On the Limits of Second-Order Unification

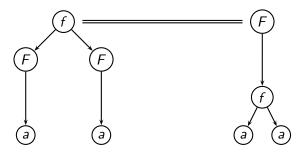
Jordi Levy IIIA, CSIC, Barcelona, Spain

Joint work with Mateu Villaret, Margus Veanes, Manfred Schmidt-Schauss, Temur Kutsia,...

UNIF'14, Viena

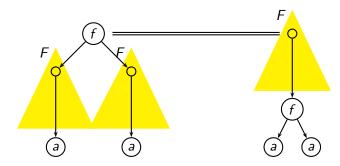
Jordi Levy On the Limits of Second-Order Unification

Variables may have arguments: $f(F(a), F(a)) \stackrel{?}{=} F(f(a, a))$



Instances of variables may use their arguments...

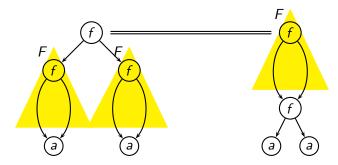
Variables may have arguments: $f(F(a), F(a)) \stackrel{?}{=} F(f(a, a))$



Instances of variables may use their arguments...

... just once like in $F \mapsto \lambda x \, . \, x$

Variables may have arguments: $f(F(a), F(a)) \stackrel{?}{=} F(f(a, a))$

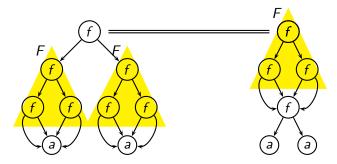


Instances of variables may use their arguments...

... just once like in
$$F \mapsto \lambda x \, . \, x$$

... twice like in $F \mapsto \lambda x \cdot f(x, x)$

Variables may have arguments: $f(F(a), F(a)) \stackrel{?}{=} F(f(a, a))$



Instances of variables may use their arguments...

- ... just once like in $F \mapsto \lambda x \, . \, x$
- ... twice like in $F \mapsto \lambda x \cdot f(x, x)$
- ... or more times like in $F \mapsto \lambda x \cdot f(f(x, x), f(x, x))$

Variants of Second-Order Unification

Depending on the number of times instances may use variables we have

- Unrestricted: General Second-Order Unification (SOU)
- Just once: Linear Second-Order Unification (LSOU)
 Or Context Unification (CU) when variables may have at most one argument
- At most once: Bounded Second-Order Unification (BSOU)

All variants are infinitary:

```
\{[F \mapsto \lambda x \, . \, f(. \stackrel{n}{\ldots} f(x) \, \ldots)]\}_{n \ge 0}
```

Variants of Second-Order Unification

Depending on the number of times instances may use variables we have

- Unrestricted: General Second-Order Unification (SOU)
- Just once: Linear Second-Order Unification (LSOU)
 Or Context Unification (CU) when variables may have at most one argument
- At most once: Bounded Second-Order Unification (BSOU)

All variants are infinitary:

```
\{[F \mapsto \lambda x \, . \, f(. \stackrel{n}{.} \, f(x) \dots)]\}_{n \ge 0}
```

Variants of Second-Order Unification

Depending on the number of times instances may use variables we have

- Unrestricted: General Second-Order Unification (SOU)
- Just once: Linear Second-Order Unification (LSOU)
 Or Context Unification (CU) when variables may have at most one argument
- At most once: Bounded Second-Order Unification (BSOU)

All variants are infinitary:

```
\{[F \mapsto \lambda x \, . \, f(. \stackrel{n}{.} \, f(x) \dots)]\}_{n \ge 0}
```

Depending on the number of times instances may use variables we have

- Unrestricted: General Second-Order Unification (SOU)
- Just once: Linear Second-Order Unification (LSOU)
 Or Context Unification (CU) when variables may have at most one argument
- At most once: Bounded Second-Order Unification (BSOU)

All variants are infinitary:

$$\{[F \mapsto \lambda x \, . \, f(. \stackrel{n}{.} \, f(x) \dots)]\}_{n \ge 0}$$

General Un/Decidability Results

General SOU:

- [Gould 1966] Decidability of SO Matching
- [Lucchesi 1972 and Huet 1973] Third-Order Unification is undecidable
- [Pietrzykowski 1973] Complete SOU procedure
- [Jensen and Pietrzykowski 1976] Complete HOU procedure
- [Goldfarb 1981] SOU is undecidable
- [Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)
- [Levy, Schmidt-Schauß, Villaret 2004] NP-completeness of Monadic SOU

CU and LSOU:

- [Comon 1993 and Schmidt-Schauss 1995] introduction of CU
- [Levy 1996] Complete LSOU procedure
- [de Groote 2000] Decidability of Linear HO Matching
- [Jez 2014] Decidability of CU

BSOU:

General Un/Decidability Results

General SOU:

