
Constraints in SGGS

Maria Paola Bonacina∗

Dipartimento di Informatica

Università degli Studi di Verona

Verona, I-37134, Italy

E-mail: mariapaola.bonacina@univr.it

David A. Plaisted

Department of Computer Science

UNC Chapel Hill

Chapel Hill, NC 27599-3175, USA

E-mail: plaisted@cs.unc.edu

June 12, 2014

Abstract

We discuss the constraint system in the SGGS inference sys-

tem, which stands for semantically-guided goal-sensitive theo-

rem proving.

∗Research supported in part by grant no. 2007-9E5KM8 of the Ministero dell’Istruzione

Università e Ricerca, Italy, and by COST Action IC0901 of the European Union.

1

Contents

1 Basic definitions and concepts for SGGS 2

1.1 Constrained clauses 2

1.2 Clause Sequences 6

2 Intersection, partition, splitting and difference 6

3 Constraints 8

3.1 Rules for constraints 9

3.2 Computing minimal constrained ground instances . 21

3.2.1 First Phase 21

3.2.2 Second Phase 23

1 Basic definitions and concepts for

SGGS

1.1 Constrained clauses

The SGGS inference system takes as input

• a set S of clauses,

• an initial interpretation I , and

• an ordering ≺ on ground literals,

2

and builds a sequence of clauses that represents a partial model of

S.

While in propositional logic a partial model of a set of clauses

can be represented by a sequence of literals, in first-order logic it

needs a sequence of clauses with constraints:

Definition 1.1 (Constraint) An atomic constraint is either

1. empty, denoted by true, or

2. an expression of the form x ≡ y or top(t) = f , where

(a) x and y are variables,

(b) f is a function symbol, and

(c) t is a term.

A constraint is either

1. an atomic constraint, or

2. the negation, conjunction, or disjunction of constraints.

The meaning of the constraints is defined by

1. |= t ≡ u for ground terms t and u if t and u are the same

element of the Herbrand universe.

2. |= top(t) = f if the top symbol of ground term t is f .

3

Definition 1.2 (Standard form) A constraint is in standard

form, if it is a conjunction of distinct atomic constraints of the

form x 6≡ y and top(x) 6= f , where x and y are variables.

• A constraint top(x) 6= f says that x cannot be replaced by a

term whose top function symbol is f , while

• a constraint x 6≡ y specifies that x and y may not be replaced

by identical terms.

Definition 1.3 (Constrained clause) A constrained clause is

a formula AB C, where

• A is a constraint and

• C is a clause.

Any variable that appears in A and not in C is implicitly exis-

tentially quantified.

In a constrained clause AB C a literal L may be selected, written

AB C[L].

• By analogy, AB L is called a constrained literal,

• and by convention, if L is the selected literal of C, and C ′ ≡
Cϑ, then L′ ≡ Lϑ is the selected literal of C ′.

• trueB C is usually abbreviated as C.

4

Definition 1.4 (Constrained ground instances) Given a con-

strained clause ABC its set of constrained ground instances (cgi)

is

Gr(AB C) = {Cϑ : |= Aϑ, Cϑ ground.}

Note how

• Gr(falseB C) = ∅, while

• Gr(trueB C) contains all ground instances of C.

The same notion applies to a single literal:

Gr(AB L) = {Lϑ : |= Aϑ, Lϑ ground}.

For a single literal ¬Gr(AB L) or Gr(AB ¬L) is the set

{¬L′ : L′ ∈ Gr(AB L)}.

Example 1.1 For a clause x 6≡ y B P (x, y),

1. P (a, b) ∈ Gr(x 6≡ y B P (x, y)),

2. P (b, b) 6∈ Gr(x 6≡ y B P (x, y)).

Definition 1.5 The minimal constrained ground instance of a

constrained literal AB L is

cmin(ABL) =

{
min≺{M : M ∈ Gr(AB L)} if Gr(AB L) 6= ∅,
M∞ otherwise.

5

where the ordering ≺ is suitably defined.

The minimal constrained ground instance of a constrained

clause AB C[L] is the minimal constrained ground instance of

its selected literal:

cmin(AB C[L]) = cmin(AB L).

1.2 Clause Sequences

SGGS works with clause sequences that satisfy certain requirements,

which will be omitted here.

2 Intersection, partition, splitting and

difference

Definition 2.1 Constrained literals AB L and B BM

1. intersect if at(Gr(AB L)) ∩ at(Gr(B BM)) 6= ∅, and

2. are disjoint, otherwise.

