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Abstract

We discuss the constraint system in the SGGS inference sys-

tem, which stands for semantically-guided goal-sensitive theo-

rem proving.
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1 Basic definitions and concepts for

SGGS

1.1 Constrained clauses

The SGGS inference system takes as input

• a set S of clauses,

• an initial interpretation I , and

• an ordering ≺ on ground literals,
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and builds a sequence of clauses that represents a partial model of

S.

While in propositional logic a partial model of a set of clauses

can be represented by a sequence of literals, in first-order logic it

needs a sequence of clauses with constraints:

Definition 1.1 (Constraint) An atomic constraint is either

1. empty, denoted by true, or

2. an expression of the form x ≡ y or top(t) = f , where

(a) x and y are variables,

(b) f is a function symbol, and

(c) t is a term.

A constraint is either

1. an atomic constraint, or

2. the negation, conjunction, or disjunction of constraints.

The meaning of the constraints is defined by

1. |= t ≡ u for ground terms t and u if t and u are the same

element of the Herbrand universe.

2. |= top(t) = f if the top symbol of ground term t is f .
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Definition 1.2 (Standard form) A constraint is in standard

form, if it is a conjunction of distinct atomic constraints of the

form x 6≡ y and top(x) 6= f , where x and y are variables.

• A constraint top(x) 6= f says that x cannot be replaced by a

term whose top function symbol is f , while

• a constraint x 6≡ y specifies that x and y may not be replaced

by identical terms.

Definition 1.3 (Constrained clause) A constrained clause is

a formula AB C, where

• A is a constraint and

• C is a clause.

Any variable that appears in A and not in C is implicitly exis-

tentially quantified.

In a constrained clause AB C a literal L may be selected, written

AB C[L].

• By analogy, AB L is called a constrained literal,

• and by convention, if L is the selected literal of C, and C ′ ≡
Cϑ, then L′ ≡ Lϑ is the selected literal of C ′.

• trueB C is usually abbreviated as C.
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Definition 1.4 (Constrained ground instances) Given a con-

strained clause ABC its set of constrained ground instances (cgi)

is

Gr(AB C) = {Cϑ : |= Aϑ, Cϑ ground.}

Note how

• Gr(falseB C) = ∅, while

• Gr(trueB C) contains all ground instances of C.

The same notion applies to a single literal:

Gr(AB L) = {Lϑ : |= Aϑ, Lϑ ground}.

For a single literal ¬Gr(AB L) or Gr(AB ¬L) is the set

{¬L′ : L′ ∈ Gr(AB L)}.

Example 1.1 For a clause x 6≡ y B P (x, y),

1. P (a, b) ∈ Gr(x 6≡ y B P (x, y)),

2. P (b, b) 6∈ Gr(x 6≡ y B P (x, y)).

Definition 1.5 The minimal constrained ground instance of a

constrained literal AB L is

cmin(ABL) =

{
min≺{M : M ∈ Gr(AB L)} if Gr(AB L) 6= ∅,
M∞ otherwise.
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where the ordering ≺ is suitably defined.

The minimal constrained ground instance of a constrained

clause AB C[L] is the minimal constrained ground instance of

its selected literal:

cmin(AB C[L]) = cmin(AB L).

1.2 Clause Sequences

SGGS works with clause sequences that satisfy certain requirements,

which will be omitted here.

2 Intersection, partition, splitting and

difference

Definition 2.1 Constrained literals AB L and B BM

1. intersect if at(Gr(AB L)) ∩ at(Gr(B BM)) 6= ∅, and

2. are disjoint, otherwise.

Intersection does not require that two literals have the same sign,

because it is defined based on the atoms of their constrained ground

instances.
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Definition 2.2 (Partition) A partition of ABC〈L〉, where A

is satisfiable, is a set

{Ai B Ci〈Li〉}ni=1

such that

1. Gr(AB C) =
⋃n
i=1{Gr(Ai B Ci〈Li〉)},

2. the constrained literals Ai B Li are pairwise disjoint,

3. all Ai’s are satisfiable, and

4. the Li’s are chosen consistently with L.

Example 2.1 The set

{trueB P (f (z), y), top(x) 6= f B P (x, y)}

is a partition of trueB P (x, y).