- [Gould 1966] Decidability of SO Matching
- [Lucchesi 1972 and Huet 1973] Third-Order Unification is undecidable
- [Pietrzykowski 1973] Complete SOU procedure
- [Jensen and Pietrzykowski 1976] Complete HOU procedure
- [Goldfarb 1981] SOU is undecidable
- [Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)
- [Levy, Schmidt-Schauß, Villaret 2004] NP-completeness of Monadic SOU

CU and LSOU:

- [Comon 1993 and Schmidt-Schauss 1995] introduction of CU
- [Levy 1996] Complete LSOU procedure
- [de Groote 2000] Decidability of Linear HO Matching
- [Jez 2014] Decidability of CU

General Un/Decidability Results

General SOU:

- [Gould 1966] Decidability of SO Matching
- [Lucchesi 1972 and Huet 1973] Third-Order Unification is undecidable
- [Pietrzykowski 1973] Complete SOU procedure
- [Jensen and Pietrzykowski 1976] Complete HOU procedure
- [Goldfarb 1981] SOU is undecidable
- CU and LSOU:
 - [Comon 1993 and Schmidt-Schauss 1995] introduction of CU
 - [Levy 1996] Complete LSOU procedure
 - [de Groote 2000] Decidability of Linear HO Matching
 - [Jez 2014] Decidability of CU

BSOU:

- [Schmidt-Schauß 2004] Decidability of BSOU
- [Levy, Schmidt-Schauß, Villaret 2006] NP-completeness of BSOU

SO Pre-Unification [Huet 1975]

Simplif.

$$\{ \mathbf{f}(t_1,...,t_n) \stackrel{?}{=} \mathbf{f}(u_1,...,u_n) \} \cup E \Rightarrow \\ \{ t_1 \stackrel{?}{=} u_1,...,t_n \stackrel{?}{=} u_n \} \cup E$$

Imitation:

ion:
$$\{\mathbf{X}(t_1,...,t_n) \stackrel{?}{=} \mathbf{f}(u_1,...,u_m)\} \cup E \Rightarrow$$

 $(\{X'(t_1,...,t_n) \stackrel{?}{=} u_1,...,X'(t_1,...,t_n) \stackrel{?}{=} u_m\} \cup E) \rho$
 $\rho = [X \mapsto \lambda y_1,...,y_n \cdot f(X'_1(y_1,...,y_n),...,X'_m(y_1,...,y_n))]$

Projection:
$$\{\mathbf{X}(t_1,...,t_n) \stackrel{?}{=} \mathbf{f}(u_1,...,u_m)\} \cup E \Rightarrow$$

 $\left(\{t_i \stackrel{?}{=} f(u_1,...,u_m)\} \cup E\right) \rho$
 $\rho = [X \mapsto \lambda y_1,...,y_n \cdot y_i]$

Flex-flex equations trivially solvable: $\{X_1(\dots) \stackrel{?}{=} Y_1(\dots), \dots, X_n(\dots) \stackrel{?}{=} Y_n(\dots)\}$ Intantiate $X_i, Y_i \mapsto \lambda x_1, \dots, x_n.a$

BSO Pre-Unification

Simplif.: $\{\mathbf{f}(t_1, ..., t_n) \stackrel{?}{=} \mathbf{f}(u_1, ..., u_n)\} \cup E \Rightarrow$ $\{t_1 \stackrel{?}{=} u_1, ..., t_n \stackrel{?}{=} u_n\} \cup E$

Imitation:
$$\{\mathbf{X}(t_1, ..., t_n) \stackrel{?}{=} \mathbf{f}(u_1, ..., u_m)\} \cup E \Rightarrow$$

 $(\{X'(t_{\pi(1)}, ..., t_{\pi(r)}) \stackrel{?}{=} u_1, ..., X'(t_{\pi(s)}, ..., t_{\pi(n)}) \stackrel{?}{=} u_m\} \cup E) \rho$
 $\rho = [X \mapsto \lambda y_1, ..., y_n . f(X'_1(y_{\pi(1)}, ..., y_{\pi(r)}), ..., X'_m(y_{\pi(s)}, ..., y_{\pi(n)}))]$
for some permutation π

Projection:
$$\{\mathbf{X}(t_1,...,t_n) \stackrel{?}{=} \mathbf{f}(u_1,...,u_m)\} \cup E \Rightarrow$$

 $\left(\{t_i \stackrel{?}{=} f(u_1,...,u_m)\} \cup E\right) \rho$
 $\rho = [X \mapsto \lambda y_1,...,y_n \cdot y_i]$

Flex-flex equations trivially solvable

LSO Unification [Levy 1996]

Simplif.: {f(t₁,..., t_n)
$$\stackrel{?}{=}$$
 f(u₁,..., u_n)} \cup E \Rightarrow
{t₁ $\stackrel{?}{=}$ u₁,..., t_n $\stackrel{?}{=}$ u_n} \cup E

