions only use constants occurring
in the problem

Hint: Replace non-original constants by fresh variables

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general /size-minimal solutions only use constants occurring
in the problem
Even if all variables are unary, we may need n-ary variables
Hint: Consider X(a) < Y(b) and

solution X — Ax.Z(x,b),Y +— Ay.Z(a,y)
This is a problem when representing most general solutions of CU

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general /size-minimal solutions only use constants occurring
in the problem

Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem

[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
their restricted form with just one binary symbol

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general /size-minimal solutions only use constants occurring
in the problem
Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem
h(X(g(a), 2)) = Y (b, f(X(c, d)))
... consider the most general unifier:
h(U(T (g(a), b, f(U(T(c,a,f(U(d))))))))
h(U(T (g(a), b, F(U(T (c,a, f(U(d))))))))
... by instantiating T — Ax,y,z. T'(2):
h(U(T'(F(U(T'(F(U(d)))))))) = h(U(T'(F(U(T'(F(U(d))))))))
... we obtain a solution of the problem instantiated by
X = Mxy. X(y)

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)
[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general /size-minimal solutions only use constants occurring
in the problem
Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem
[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
their restricted form with just one binary symbol
Hint: Translate f(t1,...,t,) — ©(...Q(f,t1)...,tn)

X(t) — X(t)
(a sort of partial curryfication)
This reduction is correct if variables do not “touch” like in X(Y(t))
We can guess head symbol in Y and avoid this situation

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary
(Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary
Most-general /size-minimal solutions only use constants occurring
in the problem

Even if all variables are unary, we may need n-ary variables
Restrict variables to be unary is not a problem

[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
their restricted form with just one binary symbol

[Levy Schmidt-SchauB Villaret 2004] Monadic SOU is NP-complete

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU is in NP [Levy Schmidt-SchauB Villaret 2004]

@ Represent one of the solutions in polynomial space

@ Prove that we can check if a substitution is a solution in
polynomial time on this representation

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU is in NP [Levy Schmidt-SchauB Villaret 2004]

@ Represent one of the solutions in polynomial space

@ Prove that we can check if a substitution is a solution in
polynomial time on this representation

@ Use the exponent of periodicity of size-minimal solutions (we
can represent exponents in linear space) [Makanin, Koscielski
and Pacholski]

@ Use (singleton) context free grammars to represent solutions

@ Given two singleton CFG we can check if they define the same
word in polynomial time [Plandowski]

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU is in NP (Some Details)

If G defines wy, ..., w,, exists G' O G defining w = wy ... w, s.t.
|G| < |G|+n-1

depth(G’) < depth(G) + [log n]

Lemma

If G defines w, for any n, exists G' O G defining w" s.t.
|G'] < |G| +2]logn|

depth(G’) < depth(G) + [log n]

. o

Lemma

If G defines w, for any w' < w, exists G' O G defining w’ s.t.
'] < |G|+ depth(G)
depth(G’) = depth(G)

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU is in NP (Some Details)

Define if X wy = Y wy then X = Y
@ One node for every ~-equivalence class of variables.
o For every X wy Lai--a,Y w
OO0 O—>®)
where X € [y and Y € L,

° ForeveryXW;l?:al---a,,b

O—->O—->0 - O>0

where X € L

Jordi Levy On the Limits of Second-Order Unification

Monadic SOU is in NP (Some Details)

Let o be a size-minimal lazy unifier of (E, G) with exponent not
exceeding k. Then exist X and G', deriving o(X) and s.t.

|G'| < |G|+ O(|E|? depth(G)+ log k)
depth(G’) < depth(G)+O(log k + log |E|)

Theorem

For any solvable equations (E, (), exists a lazy unifier (o, G) s.t.

o] = O(|EJ)
G| = O(IEP®)
depth(G) = O(|E|?)

Jordi Levy On the Limits of Second-Order Unification

Two Occurrences per Variable [Levy 1998]

Word Unification is trivially decidable when variables do not occur
more than twice:

Imitation: {X-w; =a-w}UE} = ({X’ “wp = wa} U E}) p
where p = [X — a- X']

Flex-flex: {X-w1 =Y -w}UE} = ({X’ ‘wp = wo b U E}) p
where p = [X — Y - X']

Jordi Levy On the Limits of Second-Order Unification

Two Occurrences per Variable [Levy 1998]

Word Unification is trivially decidable when variables do not occur
more than twice:

[Levy 1996] LSOU is decidable when variables do not occur more
than twice

[Levy 1998] SOU is undecidable even when variables do not occur
more than twice

Jordi Levy On the Limits of Second-Order Unification

Two Occurrences per Variable [Levy 1998]

Word Unification is trivially decidable when variables do not occur
more than twice:

[Levy 1996] LSOU is decidable when variables do not occur more
than twice

[Levy 1998] SOU is undecidable even when variables do not occur
more than twice

ti—> U, .t~ UnEv—w

0
X(f(a,v),u1,...,un) = f(X(a,t1,...,tm), w) solvable

f and a are symbols not used in the rewriting system

Jordi Levy On the Limits of Second-Order Unification

Two Occurrences per Variable

ti—=> U, tp—>UnkFv—ow

)
X(f(a,v),u1,...,um) = f(X(a, t1,...,tm),w) solvable

Example:
b— g(b) - b— g(g(g(b)))
X

()
(F) (&)
(D& (&
()
@ ® O

Jordi Levy On the Limits of Second-Order Unification

Encoding Sequences

b— g(b)+

Jordi Levy On the Limits of Second-Order Unification

Encoding Sequences

b— g(b) kb

Jordi Levy On the Limits of Second-Order Unification

Encoding Sequences

b— g(b)F b— g(b)

Jordi Levy On the Limits of Second-Order Unification

Encoding Sequences

b— g(b)Fb— g(b)

X

Jordi Levy On the Limits of Second-Order Unification

Encoding Sequences

b — g(b)Fb— g(b) — g(g(b))

X

~ (&)
(F) (&)
OO

Jordi Levy On the Limits of Second-Order Unification

Encoding Sequences

b — g(b)Fb— g(b) — g(g(b))

X

Ge@ Ge@

@Q@Q eﬁeﬁeﬁ

On the Limits of Second-Order Unification

Encoding Sequences

b— g(b)Fb— g(b) — g(g(b)) — g(g(g(b)))

eﬁgﬁeﬁ eﬁeﬁeﬁ

On the Limits of Second-Order Unification

Just One Variable

[Levy Veanes 2000] SOU is reducible to SOU with just one
variable and the same (plus one) number of occurrences

ny L
U U A) =

1<i<m1<j<k;

Y IJ - g(*?"'?*?ui‘j?*?"'?*)?
S~—— S~——
i—1

U U 6.t

1<i<m 1<j<k; i
where G is a fresh variable,
g an appropriate constant, and

“" denotes fresh and distinct first-order variables

Plus G(c, ..,0)=g(.,...,.), if some t,-’J‘- is a variable

Jordi Levy

On the Limits of Second-Order Unification

Just One Variable

= If o solves (1), then

G x,y.g(Fi(x,y), Fa(x, y)
X1 — F2(t1,u1)
Xo — F2(t2, 2)
X3 — Fl(t3, 3)
Xo +— F1(ta, ug)

Jordi Levy On the Limits of Second-Order Unification

Just One Variable

Fi(ty,u1) £ vy
Fi(t, up) = up
? 1
Fa(ts, u3) = u3 ()
Fa(ts, us) = ug
G(tr, u1) = g(u1, X1)
G(t2, u2) = g(u2, X2) 2)
G(ts, u3) = g(Xs, u3)

G(t4,U4) (X4,U4)

<« If o solves (2), and g is “inside” o(G), then
the imitation step G — Ax,y.g(Gi(x,y), Ga(x,y))
transforms (2) in (1)

Jordi Levy On the Limits of Second-Order Unification

Just One Variable

The equation G(c,...,c) = g(_,...,_) may be necessary
Fl(X) == a
Fi(Y)Zb
F;(X) b)
FQ(Y) é a
G(X) = g(a, X1)
G(Y) = g(b, X2) (2)
G(X) = g(Xs,b)
G(Y) = g(Xs, 2)

(1) is unsolvable
(2) is solvable

Jordi Levy On the Limits of Second-Order Unification

Ground Arguments

Encode execution of a (Universal) Turing Machine as a sequence
of pairs of states

((va,), (v v) (Vs)

Jordi Levy On the Limits of Second-Order Unification

Ground Arguments

Encode execution of a (Universal) Turing Machine as a sequence
of pairs of states

((Vla V1+)7 (V27 V2+)7) (Vka Vlj_)

Use 2 equations:

F(t,f(b,a)) = f(X, F(u,a))
ensures Vi = v;"
F(t,f(t',a)) encodes (v, ..., vk, b)
f(X, F(u,a)) encodes (X, v;",...,v,")
X encodes the initial state

Jordi Levy On the Limits of Second-Order Unification

Ground Arguments

Encode execution of a (Universal) Turing Machine as a sequence
of pairs of states

((Vla V1+)7 (V27 V2+)7) (Vka Vlj_)

Use 2 equations:
F(t,f(b,a)) = f(X, F(u,a))

ensures v = v,.Jr
G(1,f'(a,d)) =8 f'(F(v,a), G(r,a"))

ensures v,-Jr is successor of v;

I and 7 encode the transitions of the Turing Machine
t, U and Vv only depends on the alphabet

Jordi Levy On the Limits of Second-Order Unification

Ground Arguments

Encode execution of a (Universal) Turing Machine as a sequence
of pairs of states

((Vla V1+)7 (V27 V2+)7) (Vka Vlj_)

Use 2 equations:

Encodes Halting Problem of Universal TM on input X
Undecidability of SOU for 5 occurrences of one second-order
variable, even when the variable is only applied to ground terms

Jordi Levy On the Limits of Second-Order Unification

Thanks for your attention!!

Jordi Levy On the Limits of Second-Order Unification