If L and M intersect, it is possible to split ABC〈L〉 by BBD[M ]:

Definition 2.3 (Splitting and difference) A splitting of AB

C〈L〉 by B B D[M ], denoted split(C,D), is a partition {Ai B

Ci〈Li〉}ni=1 of AB C〈L〉 such that:

1. ∃j, 1 ≤ j ≤ n, such that at(Gr(Aj B Lj)) ⊆ at(Gr(B B

M)), and

2. ∀i, 1 ≤ i 6= j ≤ n, at(Gr(Ai B Li)) and at(Gr(B BM))

are disjoint;
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and the difference C −D is split(C,D) with Cj removed.

Clause Cj is the representative of D in split(C,D).

SGGS needs to compute splitting and differences.

Computing split(C,D) and C − D introduces constraints, in-

cluding non-standard ones, even when C and D have empty con-

straints to begin with:

Example 2.2 A splitting of trueBP (x, y) by trueBP (f (w), g(z))

is

• {trueB P (f (w), g(z)),

• top(x) 6= f B P (x, y),

• top(y) 6= g B P (f (x), y)}.

3 Constraints

In this section we present rules that manipulate constraints to com-

pute clause differences and splittings, and standardize constraints.

These rules are sound, in the sense that premise and conclusion

represent the same set of constrained ground instances.

If a conclusion is made of multiple clauses, it is read as their

disjunction:

• if a rule has premise ABC and conclusion A1BC1, . . . , AnB

Cn, then Gr(AB C) =
⋃n
i=1Gr(Ai B Ci);
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• if the conclusion is ⊥, it means that A is unsatisfiable.

3.1 Rules for constraints

In general we define Gr(C −D) by

Gr(C −D) =

n⋃
i=1,i 6=j

Gr(Ci)

for split(C,D) = {AiBCi〈Li〉}ni=1 and Cj the representative of D.

According to Definition 2.3, given AB C[L] and B BD[M ],

• if at(L) and at(M) do not unify, then

Gr(C −D) = Gr(C)

.

• If at(L) and at(M) unify, with σ = mgu(at(L), at(M)), then

split(C,D) = (C −D) ∪ {Aσ ∧Bσ B C[L]σ},

and

(C −D) = (C − (Aσ ∧Bσ B C[L]σ)).

Thus,

• if we have a way to compute C − D, we also have a way to

compute split(C,D), and

• we can restrict ourselves to compute C−D under the assump-

tion that D is an instance Cσ of C.
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Definition 3.1 (Rules for clause difference) Given clauses

ABC and BBD, such that D ≡ Cσ, the rules for clause differ-

ence are:

• If {x ← f (x1, . . . , xn)} ⊆ σ for some x ∈ vars(C) and

new variables xi, 1 ≤ i ≤ n, the DiffSim rule

– applies {x← f (x1, . . . , xn)} to make C closer to being

similar to D and

– on the other hand adds top(x) 6= f to make the clauses

disjoint:

(AB C)− (B BD)

(AB C){x← f (x1, . . . , xn)} − (B BD), A ∧ (top(x) 6= f ) B C

• If C and D are similar, which means σ only replaces vari-

ables by variables, and {x← y} ⊆ σ for distinct variables

x, y ∈ vars(C), the DiffVar rule

– applies {x ← y} to make C closer to a variant of D

and

– on the other hand adds x 6≡ y to make the clauses

disjoint:

(AB C)− (B BD)

(AB C){x← y} − (B BD), (x 6≡ y ∧ A) B C

• If C and D are variants but not identical, the DiffId rule
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makes them identical:

(AB C)− (B BD)

(AB C)σ − (B BD)

• The DiffElim rule replaces difference by negation if C and

D are identical:

(AB C)− (B B C)

(A ∧ ¬B) B C

Since B is a conjunction of constraints, ¬B is a disjunction of their

negations.

Thus, the system needs rules that restore disjunctive normal

form (DNF):

Definition 3.2 (Rules for connectives) The rules for connec-

tives are:

• The Equiv rule replaces a constraint A by its disjunctive

normal form dnf (A):

AB C

dnf (A) B C

• The Div rule subdivides disjunction:

(A ∨B) B C

AB C, B B C
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Next come rules that reduce identity constraints to standard form.

For these rules we can assume that a constraint is a conjunction

of atomic constraints and their negations.