Imitation: {X(t₁,..., t_n) $\stackrel{?}{=}$ f(u₁,..., u_m)} \cup E \Rightarrow
({X'(t_{π(1)},..., t_{π(r)}) $\stackrel{?}{=}$ u₁,..., X'(t_{π(s)},..., t_{π(n)}) $\stackrel{?}{=}$ u_m} \cup E) ρ
 $\rho = [X \mapsto \lambda y_1, ..., y_n \cdot f(X'_1(y_{\pi(1)}, ..., y_{\pi(r)}), ..., X'_m(y_{\pi(s)}, ..., y_{\pi(n)}))]$
for some permutation π

Projection: {X(t) $\stackrel{?}{=}$ f(u₁,..., u_m)} \cup E \Rightarrow ({t $\stackrel{?}{=}$ f(u₁,..., u_m)} \cup E) ρ
 $\rho = [X \mapsto \lambda y \cdot y]$

Flex-flex: {X(t₁,..., t_n) $\stackrel{?}{=}$ Y(u₁,..., t_{n(r)} $\stackrel{?}{=}$ G'₁(u_{τ(s)},...) \cup E) ρ
 $\rho = X \mapsto \lambda y_1, ..., y_n \cdot H(F'_1(y_{\pi(1)},...), ..., y_{\pi(r)}, ..., Y_{m})$
 $Y \mapsto \lambda z_1, ..., z_m \cdot H(z_{\tau(1)}, ...), ..., G'_1(z_{\tau(s)},...), ..., Y_{m})$

Source of **NP-hardness**:

Reduce: $1\text{-IN-3SAT} \longrightarrow \text{SOU}$

Boolean variable $\mathbf{x} \longrightarrow$ SO variable \mathbf{X}

 $\begin{array}{rcl} X \mapsto \lambda x \, . \, f(x) & \longrightarrow & x \text{ is true} \\ X \mapsto \lambda x \, . \, x & \longrightarrow & x \text{ is false} \end{array}$

$\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \longrightarrow \mathbf{X}(\mathbf{Y}(\mathbf{Z}(\mathbf{a}))) \stackrel{?}{=} \mathbf{f}(\mathbf{a})$

(If necessary) force variables to use their argument: $X(Y(Z(b))) \stackrel{?}{=} f(b)$

Source of **NP-hardness**:

Reduce: $1\text{-IN-3SAT} \longrightarrow \text{SOU}$

1-IN-3SAT:

Clauses with 3 disjunctive variables

Satisfiable if exists an assignment making true **just one** variable in each clause

Boolean variable $\mathbf{x} \longrightarrow SO$ variable \mathbf{X}

 $\begin{array}{rccc} X \mapsto \lambda x \, . \, f(x) & \longrightarrow & x \text{ is true} \\ X \mapsto \lambda x \, . \, x & \longrightarrow & x \text{ is false} \end{array}$

 $\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \quad \longrightarrow \quad \mathbf{X}(\mathbf{Y}(\mathbf{Z}(\mathbf{a}))) \stackrel{?}{=} \mathbf{f}(\mathbf{a})$

Source of **NP-hardness**:

Reduce: $1\text{-IN-3SAT} \longrightarrow \text{SOU}$

Boolean variable $\mathbf{x} \longrightarrow$ SO variable \mathbf{X}

 $\begin{array}{rcl} X \mapsto \lambda x \, . \, f(x) & \longrightarrow & x \text{ is true} \\ X \mapsto \lambda x \, . \, x & \longrightarrow & x \text{ is false} \end{array}$

 $\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \longrightarrow \mathbf{X}(\mathbf{Y}(\mathbf{Z}(\mathbf{a}))) \stackrel{?}{=} \mathbf{f}(\mathbf{a})$

(If necessary) force variables to use their argument: $X(Y(Z(b))) \stackrel{?}{=} f(b)$

Source of **NP-hardness**:

Reduce: $1\text{-IN-3SAT} \longrightarrow \text{SOU}$

Boolean variable $\mathbf{x} \longrightarrow$ SO variable \mathbf{X}

 $\begin{array}{rcl} X \mapsto \lambda x \, . \, f(x) & \longrightarrow & x \text{ is true} \\ X \mapsto \lambda x \, . \, x & \longrightarrow & x \text{ is false} \end{array}$

$\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \longrightarrow \mathbf{X}(\mathbf{Y}(\mathbf{Z}(\mathbf{a}))) \stackrel{?}{=} \mathbf{f}(\mathbf{a})$

(If necessary) force variables to use their argument: $X(Y(Z(b))) \stackrel{?}{=} f(b)$

Source of **NP-hardness**:

