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The Universe of Terms

In logic programming, terms are:

syntactic objects

interpreted as semantic values that are trees

Herbrand interpretation.

Unification, therefore:

is syntactic

either returns a most general unifier (MGU) or fails.
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Types for Logic Programming

We can suppose that the Universe is separated into disjoint
domains.

Then:

each semantic value belongs to a domain

terms are interpreted as semantic values in some domain

function symbols are interpreted as functions that have
arguments of some domain, and output a value in some
domain.

Types are associated with domains. We can assume:

a function symbol that builds terms has a functional type (n
input types and one output type)

now terms themselves can contain type errors, while in the
Herbrand interpretation there is a single type (TERM), so
there can be no type errors in a term.
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Terms and Their Types

Every well-typed ground term has a type.

Unification only makes sense for values of the same domain.

So we will perform unification while also checking if the terms
belong to the same type (and are well-typed).

Since not all terms are ground and, in particular, interesting
unification cases include non-ground terms, we need to define a
type for a non-ground term.
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Non-Ground Terms and Their Types

Every variable can be, potentially, instantiated with any term.

Therefore, we assume each variable has a type that
corresponds to everything.

We will give different names (type variables) to the types of
different variables just to denote constraints for each one.

Types for well-typed non-ground terms can be types containing
type variables, which we will call polymorphic types.
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Examples of a Well-Typed Term

Let t = f (2, g(1, a, b)) be a ground term.

If we know that the types for the function symbols f and g are
int × int → atom and int × atom × atom → int, respectively.

We can conclude that the type for term t is atom.

In fact, with just information for f we could have known what
the type for t could be, if it was well-typed.

We call f the principal functor of t, and the type of a
well-typed term is the output type for its principal functor.
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Examples of a Ill-Typed Term

Let t = f (X ,X ) be a non-ground term.

If we know that the type for the function symbols f is
int × atom → int.

Then we can note that no ground instance of this term is
well-typed.

The type for X has to be simultaneously int an atom.

Therefore we say that the term is ill-typed.
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What we want from Typed Unification

If we assume a type discipline for terms, now when we perform
unification we can have three output values:

an MGU - if the terms unify and are well-typed

false - if the terms do not unify but are well-typed (and have
unifiable types)

wrong - we cannot simultaneously unify the terms and have
them be well-typed.

We do not yet have a proof that our algorithm behaves correctly,
but we are working on it currently.
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Typed Unification Algorithm

Given two terms t1 and t2, we build an initial pair of sets of
constraints, in the following way:

C → a set of equality constraints that initially contains only
t1 = t2
S → a set of type equality constraints and membership
constraints that consists on the following constraints:

let t1 = f (s1, . . . , sn) and t2 = g(u1, . . . , um)
let f have type τ1 × · · · × τn → τ and g have
τ ′1 × · · · × τ ′m → τ ′
{τ .

= α, τ ′ .
= α, s1 ∈ τ1, . . . sn ∈ τn, u1 ∈ τ ′1, . . . , um ∈ τ ′m}
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Example

The initial set set built for terms f (1, h(Y , a),X ) and g(h(Z ,Z )),
considering f has type int × int × int → int and g has type
int → int is:

C = {f (1, h(Y , a),X ) = g(h(Z ,Z ))}
S = {int .

= α, int
.
= α, 1 ∈ int, h(Y , a) ∈ int,X ∈

int, h(Z ,Z ) ∈ int}
output = (C ,S)
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Algorithm Steps - 1

The algorithm applies certain rules in order.