Intersection does not require that two literals have the same sign,

because it is defined based on the atoms of their constrained ground

instances.

6

Definition 2.2 (Partition) A partition of ABC〈L〉, where A

is satisfiable, is a set

{Ai B Ci〈Li〉}ni=1

such that

1. Gr(AB C) =
⋃n
i=1{Gr(Ai B Ci〈Li〉)},

2. the constrained literals Ai B Li are pairwise disjoint,

3. all Ai’s are satisfiable, and

4. the Li’s are chosen consistently with L.

Example 2.1 The set

{trueB P (f (z), y), top(x) 6= f B P (x, y)}

is a partition of trueB P (x, y).

If L and M intersect, it is possible to split ABC〈L〉 by BBD[M]:

Definition 2.3 (Splitting and difference) A splitting of AB

C〈L〉 by B B D[M], denoted split(C,D), is a partition {Ai B

Ci〈Li〉}ni=1 of AB C〈L〉 such that:

1. ∃j, 1 ≤ j ≤ n, such that at(Gr(Aj B Lj)) ⊆ at(Gr(B B

M)), and

2. ∀i, 1 ≤ i 6= j ≤ n, at(Gr(Ai B Li)) and at(Gr(B BM))

are disjoint;

7

and the difference C −D is split(C,D) with Cj removed.

Clause Cj is the representative of D in split(C,D).

SGGS needs to compute splitting and differences.

Computing split(C,D) and C − D introduces constraints, in-

cluding non-standard ones, even when C and D have empty con-

straints to begin with:

Example 2.2 A splitting of trueBP (x, y) by trueBP (f (w), g(z))

is

• {trueB P (f (w), g(z)),

• top(x) 6= f B P (x, y),

• top(y) 6= g B P (f (x), y)}.

3 Constraints

In this section we present rules that manipulate constraints to com-

pute clause differences and splittings, and standardize constraints.

These rules are sound, in the sense that premise and conclusion

represent the same set of constrained ground instances.

If a conclusion is made of multiple clauses, it is read as their

disjunction:

• if a rule has premise ABC and conclusion A1BC1, . . . , AnB

Cn, then Gr(AB C) =
⋃n
i=1Gr(Ai B Ci);

8

• if the conclusion is ⊥, it means that A is unsatisfiable.

3.1 Rules for constraints

In general we define Gr(C −D) by

Gr(C −D) =

n⋃
i=1,i 6=j

Gr(Ci)

for split(C,D) = {AiBCi〈Li〉}ni=1 and Cj the representative of D.

According to Definition 2.3, given AB C[L] and B BD[M],

• if at(L) and at(M) do not unify, then

Gr(C −D) = Gr(C)

.

• If at(L) and at(M) unify, with σ = mgu(at(L), at(M)), then

split(C,D) = (C −D) ∪ {Aσ ∧Bσ B C[L]σ},

and

(C −D) = (C − (Aσ ∧Bσ B C[L]σ)).

Thus,

• if we have a way to compute C − D, we also have a way to

compute split(C,D), and

• we can restrict ourselves to compute C−D under the assump-

tion that D is an instance Cσ of C.

9

Definition 3.1 (Rules for clause difference) Given clauses

ABC and BBD, such that D ≡ Cσ, the rules for clause differ-

ence are:

• If {x ← f (x1, . . . , xn)} ⊆ σ for some x ∈ vars(C) and

new variables xi, 1 ≤ i ≤ n, the DiffSim rule

– applies {x← f (x1, . . . , xn)} to make C closer to being

similar to D and

– on the other hand adds top(x) 6= f to make the clauses

disjoint:

(AB C)− (B BD)

(AB C){x← f (x1, . . . , xn)} − (B BD), A ∧ (top(x) 6= f) B C

• If C and D are similar, which means σ only replaces vari-

ables by variables, and {x← y} ⊆ σ for distinct variables

x, y ∈ vars(C), the DiffVar rule

– applies {x ← y} to make C closer to a variant of D

and

– on the other hand adds x 6≡ y to make the clauses

disjoint:

(AB C)− (B BD)

(AB C){x← y} − (B BD), (x 6≡ y ∧ A) B C

• If C and D are variants but not identical, the DiffId rule

10

makes them identical:

(AB C)− (B BD)

(AB C)σ − (B BD)

• The DiffElim rule replaces difference by negation if C and

D are identical:

(AB C)− (B B C)

(A ∧ ¬B) B C

Since B is a conjunction of constraints, ¬B is a disjunction of their

negations.