Reduce: $1\text{-IN-3SAT} \longrightarrow \text{SOU}$

Boolean variable $\mathbf{x} \longrightarrow$ SO variable \mathbf{X}

 $\begin{array}{rcl} X \mapsto \lambda x \, . \, f(x) & \longrightarrow & x \text{ is true} \\ X \mapsto \lambda x \, . \, x & \longrightarrow & x \text{ is false} \end{array}$

 $\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \longrightarrow \mathbf{X}(\mathbf{Y}(\mathbf{Z}(\mathbf{a}))) \stackrel{?}{=} \mathbf{f}(\mathbf{a})$

(If necessary) force variables to use their argument: $X(Y(Z(b))) \stackrel{?}{=} f(b)$

Source of **NP-hardness**:

Reduce: $1\text{-IN-3SAT} \longrightarrow \text{SOU}$

Boolean variable $\mathbf{x} \longrightarrow$ SO variable \mathbf{X}

 $\begin{array}{rcl} X \mapsto \lambda x \, . \, f(x) & \longrightarrow & x \text{ is true} \\ X \mapsto \lambda x \, . \, x & \longrightarrow & x \text{ is false} \end{array}$

 $\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \longrightarrow \mathbf{X}(\mathbf{Y}(\mathbf{Z}(\mathbf{a}))) \stackrel{?}{=} \mathbf{f}(\mathbf{a})$

(If necessary) force variables to use their argument: $\textbf{X}(\textbf{Y}(\textbf{Z}(b))) \stackrel{?}{=} \textbf{f}(b)$

Source of **NP-hardness**:

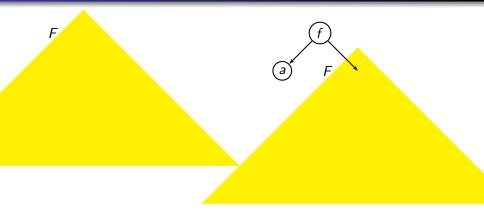
Reduce: $1\text{-IN-3SAT} \longrightarrow \text{SOU}$

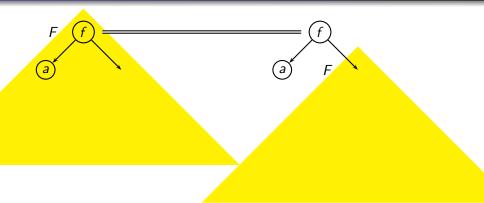
Boolean variable $\mathbf{x} \longrightarrow \mathsf{SO}$ variable \mathbf{X}

 $\begin{array}{rccc} X \mapsto \lambda x \, . \, f(x) & \longrightarrow & x \text{ is true} \\ X \mapsto \lambda x \, . \, x & \longrightarrow & x \text{ is false} \end{array}$

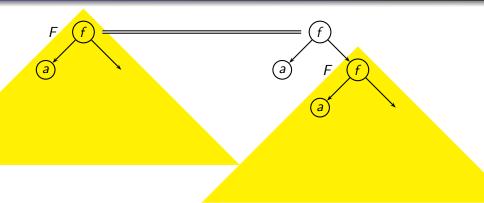
 $\mathbf{x} \lor \mathbf{y} \lor \mathbf{z} \longrightarrow \mathbf{X}(\mathbf{Y}(\mathbf{Z}(\mathbf{a}))) \stackrel{?}{=} \mathbf{f}(\mathbf{a})$

(If necessary) force variables to use their argument: $\textbf{X}(\textbf{Y}(\textbf{Z}(b))) \stackrel{?}{=} \textbf{f}(b)$

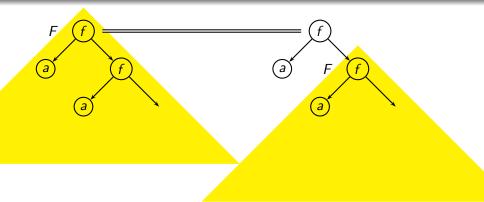




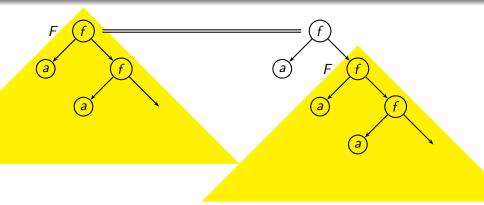
$F \mapsto \lambda x . f(a, \ldots)$



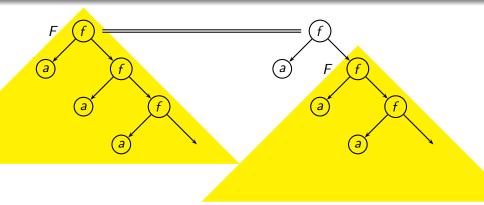
$F \mapsto \lambda x . f(a, \ldots)$



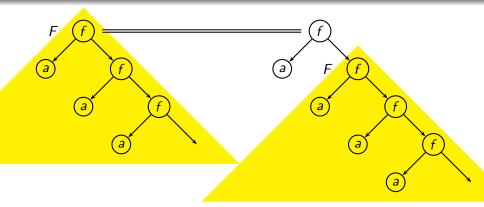
$F \mapsto \lambda x . f(a, f(a, \ldots))$



