From Admissibility to a New Hierarchy of Unification Types

Leonardo Manuel Cabrer

joint work with George Metcalfe

Università degli Studi di Firenze Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti" Marie Curie Intra-European Fellowship – FP7

UNIF – 2014

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Does unification type reflect the connection between unification and admissible rules?

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivation

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ ≧ − のへぐ

Does unification type reflect the connection between unification and admissible rules?

("Counter")Examples:

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivation

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Does unification type reflect the connection between unification and admissible rules?

("Counter")Examples:

 MV-algebras: Nullary type (V. Marra - L. Spada).
 Axiomatization, decidability and complexity analysis of admissible rules (E. Jeřábek). From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivation

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Does unification type reflect the connection between unification and admissible rules?

("Counter")Examples:

- MV-algebras: Nullary type (V. Marra L. Spada). Axiomatization, decidability and complexity analysis of admissible rules (E. Jeřábek).
- Distributive lattices: Nullary type (S. Ghilardi).
 Axiomatization and decidability (L.M.C. G. Metcalfe).

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivation

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Framework

Let us fix:

- *L* := algebraic language;
- \mathcal{V} := class of \mathcal{L} -algebras.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifier

Future Work

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Framework

Let us fix:

- *L* := algebraic language;
- \mathcal{V} := class of \mathcal{L} -algebras.

Let $\mathbf{Fm}_{\mathcal{L}}(X)$ denote the formula algebra (also known as term algebra or absolutely free algebra) of \mathcal{L} over a set of variables X.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Motivation Unifiers

A substitution (homomorphism)

$$\sigma\colon \mathbf{Fm}_{\mathcal{L}}(X)\to \mathbf{Fm}_{\mathcal{L}}(Y)$$

is called a \mathcal{V} -unifier (over X) of a set of \mathcal{L} -identities Σ with variables in X if

$$\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi) \text{ for all } \varphi \approx \psi \in \Sigma.$$

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Motivation Unifiers

A substitution (homomorphism)

$$\sigma\colon \mathbf{Fm}_{\mathcal{L}}(X)\to \mathbf{Fm}_{\mathcal{L}}(Y)$$

is called a \mathcal{V} -unifier (over X) of a set of \mathcal{L} -identities Σ with variables in X if

$$\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$$
 for all $\varphi \approx \psi \in \Sigma$.

Let $U_{\mathcal{V}}(\Sigma, X)$ denote the set of \mathcal{V} -unifiers of Σ over X.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Votivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Unifiers

If $\sigma_1, \sigma_2 \in U_{\mathcal{V}}(\Sigma, X)$, we say that σ_1 is more general than σ_2

$$\sigma_2 \preceq \sigma_1$$

if there exists a substitution λ defined on the variables of $\sigma_1(X)$ such that $\sigma_2 \cong_{\mathcal{V}} \lambda \circ \sigma_1$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Unifiers

If $\sigma_1, \sigma_2 \in U_{\mathcal{V}}(\Sigma, X)$, we say that σ_1 is more general than σ_2

$$\sigma_2 \preceq \sigma_1$$

if there exists a substitution λ defined on the variables of $\sigma_1(X)$ such that $\sigma_2 \cong_{\mathcal{V}} \lambda \circ \sigma_1$.

A complete set for $(U_{\mathcal{V}}(\Sigma, X), \preceq)$ is a subset $M \subseteq U_{\mathcal{V}}(\Sigma, X)$ such that for every $\sigma \in U_{\mathcal{V}}(\Sigma, X)$, there exists $\sigma' \in M$ such that $\sigma \preceq \sigma'$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Unifiers

If $\sigma_1, \sigma_2 \in U_{\mathcal{V}}(\Sigma, X)$, we say that σ_1 is more general than σ_2

 $\sigma_2 \preceq \sigma_1$

if there exists a substitution λ defined on the variables of $\sigma_1(X)$ such that $\sigma_2 \cong_{\mathcal{V}} \lambda \circ \sigma_1$.

A complete set for $(U_{\mathcal{V}}(\Sigma, X), \preceq)$ is a subset $M \subseteq U_{\mathcal{V}}(\Sigma, X)$ such that for every $\sigma \in U_{\mathcal{V}}(\Sigma, X)$, there exists $\sigma' \in M$ such that $\sigma \preceq \sigma'$.