Thus, the system needs rules that restore disjunctive normal

form (DNF):

Definition 3.2 (Rules for connectives) The rules for connec-

tives are:

• The Equiv rule replaces a constraint A by its disjunctive

normal form dnf (A):

AB C

dnf (A) B C

• The Div rule subdivides disjunction:

(A ∨B) B C

AB C, B B C

11

Next come rules that reduce identity constraints to standard form.

For these rules we can assume that a constraint is a conjunction

of atomic constraints and their negations.

Definition 3.3 (Rules for identity) The rules for identity are:

• The ElimId1 rule eliminates a constraint between variable

and term: if x 6∈ vars(s), then:

(A ∧ x ≡ s) B C

(AB C){x← s}

if x ∈ vars(s) and s is not a variable, then:

(A ∧ x ≡ s) B C

⊥
(A ∧ x 6≡ s) B C

(AB C)

• The ElimId2 rule detects a conflict: if f 6= g, m ≥ 0, n ≥ 0,

then:

(A ∧ f (s1, . . . , sn) ≡ g(t1, . . . , tm)) B C

⊥

• The ElimId3 rule eliminates a satisfied constraint: if f 6= g,

m ≥ 0, n ≥ 0, then:

(A ∧ f (s1, . . . , sn) 6≡ g(t1, . . . , tm)) B C

AB C

• The ElimId4 rule decomposes an identity: if n ≥ 0, then:

(A ∧ f (s1, . . . , sn) ≡ f (t1, . . . , tn)) B C

(A ∧ s1 ≡ t1 ∧ . . . ∧ sn ≡ tn) B C

12

• The ElimId5 rule decomposes a negated identity: if n ≥ 0,

then:

(A ∧ f (s1, . . . , sn) 6≡ f (t1, . . . , tn)) B C

(A ∧ (s1 6≡ t1 ∨ . . . ∨ sn 6≡ tn)) B C

After this rule, of course, the constraint can be reduced to

dnf and split into conjuncts as before.

• The ElimId6 rule eliminates a negated identity between

variable and non-variable term:

(A ∧ x 6≡ f (s1, . . . , sn)) B C

A ∧ top(x) 6= f B C, ((A ∧ f (s1, . . . , sn) 6≡ f (y1, . . . , yn)) B C)ρ

where

– ρ = {x← f (y1, . . . , yn)},
– n ≥ 0, and

– for all i, 1 ≤ i ≤ n, yi is a new variable;

– (this in turn permits an application of ElimId5)

• The ElimId7 rule detects a conflict: if s is a variable or

constant, then:
(A ∧ s 6≡ s) B C

⊥

The ElimId5 rule also calls for restoration of DNF.

The rules for top symbol eliminate all top symbol constraints,

except those in standard form top(x) 6= f :

13

Definition 3.4 (Rules for top symbol) The rules for top sym-

bol are

• The ElimTop1 rule detects a conflict in a positive con-

straint: if f 6= g, n ≥ 0, then:

A ∧ top(f (s1, . . . , sn)) = g B C

⊥

• The ElimTop2 rule eliminates a satisfied positive constraint:

if n ≥ 0, then:

A ∧ top(f (s1, . . . , sn)) = f B C

AB C

• The ElimTop3 rule eliminates a satisfied negative constraint:

if f 6= g, n ≥ 0, then:

A ∧ top(f (s1, . . . , sn)) 6= g B C

AB C

• The ElimTop4 rule detects a conflict in a negated con-

straint: if n ≥ 0, then:

A ∧ top(f (s1, . . . , sn)) 6= f B C

⊥

• The ElimTop5 rule eliminates a positive constraint: if n ≥
0, then:

A ∧ top(x) = f B C

(AB C){x← f (x1, . . . , xn)}
where for all i, 1 ≤ i ≤ n, xi is a new variable.

14

The combined effect of all rules is to standardize all constraints (cf.

Definition 1.2).

However, the application of the identity rules may not terminate:

Example 3.1 Consider a clause (x 6≡ f (y)∧y 6≡ f (x)BP (x, y)):

By applying the ElimId6 rule one gets the two clauses

1. (top(x) 6= f ∧ y 6≡ f (x)) B P (x, y) and

2. (f (z) 6≡ f (y) ∧ y 6≡ f (f (z)) B P (f (z), y)).