Definition 3.3 (Rules for identity) The rules for identity are:

• The ElimId1 rule eliminates a constraint between variable

and term: if x 6∈ vars(s), then:

(A ∧ x ≡ s) B C

(AB C){x← s}

if x ∈ vars(s) and s is not a variable, then:

(A ∧ x ≡ s) B C

⊥
(A ∧ x 6≡ s) B C

(AB C)

• The ElimId2 rule detects a conflict: if f 6= g, m ≥ 0, n ≥ 0,

then:

(A ∧ f (s1, . . . , sn) ≡ g(t1, . . . , tm)) B C

⊥

• The ElimId3 rule eliminates a satisfied constraint: if f 6= g,

m ≥ 0, n ≥ 0, then:

(A ∧ f (s1, . . . , sn) 6≡ g(t1, . . . , tm)) B C

AB C

• The ElimId4 rule decomposes an identity: if n ≥ 0, then:

(A ∧ f (s1, . . . , sn) ≡ f (t1, . . . , tn)) B C

(A ∧ s1 ≡ t1 ∧ . . . ∧ sn ≡ tn) B C
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• The ElimId5 rule decomposes a negated identity: if n ≥ 0,

then:

(A ∧ f (s1, . . . , sn) 6≡ f (t1, . . . , tn)) B C

(A ∧ (s1 6≡ t1 ∨ . . . ∨ sn 6≡ tn)) B C

After this rule, of course, the constraint can be reduced to

dnf and split into conjuncts as before.

• The ElimId6 rule eliminates a negated identity between

variable and non-variable term:

(A ∧ x 6≡ f (s1, . . . , sn)) B C

A ∧ top(x) 6= f B C, ((A ∧ f (s1, . . . , sn) 6≡ f (y1, . . . , yn)) B C)ρ

where

– ρ = {x← f (y1, . . . , yn)},
– n ≥ 0, and

– for all i, 1 ≤ i ≤ n, yi is a new variable;

– (this in turn permits an application of ElimId5)

• The ElimId7 rule detects a conflict: if s is a variable or

constant, then:
(A ∧ s 6≡ s) B C

⊥

The ElimId5 rule also calls for restoration of DNF.

The rules for top symbol eliminate all top symbol constraints,

except those in standard form top(x) 6= f :
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Definition 3.4 (Rules for top symbol) The rules for top sym-

bol are

• The ElimTop1 rule detects a conflict in a positive con-

straint: if f 6= g, n ≥ 0, then:

A ∧ top(f (s1, . . . , sn)) = g B C

⊥

• The ElimTop2 rule eliminates a satisfied positive constraint:

if n ≥ 0, then:

A ∧ top(f (s1, . . . , sn)) = f B C

AB C

• The ElimTop3 rule eliminates a satisfied negative constraint:

if f 6= g, n ≥ 0, then:

A ∧ top(f (s1, . . . , sn)) 6= g B C

AB C

• The ElimTop4 rule detects a conflict in a negated con-

straint: if n ≥ 0, then:

A ∧ top(f (s1, . . . , sn)) 6= f B C

⊥

• The ElimTop5 rule eliminates a positive constraint: if n ≥
0, then:

A ∧ top(x) = f B C

(AB C){x← f (x1, . . . , xn)}
where for all i, 1 ≤ i ≤ n, xi is a new variable.
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The combined effect of all rules is to standardize all constraints (cf.

Definition 1.2).

However, the application of the identity rules may not terminate:

Example 3.1 Consider a clause (x 6≡ f (y)∧y 6≡ f (x)BP (x, y)):

By applying the ElimId6 rule one gets the two clauses

1. (top(x) 6= f ∧ y 6≡ f (x)) B P (x, y) and

2. (f (z) 6≡ f (y) ∧ y 6≡ f (f (z)) B P (f (z), y)).

Using ElimId5, the latter clause becomes

(z 6≡ y ∧ y 6≡ f (f (z)) B P (f (z), y)),

which then by another application of ElimId6, yields the two

clauses

1. (z 6≡ y ∧ top(y) 6= f ) B P (f (z), y)) and

2. (z 6≡ f (w) ∧ f (w) 6≡ f (f (z)) B P (f (z), f (w))).

Using ElimId5 again, the latter clause becomes

(z 6≡ f (w) ∧ w 6≡ f (z) B P (f (z), f (w))),

whose constraint is a variant of the original one.