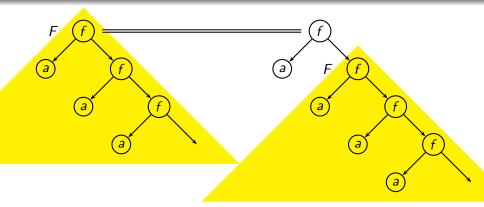
$F \mapsto \lambda x . f(a, f(a, \ldots))$



$F \mapsto \lambda x.f(a, f(a, \dots)))$

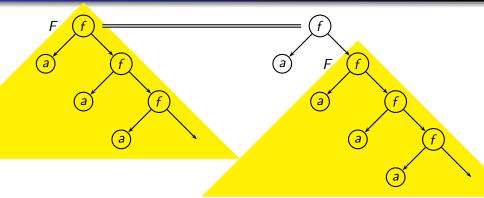


$F \mapsto \lambda x . f(a, f(a, ...)))$



 $F \mapsto \lambda x . f(a, f(a, ...)))$

 $F \mapsto \lambda x \, . \, [f(a, \bullet)]^n \dots$



$$F\mapsto \lambda x \,.\, [f(a,\bullet)]^n \ldots$$

This already happens in Word Unification

$$X \dots \stackrel{?}{=} a \cdot X \dots$$
$$X \mapsto a^n \dots$$

Exponent of Periodicity

$$F\mapsto \lambda x. [f(a,\bullet)]^n\ldots$$

This already happens in Word Unification

 $X \dots \stackrel{?}{=} a \cdot X \dots$ $X \mapsto a^n \dots$

We can limit the value of *n* without affecting solvability

Lemma (SchmidtSchauß 2004)

For every problem E, every size-minimal unifier σ , and every variable X, if C^n is a nonempty subcontext of $\sigma(X)$, then $n \leq O(2^{|E|^2})$.

Exponent of Periodicity

$$F\mapsto \lambda x. [f(a,\bullet)]^n\ldots$$

This already happens in Word Unification

$$X \dots \stackrel{?}{=} a \cdot X \dots$$
$$X \mapsto a^n \dots$$

We can limit the value of n without affecting solvability

Lemma (SchmidtSchauß 2004)

For every problem E, every size-minimal unifier σ , and every variable X, if C^n is a nonempty subcontext of $\sigma(X)$, then $n \leq O(2^{|E|^2})$.

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary

- Most-general/size-minimal solutions only use constants occurring in the problem
- Even if all variables are unary, we may need n-ary variables
- Restrict variables to be unary is not a problem
- [Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to
- their restricted form with just one binary symbol

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary Most-general/size-minimal solutions only use constants occurring in the problem

Hint: Replace non-original constants by fresh variables

Even if all variables are unary, we may need n-ary variables Restrict variables to be unary is not a problem [Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to their restricted form with just one binary symbol

Monadic SOU

[Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary Most-general/size-minimal solutions only use constants occurring in the problem

Even if all variables are unary, we may need n-ary variables

Hint: Consider $X(a) \stackrel{?}{=} Y(b)$ and solution $X \mapsto \lambda x . Z(x, b), Y \mapsto \lambda y . Z(a, y)$

This is a problem when representing most general solutions of CU Restrict variables to be unary is not a problem [Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to their restricted form with just one binary symbol

[Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary Most-general/size-minimal solutions only use constants occurring in the problem

Even if all variables are unary, we may need n-ary variables

Restrict variables to be unary is not a problem

[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to their restricted form with just one binary symbol

[Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary Most-general/size-minimal solutions only use constants occurring in the problem

Even if all variables are unary, we may need n-ary variables Restrict variables to be unary is not a problem

 $h(\mathbf{X}(g(a), \mathbb{Z})) \stackrel{?}{=} \mathbf{Y}(b, f(\mathbf{X}(c, d)))$

... consider the most general unifier:

 $\begin{array}{l} h(U(T(g(a), b, f(U(T(c, a, f(U(d)))))))) \\ h(U(T(g(a), b, f(U(T(c, a, f(U(d)))))))) \end{array} \end{array}$

... by instantiating $T \mapsto \lambda x, y, z \cdot T'(z)$: h(U(T'(f(U(T'(f(U(d)))))))) = h(U(T'(f(U(T'(f(U(d))))))))

 $X \mapsto \lambda x, y \cdot X'(y)$

... we obtain a solution of the problem instantiated by

 $Y \mapsto \lambda x, y, Y'(y) \leftarrow \lambda z \mapsto z \mapsto z \mapsto z$

[Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary Most-general/size-minimal solutions only use constants occurring in the problem