Using ElimId5, the latter clause becomes

(z 6≡ y ∧ y 6≡ f (f (z)) B P (f (z), y)),

which then by another application of ElimId6, yields the two

clauses

1. (z 6≡ y ∧ top(y) 6= f) B P (f (z), y)) and

2. (z 6≡ f (w) ∧ f (w) 6≡ f (f (z)) B P (f (z), f (w))).

Using ElimId5 again, the latter clause becomes

(z 6≡ f (w) ∧ w 6≡ f (z) B P (f (z), f (w))),

whose constraint is a variant of the original one.

SGGs does not need that every series of applications of these rules

terminate.

It suffices to show that the computation of clause difference ter-

minates:

15

Theorem 3.1 Given A B C and B B D, such that D ≡ Cσ,

and A and B are in standard form, any application of the clause

difference rules to C −D, where

1. any application of DiffElim or ElimId5 is followed by con-

version to DNF, and

2. all constraints are restored to standard form after every

application of a clause difference rule,

is guaranteed to terminate.

Proof: First we show that the rules for clause difference do not

cause non-termination.

1. DiffId and DiffElim can be applied only once.

2. DiffVar can be applied only a finite number of times, be-

cause each application decreases the number of variables

in C.

3. Each DiffSim step applies to C a substitution {x ←
f (x1, . . . xn)} from σ: since σ contains finitely many such

pairs, DiffSim can be applied only a finite number of

times.

Then we prove that standardization between an application

of a clause difference rule and the next is guaranteed to ter-

minate:

1. DiffId only renames variables, which does not enable any

other rule.

16

2. DiffVar adds an x 6≡ y, which is in standard form, and

applies a substitution {x ← y}, whose only effect may

be to replace an x 6≡ y by an x 6≡ x, eliminated by

ElimId7.

3. DiffSim adds a top(x) 6= f , which is in standard form,

and applies a substitution {x ← f (x1, . . . , xn)}, which

may have two effects.

• One is to replace the occurrence of x in a constraint

top(x) 6= g by f (x1, . . . , xn).

This enables either ElimTop3 or ElimTop4, which

terminate.

• The other is to transform an x 6≡ y into an

f (x1, . . . , xn) 6≡ y, enabling ElimId6.

ElimId6 adds a top(x) 6= f , which is in standard form,

and applies another substitution of the same form, so

that eventually a subset of the variables may be replaced

by terms f (x1, . . . , xn) where the xi’s are new.

• This can only be done a finite number of times, be-

cause the new variables will never be replaced in this

way.

• If two such substitutions are applied to a z 6≡ w, an

f (x1, . . . , xn) 6≡ f (y1, . . . , yn) may arise.

ElimId5 applies to such a constraint, followed by con-

version to DNF.

• The result is a disjunction of constrained clauses,

each containing in its constraint an xi 6≡ yi, for some

17

i, which is in standard form.

4. DiffElim yields (A∧¬B)BC, followed by conversion to

DNF.

The effect may be to add x ≡ y (negation of x 6≡ y in

B) or top(x) = f (negation of top(x) 6= f in B).

• In the first case, ElimId1 applies {x ← y}, covered

in Case (2) of this proof.

• In the second case, ElimTop5 applies {x← f (x1, . . . , xn)},
covered in Case (3) of this proof.

The set of inference rules for constraints is completed by rules that

remove from a clause AB C variables that appear in A but not in

C.

These rules do not affect Theorem 3.1.

Definition 3.5 (Rules for variable removal) Given a clause

AB C, such that

• A is in standard form,

• y ∈ vars(A), and

• y 6∈ vars(C),

the rules for variable removal are:

18

• The ElimVar1 rule detects that the constraints on y are

satisfiable:

if ∃f ∈ fun(S), such that ar(f) ≥ 1 and top(y) 6= f 6∈ A,

then:
AB C

Rem(y, A) B C

where Rem(y, A) is A with all conjuncts of the form

– top(y) 6= g, g 6= f , and

– y 6≡ z, where z is another variable,

replaced by true;

• The ElimVar2 rule detects that the constraints on y are

unsatisfiable:

if ∀f ∈ fun(S), A contains a constraint top(y) 6= f , then:

AB C

⊥

• The ElimVar3 rule removes y by replacing it with all pos-

sible constants:

if ∀f ∈ fun(S) such that ar(f) ≥ 1, A contains a con-

straint top(y) 6= f , then:

AB C

(
∨
c∈fun(S),ar(c)=0A{y ← c}) B C

To justify these rules,

19

• If the conditions of the ElimVar1 rule are met, all constraints

about y can be satisfied by replacing y with a term having f

as top symbol.