SGGs does not need that every series of applications of these rules

terminate.

It suffices to show that the computation of clause difference ter-

minates:
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Theorem 3.1 Given A B C and B B D, such that D ≡ Cσ,

and A and B are in standard form, any application of the clause

difference rules to C −D, where

1. any application of DiffElim or ElimId5 is followed by con-

version to DNF, and

2. all constraints are restored to standard form after every

application of a clause difference rule,

is guaranteed to terminate.

Proof: First we show that the rules for clause difference do not

cause non-termination.

1. DiffId and DiffElim can be applied only once.

2. DiffVar can be applied only a finite number of times, be-

cause each application decreases the number of variables

in C.

3. Each DiffSim step applies to C a substitution {x ←
f (x1, . . . xn)} from σ: since σ contains finitely many such

pairs, DiffSim can be applied only a finite number of

times.

Then we prove that standardization between an application

of a clause difference rule and the next is guaranteed to ter-

minate:

1. DiffId only renames variables, which does not enable any

other rule.
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2. DiffVar adds an x 6≡ y, which is in standard form, and

applies a substitution {x ← y}, whose only effect may

be to replace an x 6≡ y by an x 6≡ x, eliminated by

ElimId7.

3. DiffSim adds a top(x) 6= f , which is in standard form,

and applies a substitution {x ← f (x1, . . . , xn)}, which

may have two effects.

• One is to replace the occurrence of x in a constraint

top(x) 6= g by f (x1, . . . , xn).

This enables either ElimTop3 or ElimTop4, which

terminate.

• The other is to transform an x 6≡ y into an

f (x1, . . . , xn) 6≡ y, enabling ElimId6.

ElimId6 adds a top(x) 6= f , which is in standard form,

and applies another substitution of the same form, so

that eventually a subset of the variables may be replaced

by terms f (x1, . . . , xn) where the xi’s are new.

• This can only be done a finite number of times, be-

cause the new variables will never be replaced in this

way.

• If two such substitutions are applied to a z 6≡ w, an

f (x1, . . . , xn) 6≡ f (y1, . . . , yn) may arise.

ElimId5 applies to such a constraint, followed by con-

version to DNF.

• The result is a disjunction of constrained clauses,

each containing in its constraint an xi 6≡ yi, for some
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i, which is in standard form.

4. DiffElim yields (A∧¬B)BC, followed by conversion to

DNF.

The effect may be to add x ≡ y (negation of x 6≡ y in

B) or top(x) = f (negation of top(x) 6= f in B).

• In the first case, ElimId1 applies {x ← y}, covered

in Case (2) of this proof.

• In the second case, ElimTop5 applies {x← f (x1, . . . , xn)},
covered in Case (3) of this proof.

The set of inference rules for constraints is completed by rules that

remove from a clause AB C variables that appear in A but not in

C.

These rules do not affect Theorem 3.1.

Definition 3.5 (Rules for variable removal) Given a clause

AB C, such that

• A is in standard form,

• y ∈ vars(A), and

• y 6∈ vars(C),

the rules for variable removal are:
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• The ElimVar1 rule detects that the constraints on y are

satisfiable:

if ∃f ∈ fun(S), such that ar(f ) ≥ 1 and top(y) 6= f 6∈ A,

then:
AB C

Rem(y, A) B C

where Rem(y, A) is A with all conjuncts of the form

– top(y) 6= g, g 6= f , and

– y 6≡ z, where z is another variable,

replaced by true;

• The ElimVar2 rule detects that the constraints on y are

unsatisfiable:

if ∀f ∈ fun(S), A contains a constraint top(y) 6= f , then:

AB C

⊥

• The ElimVar3 rule removes y by replacing it with all pos-

sible constants:

if ∀f ∈ fun(S) such that ar(f ) ≥ 1, A contains a con-

straint top(y) 6= f , then:

AB C

(
∨
c∈fun(S),ar(c)=0A{y ← c}) B C

To justify these rules,
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• If the conditions of the ElimVar1 rule are met, all constraints

about y can be satisfied by replacing y with a term having f

as top symbol.

Since there are infinitely many such terms, one can always be

chosen to satisfy the constraints of the form y 6≡ z.

• The ElimVar2 rule deals with the case in which all function

and constant symbols are prohibited for y, which means that

the constraint is unsatisfiable.