M is called a μ -set for $(U_{\mathcal{V}}(\Sigma, X), \preceq)$ if $\sigma_1 \not\preceq \sigma_2$ and $\sigma_2 \not\preceq \sigma_1$ for all distinct $\sigma_1, \sigma_2 \in M$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Motivation Unifiers and Admissibility

If Σ , Δ are finite sets of \mathcal{L} -identities, the clause $\Sigma \Rightarrow \Delta$ is \mathcal{V} -admissible if for every \mathcal{V} -unifier σ of Σ there exists $\varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework

Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Motivation Unifiers and Admissibility

If Σ , Δ are finite sets of \mathcal{L} -identities, the clause $\Sigma \Rightarrow \Delta$ is \mathcal{V} -admissible if for every \mathcal{V} -unifier σ of Σ there exists $\varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$.

Let Σ , and Δ be finite sets of \mathcal{L} -identities, $X = \operatorname{Var}(\Sigma \cup \Delta)$ and M be a complete (or μ -set) for $U_{\mathcal{V}}(\Sigma, X)$.

The clause $\Sigma \Rightarrow \Delta$ is \mathcal{V} -admissible if for every \mathcal{V} -unifier

$\sigma \in \mathbf{M}$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

there exists $\varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework

Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Given a clause $\Sigma \Rightarrow \Delta$ is there any procedure to obtain a "small" set *M* of unifiers of Σ such that:

 $\Sigma \Rightarrow \Delta \text{ is } \mathcal{V}\text{-admissible}$

if $\forall \sigma \in M$, $\exists \varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$?

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers

Unifiers and Admissibility

Main Definition

More Exact Unifier: Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

What should we change?

If $\sigma_1, \sigma_2 \in U_{\mathcal{V}}(\Sigma, X)$, we say that σ_1 is more general than σ_2

 $\sigma_2 \preceq \sigma_1$

if there exists a substitution λ defined on the variables of $\sigma_1(X)$ such that $\sigma_2 \cong_{\mathcal{V}} \lambda \circ \sigma_1$.

A complete set for $(U_{\mathcal{V}}(\Sigma, X), \preceq)$ is a subset $M \subseteq U_{\mathcal{V}}(\Sigma, X)$ such that for every $\sigma \in U_{\mathcal{V}}(\Sigma, X)$, there exists $\sigma' \in M$ such that $\sigma \preceq \sigma'$.

M is called a μ -set for $(U_{\mathcal{V}}(\Sigma, X), \preceq)$ if $\sigma_1 \not\preceq \sigma_2$ and $\sigma_2 \not\preceq \sigma_1$ for all distinct $\sigma_1, \sigma_2 \in M$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Notivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers

Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

More Exact Unifiers

Let Σ be a finite set of \mathcal{L} -equations and σ_1, σ_2 be \mathcal{V} -unifiers of Σ . We say that σ_1 is more exact than σ_2 (in symbols $\sigma_2 \sqsubseteq \sigma_1$) if σ_1 unifies fewer identities than σ_2 .

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers

Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

More Exact Unifiers

Let Σ be a finite set of \mathcal{L} -equations and σ_1, σ_2 be \mathcal{V} -unifiers of Σ . We say that σ_1 is more exact than σ_2 (in symbols $\sigma_2 \sqsubseteq \sigma_1$) if σ_1 unifies fewer identities than σ_2 .

More precisely:

$$\sigma_2 \sqsubseteq \sigma_1$$

if

 $\mathcal{V} \models \sigma_2(\varphi) \approx \sigma_2(\psi)$ whenever $\mathcal{V} \models \sigma_1(\varphi) \approx \sigma_1(\psi)$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers

Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Exact Type

Immediately,

• \sqsubseteq determines a preorder on the \mathcal{V} -unifiers of Σ .

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers

Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifier

Future Work

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Exact Type

Immediately,

• \sqsubseteq determines a preorder on the \mathcal{V} -unifiers of Σ .

Lemma For each $X \supseteq \operatorname{Var}(\Sigma)$,

 $\operatorname{type}(\mathsf{U}_{\mathcal{V}}(\Sigma,\operatorname{Var}(\Sigma)),\sqsubseteq)=\operatorname{type}(\mathsf{U}_{\mathcal{V}}(\Sigma,X),\sqsubseteq).$

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers

Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Exact Type

Immediately,

• \sqsubseteq determines a preorder on the \mathcal{V} -unifiers of Σ .