Even if all variables are unary, we may need n-ary variables Restrict variables to be unary is not a problem

[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to their restricted form with just one binary symbol

Hint: Translate $f(t_1, \ldots, t_n) \longrightarrow @(\ldots @(f, t_1) \ldots, t_n)$ $X(t) \longrightarrow X(t)$

(a sort of partial curryfication)

This reduction is correct if variables do not "touch" like in X(Y(t))We can guess head symbol in Y and avoid this situation

[Farmer 1988] SOU is decidable if all function symbols are unary (Monadic SOU)

[Farmer 1991] SOU is undecidable even if SO variables are unary Most-general/size-minimal solutions only use constants occurring in the problem

Even if all variables are unary, we may need n-ary variables

Restrict variables to be unary is not a problem

[Levy Villaret 2002] SOU, BSOU and LSOU can be reduced to their restricted form with just one binary symbol

[Levy Schmidt-Schauß Villaret 2004] Monadic SOU is NP-complete

Monadic SOU is in NP [Levy Schmidt-Schauß Villaret 2004]

- Represent one of the solutions in polynomial space
- Prove that we can check if a substitution is a solution in polynomial time on this representation

Monadic SOU is in NP [Levy Schmidt-Schauß Villaret 2004]

- Represent one of the solutions in polynomial space
- Prove that we can check if a substitution is a solution in polynomial time on this representation
- Use the exponent of periodicity of size-minimal solutions (we can represent exponents in linear space) [Makanin, Kościelski and Pacholski]
- Use (singleton) context free grammars to represent solutions
- Given two singleton CFG we can check if they define the same word in polynomial time [Plandowski]

Monadic SOU is in NP (Some Details)

Lemma

If G defines
$$w_1, \ldots, w_n$$
, exists $G' \supseteq G$ defining $w = w_1 \ldots w_n$ s.t.
 $|G'| \leq |G| + n - 1$
 $depth(G') \leq depth(G) + \lceil \log n \rceil$

Lemma

If G defines w, for any n, exists
$$G' \supseteq G$$
 defining w^n s.t.
 $|G'| \leq |G| + 2 \lfloor \log n \rfloor$
 $\operatorname{depth}(G') \leq \operatorname{depth}(G) + \lceil \log n \rceil$

Lemma

If G defines w, for any $w' \prec w$, exists $G' \supseteq G$ defining w' s.t. $|G'| \leq |G| + \operatorname{depth}(G)$ $\operatorname{depth}(G') = \operatorname{depth}(G)$

Monadic SOU is in NP (Some Details)

Define if $X w_1 \stackrel{?}{=} Y w_2$ then $X \approx Y$

• One node for every \approx -equivalence class of variables.

• For every
$$X w_1 \stackrel{?}{=} a_1 \cdots a_n Y w_2$$

 $(L_1) \stackrel{a_1}{\longrightarrow} (\emptyset) \stackrel{a_2}{\longrightarrow} (\emptyset) \cdots \qquad (\emptyset) \stackrel{a_n}{\longrightarrow} (L_2)$
where $X \in L_1$ and $Y \in L_2$
• For every $X w_1 \stackrel{?}{=} a_1 \cdots a_n b$
 $(L) \stackrel{a_1}{\longrightarrow} (\emptyset) \stackrel{a_2}{\longrightarrow} (\emptyset) \cdots \qquad (\emptyset) \stackrel{a_n}{\longrightarrow} (b)$
where $X \in L$

Theorem

Let σ be a size-minimal lazy unifier of $\langle E, G \rangle$ with exponent not exceeding k. Then exist X and G', deriving $\sigma(X)$ and s.t.

 $|G'| \le |G| + \mathcal{O}(|E|^2 \operatorname{depth}(G) + \log k)$ depth(G') \le depth(G) + $\mathcal{O}(\log k + \log |E|)$

Theorem

For any solvable equations $\langle E, \emptyset \rangle$, exists a lazy unifier $\langle \sigma, G \rangle$ s.t.

$$\begin{split} |\sigma| &= \mathcal{O}(|E|) \\ |G| &= \mathcal{O}(|E|^5) \\ \texttt{depth}(G) &= \mathcal{O}(|E|^2) \end{split}$$

Two Occurrences per Variable [Levy 1998]

Word Unification is trivially decidable when variables do not occur more than twice:

Imitation: $\{X \cdot w_1 \stackrel{?}{=} a \cdot w_2\} \cup E\} \Rightarrow \left(\{X' \cdot w_1 \stackrel{?}{=} w_2\} \cup E\}\right) \rho$ where $\rho = [X \mapsto a \cdot X']$ Flex-flex: $\{X \cdot w_1 \stackrel{?}{=} Y \cdot w_2\} \cup E\} \Rightarrow \left(\{X' \cdot w_1 \stackrel{?}{=} w_2\} \cup E\}\right) \rho$ where $\rho = [X \mapsto Y \cdot X']$