• The ElimVar3 rule deals with the case in which all function

symbols (i.e., having arity one or more) are prohibited for y;

in this case,

– y has to be replaced by a constant symbol, and

– since there are only finitely many of them, A can be

replaced by a disjunction of constraints.

Also ElimVar3 relies on subsequent conversion to DNF.

It is possible to test whether a constraintA is satisfiable, by applying

the rules in this section to AB false.

• If the result is false, then A is satisfiable; if the result is ⊥,

then A is unsatisfiable.

• Since A is valid if and only if ¬A is unsatisfiable, one can test

the validity of A by testing ¬A for satisfiability.
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3.2 Computing minimal constrained ground

instances

It is helpful at times to compute cmin. In this section we cover the

issue of how to compute

cmin(AB L),

assuming that A is in standard form.

• If A is unsatisfiable, Gr(AB L) = ∅ and

cmin(AB L) = M∞

where M∞ represents infinity.

• If A is satisfiable, the idea is to compute a finite set of con-

strained literals

T = {AαB Lα},

and then consider those Lα such that Aα is satisfied.

The literal cmin(A B L) will be the smallest of these Lα in the

ordering ≺.

The set T is initialized to contain ABL itself and the candidate

for cmin is set to M∞.

3.2.1 First Phase

In a first phase, for each constraint top(x) 6= f in A, T is expanded

to specify all function symbols other than f as the top symbol for

x.
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This is done by adding the instances

{A′ϑBLϑ : g ∈ fun(S), ar(g) = k, g 6= f, ϑ = {x← g(y1, . . . , yk)}},

where

• A′ is A with top(x) 6= f removed, and

• ∀i, 1 ≤ i ≤ k, yi is new.

If A contains at least one constraint top(x) 6= f , the original

constrained literal AB L can be removed from T after this expan-

sion.

• The result of repeatedly applying this rule is a set T of con-

strained literals with no constraint of the form top(x) 6= f .

• If A originally contained at least one constraint top(x) 6= f ,

the constraints in T are no longer in standard form: they are

conjunctions of constraints of the form s 6≡ t for terms s and

t.

The rules in Definition 3.3 can be applied to transform them

into standard form.

• Since unrestricted application of the rules in Definition 3.3 is

not guaranteed to terminate,

– this simplification phase can be applied only with a bound

on the number of rule applications, and
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– there is no guarantee in general to reach a set with con-

straints in standard form.

However, maintaining all constraints in standard form is not

necessary to compute cmin(AB L).

3.2.2 Second Phase

A second phase interleaves variable instantiation, bounded simplifi-

cation by the rules in Definition 3.3, constraint testing, and discov-

ery of cmin(AB L).

• For variable instantiation, the idea is to instantiate each vari-

able to all possible top symbols.

Thus if x ∈ vars(Aα) for some Aα B Lα in T , Aα B Lα is

replaced by AαϑB Lαϑ, where

– ϑ = {x← g(y1, . . . , yk)},

– g ∈ fun(S),

– ar(g) = k, and

– ∀i, 1 ≤ i ≤ k, yi is new.

• For constraint testing, any Aα B Lα such that Aα is unsat-

isfiable is removed from T .

• For discovery of cmin(AB L), any AαB Lα ∈ T such that

Aασ simplifies to true, where
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– σ is a substitution that replaces all variables of AαBLα

by constant symbols,

yields a candidate Lασ for cmin(AB L).

Eventually at least one such candidate literal M will be found,

because the original constraint A is satisfiable.

• Any Aα B Lα ∈ T such that Lα � M can be deleted from

T , even if Lα contains variables, because ≺ extends the size

ordering.

• Constrained literals Aα B Lα in T such that Lα ≺ M , are

retained for further variable instantiation and constraint test-

ing.

• If a ground literal M ′ such that M ′ ≺ M is produced, M is

deleted, and M ′ replaces it as current candidate for cmin(AB

L).

This procedure terminates when T is a singleton, and its only ele-

ment is cmin(AB L).

• This is guaranteed to happen, because A is satisfiable, � is

well-founded, and variable instantiation causes the literals Lα

in T to grow in size, and therefore in the ordering ≺.

• This procedure works because the literals Lα in T become

larger and larger in ≺.
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