Since there are infinitely many such terms, one can always be

chosen to satisfy the constraints of the form y 6≡ z.

• The ElimVar2 rule deals with the case in which all function

and constant symbols are prohibited for y, which means that

the constraint is unsatisfiable.

• The ElimVar3 rule deals with the case in which all function

symbols (i.e., having arity one or more) are prohibited for y;

in this case,

– y has to be replaced by a constant symbol, and

– since there are only finitely many of them, A can be

replaced by a disjunction of constraints.

Also ElimVar3 relies on subsequent conversion to DNF.

It is possible to test whether a constraintA is satisfiable, by applying

the rules in this section to AB false.

• If the result is false, then A is satisfiable; if the result is ⊥,

then A is unsatisfiable.

• Since A is valid if and only if ¬A is unsatisfiable, one can test

the validity of A by testing ¬A for satisfiability.

20

3.2 Computing minimal constrained ground

instances

It is helpful at times to compute cmin. In this section we cover the

issue of how to compute

cmin(AB L),

assuming that A is in standard form.

• If A is unsatisfiable, Gr(AB L) = ∅ and

cmin(AB L) = M∞

where M∞ represents infinity.

• If A is satisfiable, the idea is to compute a finite set of con-

strained literals

T = {AαB Lα},

and then consider those Lα such that Aα is satisfied.

The literal cmin(A B L) will be the smallest of these Lα in the

ordering ≺.

The set T is initialized to contain ABL itself and the candidate

for cmin is set to M∞.

3.2.1 First Phase

In a first phase, for each constraint top(x) 6= f in A, T is expanded

to specify all function symbols other than f as the top symbol for

x.

21

This is done by adding the instances

{A′ϑBLϑ : g ∈ fun(S), ar(g) = k, g 6= f, ϑ = {x← g(y1, . . . , yk)}},

where

• A′ is A with top(x) 6= f removed, and

• ∀i, 1 ≤ i ≤ k, yi is new.

If A contains at least one constraint top(x) 6= f , the original

constrained literal AB L can be removed from T after this expan-

sion.

• The result of repeatedly applying this rule is a set T of con-

strained literals with no constraint of the form top(x) 6= f .

• If A originally contained at least one constraint top(x) 6= f ,

the constraints in T are no longer in standard form: they are

conjunctions of constraints of the form s 6≡ t for terms s and

t.

The rules in Definition 3.3 can be applied to transform them

into standard form.

• Since unrestricted application of the rules in Definition 3.3 is

not guaranteed to terminate,

– this simplification phase can be applied only with a bound

on the number of rule applications, and

22

– there is no guarantee in general to reach a set with con-

straints in standard form.

However, maintaining all constraints in standard form is not

necessary to compute cmin(AB L).

3.2.2 Second Phase

A second phase interleaves variable instantiation, bounded simplifi-

cation by the rules in Definition 3.3, constraint testing, and discov-

ery of cmin(AB L).

• For variable instantiation, the idea is to instantiate each vari-

able to all possible top symbols.

Thus if x ∈ vars(Aα) for some Aα B Lα in T , Aα B Lα is

replaced by AαϑB Lαϑ, where

– ϑ = {x← g(y1, . . . , yk)},

– g ∈ fun(S),

– ar(g) = k, and

– ∀i, 1 ≤ i ≤ k, yi is new.

• For constraint testing, any Aα B Lα such that Aα is unsat-

isfiable is removed from T .

• For discovery of cmin(AB L), any AαB Lα ∈ T such that

Aασ simplifies to true, where

23

– σ is a substitution that replaces all variables of AαBLα

by constant symbols,

yields a candidate Lασ for cmin(AB L).

Eventually at least one such candidate literal M will be found,

because the original constraint A is satisfiable.

• Any Aα B Lα ∈ T such that Lα � M can be deleted from

T , even if Lα contains variables, because ≺ extends the size

ordering.

• Constrained literals Aα B Lα in T such that Lα ≺ M , are

retained for further variable instantiation and constraint test-

ing.

• If a ground literal M ′ such that M ′ ≺ M is produced, M is

deleted, and M ′ replaces it as current candidate for cmin(AB

L).

This procedure terminates when T is a singleton, and its only ele-

ment is cmin(AB L).

• This is guaranteed to happen, because A is satisfiable, � is

well-founded, and variable instantiation causes the literals Lα

in T to grow in size, and therefore in the ordering ≺.

• This procedure works because the literals Lα in T become

larger and larger in ≺.

24