[Levy 1996] LSOU is decidable when variables do not occur more than twice

[Levy 1998] SOU is undecidable even when variables do not occur more than twice

 $\begin{array}{c} t_1 \to u_1, \dots, t_m \to u_m \vdash v \to w \\ & \uparrow \\ X(f(a,v), u_1, \dots, u_m) \stackrel{?}{=} f(X(a,t_1, \dots, t_m), v \overline{\mathscr{P}}) \cdot \operatorname{sok} ab | \overline{\mathscr{P}} \circ \mathbb{R} \\ & \text{Jordi Levy} \qquad \text{On the Limits of Second-Order Unification} \end{array}$

Two Occurrences per Variable [Levy 1998]

Word Unification is trivially decidable when variables do not occur more than twice:

[Levy 1996] LSOU is decidable when variables do not occur more than twice

[Levy 1998] SOU is undecidable even when variables do not occur more than twice

f and a are symbols not used in the rewriting system

Two Occurrences per Variable [Levy 1998]

Word Unification is trivially decidable when variables do not occur more than twice:

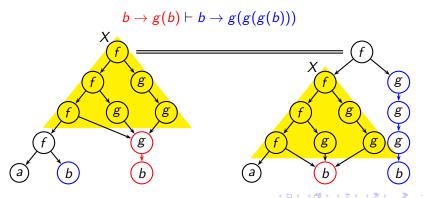
[Levy 1996] LSOU is decidable when variables do not occur more than twice

[Levy 1998] SOU is undecidable even when variables do not occur more than twice

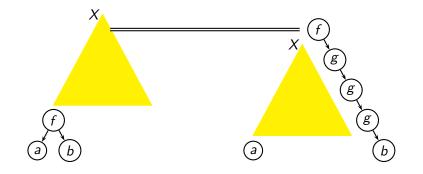
f and a are symbols not used in the rewriting system

Two Occurrences per Variable

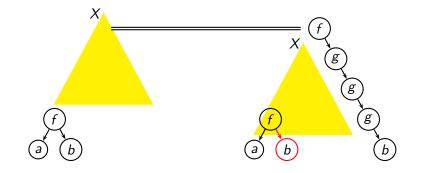
Example:

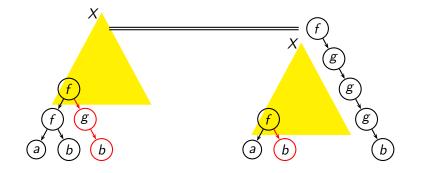


 $b \rightarrow g(b) \vdash$

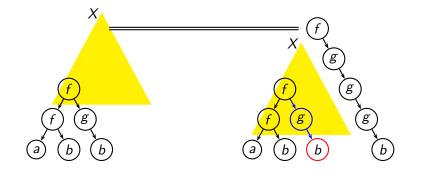


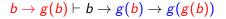
 $b \rightarrow g(b) \vdash b$

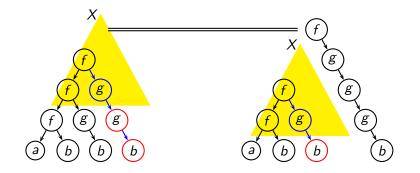




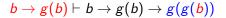
 $b \rightarrow g(b) \vdash b \rightarrow g(b)$

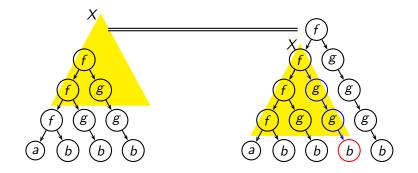




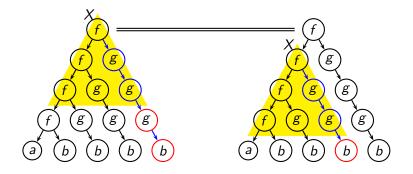


3





 $b \rightarrow g(b) \vdash b \rightarrow g(b) \rightarrow g(g(b)) \rightarrow g(g(g(b)))$



-

[Levy Veanes 2000] SOU is reducible to SOU with just one variable and the same (plus one) number of occurrences

where G is a fresh variable, g an appropriate constant, and "_" denotes fresh and distinct first-order variables Plus $G(c, ..., c) \stackrel{?}{=} g(_, ..., _)$, if some t_{ij}^k is a variable

$$F_{1}(t_{1}, u_{1}) \stackrel{?}{=} u_{1}$$

$$F_{1}(t_{2}, u_{2}) \stackrel{?}{=} u_{2}$$

$$F_{2}(t_{3}, u_{3}) \stackrel{?}{=} u_{3}$$

$$F_{2}(t_{4}, u_{4}) \stackrel{?}{=} u_{4}$$

$$G(t_{1}, u_{1}) \stackrel{?}{=} g(u_{1}, X_{1})$$

$$G(t_{2}, u_{2}) \stackrel{?}{=} g(u_{2}, X_{2})$$

$$G(t_{3}, u_{3}) \stackrel{?}{=} g(X_{3}, u_{3})$$

$$G(t_{4}, u_{4}) \stackrel{?}{=} g(X_{4}, u_{4})$$
(1)