Lemma For each $X \supseteq \operatorname{Var}(\Sigma)$,

 $\operatorname{type}(\mathsf{U}_{\mathcal{V}}(\Sigma,\operatorname{Var}(\Sigma)),\sqsubseteq)=\operatorname{type}(\mathsf{U}_{\mathcal{V}}(\Sigma,X),\sqsubseteq).$

We define the **exact type of** Σ in \mathcal{V} to be type(U_{\mathcal{V}}(Σ , Var(Σ)), \sqsubseteq) (for U_{\mathcal{V}}(Σ , Var(Σ)) $\neq \emptyset$).

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers

Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

▲□▶▲□▶▲□▶▲□▶ □ ● ● ●

Consequences

Let Σ , and Δ be finite sets of \mathcal{L} -identities, $X = Var(\Sigma \cup \Delta)$ and

M be a complete (or μ -set) for $(U_{\mathcal{V}}(\Sigma, X), \sqsubseteq)$.

The clause $\Sigma \Rightarrow \Delta$ is \mathcal{V} -admissible if for every \mathcal{V} -unifier $\sigma \in M$ there exists $\varphi \approx \psi \in \Delta$ such that $\mathcal{V} \models \sigma(\varphi) \approx \sigma(\psi)$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Consequences

• $\sigma_2 \preccurlyeq \sigma_1 \text{ implies } \sigma_2 \sqsubseteq \sigma_1.$

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type

Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで

Consequences

- $\sigma_2 \preccurlyeq \sigma_1 \text{ implies } \sigma_2 \sqsubseteq \sigma_1.$
- For each $X \supseteq \operatorname{Var}(\Sigma)$, if M is a complete set for $(U_{\mathcal{V}}(\Sigma, X), \preccurlyeq)$, then M is a complete set for $(U_{\mathcal{V}}(\Sigma, X), \sqsubseteq)$.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type

Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifier

Future Work

Consequences

- $\sigma_2 \preccurlyeq \sigma_1 \text{ implies } \sigma_2 \sqsubseteq \sigma_1.$
- For each $X \supseteq \operatorname{Var}(\Sigma)$, if M is a complete set for $(U_{\mathcal{V}}(\Sigma, X), \preccurlyeq)$, then M is a complete set for $(U_{\mathcal{V}}(\Sigma, X), \sqsubseteq)$.

Proposition

If we consider the the set of types $\{1, \omega, \infty, 0\}$ preordered as follows $1 \le \omega \le \infty \le 0 \le \infty$, From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type

Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Consequences

- $\sigma_2 \preccurlyeq \sigma_1 \text{ implies } \sigma_2 \sqsubseteq \sigma_1.$
- For each $X \supseteq \operatorname{Var}(\Sigma)$, if M is a complete set for $(U_{\mathcal{V}}(\Sigma, X), \preccurlyeq)$, then M is a complete set for $(U_{\mathcal{V}}(\Sigma, X), \sqsubseteq)$.

Proposition

If we consider the the set of types $\{1, \omega, \infty, 0\}$ preordered as follows $1 \le \omega \le \infty \le 0 \le \infty$, then

 $\text{type}(U_{\mathcal{V}}(\Sigma),\sqsubseteq) \leq \text{type}(U_{\mathcal{V}}(\Sigma),\preccurlyeq).$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type

Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Examples

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

-uture Work

Class of Algebras	Unification Type	Exact Type
Boolean Algebras	Unitary	Unitary
Heyting Algebras	Finitary	Finitary
Semigroups	Infinitary	Infinitary or Nullary
Modal algebras	Nullary	Nullary
Distributive Lattices	Nullary	Unitary
Stone Algebras	Nullary	Unitary
Idempotent Semigroups	Nullary	Finitary
MV-algebras	Nullary	Finitary

Ghilardi's Algebraic Translation

[1] S. Ghilardi. Unification through projectivity. *Journal* of Logic and Computation, 7(6):733-752, 1997.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translatior

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifier

Future Work

Ghilardi's Algebraic Translation

[1] S. Ghilardi. Unification through projectivity. *Journal* of Logic and Computation, 7(6):733-752, 1997.

$$\operatorname{Fm}_{\mathcal{L}}(X) \xrightarrow{\sigma} \operatorname{Fm}_{\mathcal{L}}(Y)$$

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translatior

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifier

Future Work

Ghilardi's Algebraic Translation

[1] S. Ghilardi. Unification through projectivity. *Journal* of Logic and Computation, 7(6):733-752, 1997.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier: Exact Type Consequences

Examples

Algebraic Translatior

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Ghilardi's Algebraic Translation

[1] S. Ghilardi. Unification through projectivity. *Journal* of Logic and Computation, 7(6):733-752, 1997.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translatior