 \Rightarrow If σ solves (1), then

$$G \mapsto x, y \cdot g(F_1(x, y), F_2(x, y))$$
$$X_1 \mapsto F_2(t_1, u_1)$$
$$X_2 \mapsto F_2(t_2, u_2)$$
$$X_3 \mapsto F_1(t_3, u_3)$$
$$X_4 \mapsto F_1(t_4, u_4)$$

$$F_{1}(t_{1}, u_{1}) \stackrel{?}{=} u_{1}$$

$$F_{1}(t_{2}, u_{2}) \stackrel{?}{=} u_{2}$$

$$F_{2}(t_{3}, u_{3}) \stackrel{?}{=} u_{3}$$

$$F_{2}(t_{4}, u_{4}) \stackrel{?}{=} u_{4}$$

$$G(t_{1}, u_{1}) \stackrel{?}{=} g(u_{1}, X_{1})$$

$$G(t_{2}, u_{2}) \stackrel{?}{=} g(u_{2}, X_{2})$$

$$G(t_{3}, u_{3}) \stackrel{?}{=} g(X_{3}, u_{3})$$

$$G(t_{4}, u_{4}) \stackrel{?}{=} g(X_{4}, u_{4})$$
(1)

 \Leftarrow If σ solves (2), and g is "inside" σ(G), then the imitation step G $\mapsto \lambda x, y \cdot g(G_1(x, y), G_2(x, y))$ transforms (2) in (1)

The equation $G(c, \ldots, c) \stackrel{?}{=} g(-, \ldots, -)$ may be necessary

(1) is unsolvable(2) is solvable

 $F_{1}(X) \stackrel{?}{=} a$ $F_{1}(Y) \stackrel{?}{=} b$ $F_{2}(X) \stackrel{?}{=} b$ $F_{2}(Y) \stackrel{?}{=} a$ $G(X) \stackrel{?}{=} g(a, X_{1})$ $G(Y) \stackrel{?}{=} g(b, X_{2})$ $G(X) \stackrel{?}{=} g(X_{3}, b)$ $G(Y) \stackrel{?}{=} g(X_{4}, a)$

(1)

 $G \mapsto \lambda x \, . \, x$ $X \mapsto g(a, b)$ $Y \mapsto g(b, a)$

Encode execution of a (Universal) Turing Machine as a sequence of pairs of states

 $((v_1, v_1^+), (v_2, v_2^+), \dots, (v_k, v_k^+))$

Encode execution of a (Universal) Turing Machine as a sequence of pairs of states

$$((v_1, v_1^+), (v_2, v_2^+), \dots, (v_k, v_k^+)$$

Use 2 equations:

 $F(\overline{t}, f(b, a)) \stackrel{?}{=} f(X, F(\overline{u}, a))$

ensures $v_{i+i} = v_i^+$ $F(\overline{t}, f(t', a))$ encodes (v_1, \dots, v_k, b) $f(X, F(\overline{u}, a))$ encodes (X, v_1^+, \dots, v_k^+) X encodes the initial state

Encode execution of a (Universal) Turing Machine as a sequence of pairs of states

$$((v_1, v_1^+), (v_2, v_2^+), \dots, (v_k, v_k^+)$$

Use 2 equations:

 $F(\overline{t}, f(b, a)) \stackrel{?}{=} f(X, F(\overline{u}, a))$

ensures $v_{i+i} = v_i^+$

 $G(\overline{I}, f'(a, a')) \stackrel{?}{=} f'(F(\overline{v}, a), G(\overline{r}, a'))$

ensures v_i^+ is successor of v_i \overline{l} and \overline{r} encode the transitions of the Turing Machine \overline{t} , \overline{u} and \overline{v} only depends on the alphabet

Encode execution of a (Universal) Turing Machine as a sequence of pairs of states

$$((v_1, v_1^+), (v_2, v_2^+), \dots, (v_k, v_k^+)$$

Use 2 equations:

$$F(\overline{t}, f(b, a)) \stackrel{?}{=} f(X, F(\overline{u}, a))$$

$$G(\overline{l}, f'(a, a')) \stackrel{?}{=} f'(F(\overline{v}, a), G(\overline{r}, a'))$$

Encodes Halting Problem of Universal TM on input X**Undecidability** of SOU for **5** occurrences of **one** second-order variable, even when the variable is only applied to **ground** terms

Thanks for your attention!!

Jordi Levy On the Limits of Second-Order Unification