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

・ロト・四ト・日本・日本・日本・日本

Ghilardi's Algebraic Translation

Unification Problem: Finitely presented algebra A

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translatior

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Ghilardi's Algebraic Translation

Unification Problem:Finitely presented algebra ASolution (Unifier): $h: A \rightarrow P$ P is projective

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translatior

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifier

Future Work

Ghilardi's Algebraic Translation

Unification Problem: Finitely presented algebra A Solution (Unifier): h: $A \rightarrow P$ P is projective Pre-order: → P₁

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifier

Future Work

Ghilardi's Algebraic Translation

Theorem (S. Ghilardi)

For each \mathcal{V} -unifiable finite set of identities Σ ,

 $\operatorname{type}(\mathsf{U}_{\mathcal{V}}(\Sigma),\preccurlyeq) = \operatorname{type}(\mathsf{U}_{\mathcal{V}}(\mathsf{F}_{\mathcal{V}}(X)/(\Sigma)),\leq)$

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Notivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Algebraic Co-Exact Unifiers

We call an algebra **E** exact in \mathcal{V} if it is finitely generated and embeds into $\mathbf{F}_{\mathcal{V}}(X)$ for some set *X*.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation

Algebraic Co-Exact Unifiers

Future Work

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ > < Ξ < つへぐ

Algebraic Co-Exact Unifiers

We call an algebra **E** exact in \mathcal{V} if it is finitely generated and embeds into $\mathbf{F}_{\mathcal{V}}(X)$ for some set *X*.

Unification Problem: Finitely presented algebra A

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation

Algebraic Co-Exact Unifiers

Future Work

Algebraic Co-Exact Unifiers

We call an algebra **E** exact in \mathcal{V} if it is finitely generated and embeds into $\mathbf{F}_{\mathcal{V}}(X)$ for some set *X*.

Unification Problem:Finitely presented algebra ASolution (Unifier): $h: A \rightarrow E$ E is exact in \mathcal{V}

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifier: Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation

Algebraic Co-Exact Unifiers

Future Work

Algebraic Co-Exact Unifiers

We call an algebra **E** exact in \mathcal{V} if it is finitely generated and embeds into $\mathbf{F}_{\mathcal{V}}(X)$ for some set X.

Unification Problem: Finitely presented algebra A Solution (Unifier): h: $A \rightarrow E$ E is exact in \mathcal{V} Pre-order:

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

From Admissibility to a New Hierarchy of Unification Types

I M Cabrer

Algebraic Co-Exact Unifiers

Algebraic Co-Exact Unifiers

Theorem

Let \mathcal{V} be an equational class Σ a finite set of \mathcal{V} -unifiable \mathcal{L} -identities and A the algebra finitely presented by Σ . Let $\mathsf{EU}_{\mathcal{V}}(A)$ denote the preorder set of co-exact unifiers of A. Then

 $\operatorname{type}(U_{\mathcal{V}}(\Sigma), \sqsubseteq) = \operatorname{type}(\mathsf{EU}_{\mathcal{V}}(A)).$

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translatior

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Algebraic CO-Exact Office

Future Work

Algebraic Co-Exact Unifiers

Corollary

If A the finitely presented algebra by Σ has a finitely many congruences, then type(U_V(Σ), \sqsubseteq) is unitary or finitary.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation

Algebraic Co-Exact Unifiers

Future Work

Algebraic Co-Exact Unifiers

Corollary

If A the finitely presented algebra by Σ has a finitely many congruences, then type(U_V(Σ), \sqsubseteq) is unitary or finitary.

Corollary

If \mathcal{V} is a locally finite variety, then \mathcal{V} has exact unification type unitary or finitary.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translatior

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Obtain separating examples.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

・ロト・国ト・ヨト・ヨト のへの

- Obtain separating examples.
- Procedures to determine μ -sets.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

- Obtain separating examples.
- Procedures to determine μ -sets.
- Applications to admissible rules.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

- Obtain separating examples.
- Procedures to determine μ -sets.
- Applications to admissible rules.
- Purpose designed types.

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatio

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

From Admissibility to a New Hierarchy of Unification Types

L.M. Cabrer

Motivatior

Framework Unifiers Unifiers and Admissibility

Main Definition

More Exact Unifiers Exact Type Consequences

Examples

Algebraic Translation

Ghilardi's Algebraic Translation Algebraic Co-Exact Unifiers

Future Work

Thank you for your attention!

I.cabrer@disia.unifi.it

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●