The first few rules are the following:

1 (C , {f (t1, . . . , tn) ∈ τ} ∪ Rest) → (C , {t1 ∈ τ ′1, . . . , tn ∈ τ ′n,
τ ′1

.
= τ1, . . . , τ ′n

.
= τn} ∪ Rest), where the type for f is

f :: τ1 × · · · × τn → τ , and τ ′i are the types for the principal
functors of ti , respectively

2 (C , {Xi ∈ αi} ∪ Rest) → (C ,Rest)

3 (C , {c ∈ τ} ∪ Rest) → (C ,Rest)

These reduce the number of membership constraints to zero, while
generating type equality constraints.
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τ ′1

.
= τ1, . . . , τ ′n

.
= τn} ∪ Rest), where the type for f is

f :: τ1 × · · · × τn → τ , and τ ′i are the types for the principal
functors of ti , respectively

2 (C , {Xi ∈ αi} ∪ Rest) → (C ,Rest)

3 (C , {c ∈ τ} ∪ Rest) → (C ,Rest)

These reduce the number of membership constraints to zero, while
generating type equality constraints.
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Relevant Concepts
Types

Typed Unification
Soundness

Algorithm Steps - 2

The next few steps are as follows:

4 (C , {f (τ1, . . . , τn)
.
= f (τ ′1, . . . , τ ′n)} ∪ Rest) → (C , {τ1

.
=

τ ′1, . . . , τn
.
= τ ′n} ∪ Rest)

5 (C , {τ .
= τ} ∪ Rest) → (C ,Rest)

6 (C , {f (τ1, . . . , τn)
.
= g(τ ′1, . . . , τ ′m)} ∪ Rest) → wrong , if

f ̸= g or n ̸= m

7 (C , {τ .
= α} ∪ Rest) → (C , {α .

= τ} ∪ Rest), τ is not a type
variable

8 (C , {α .
= τ} ∪ Rest) → (C , {α .

= τ} ∪ Rest[α 7→ τ ]), if α
does not occur in τ

9 (C , {α .
= τ} ∪ Rest) → wrong , if α occurs in τ

These correspond to the Martelli-Montanari algorithm for
unification, but on types.
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Relevant Concepts
Types

Typed Unification
Soundness

Algorithm Steps - 3

The last few steps are as follows:

10 ({f (t1, . . . , tn) = f (s1, . . . , sn)} ∪ Rest,T ) → ({t1 =
s1, . . . , tn = sn} ∪ Rest,T )

11 ({t = t} ∪ Rest,T ) → (Rest,T )

12 ({f (t1, . . . , tn) = g(s1, . . . , sm)} ∪ Rest,T ) → false, if f ̸= g
or n ̸= m

13 ({t = X} ∪ Rest,T ) → ({X = t} ∪ Rest,T ), t is not a
variable

14 ({X = t} ∪ Rest,T ) → ({X = t} ∪ Rest[X 7→ t],T ), if X
does not occur in t

15 ({X = t} ∪ Rest,T ) → false, if X occurs in t.

These also correspond to the Martelli-Montanari algorithm for
unification for terms.
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Relevant Concepts
Types

Typed Unification
Soundness

Details in the algorithm

We can always apply one of the cases for the membership
constraints.

When we fail unification on types, notice that we output
wrong.

When we fail unification on terms, we output false.

Since the steps are applied in order, we can only return false if
we do not output wrong, which means we were able to unify
the types for both terms, and did not find a type error.
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Relevant Concepts
Types

Typed Unification
Soundness

Example of Unification

Let t1 = f (1, f (X , 1)) and t2 = f (Y , f (2,Y )), and f have type
int × int → int.

The initial tuple is: ({f (1, f (X , 1)) = f (Y , f (2,Y ))},
{f (1, f (X , 1)) ∈ int, f (Y , f (2,Y )) ∈ int, int

.
= α, int

.
= α})

We can apply the rules for the membership constraints
step-by-step.

({f (1, f (X , 1)) = f (Y , f (2,Y ))}, {1 ∈ int, f (X , 1) ∈ int, int
.
= int,

int
.
= int, f (Y , f (2,Y )) ∈ int, int

.
= α, int

.
= α})
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No more rules apply, we did not halt with wrong, therefore there is
no type error. We move on to the equality constraints.
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Example of Unification

Let t1 = g(1, a, h(X )) and t2 = h(g(Y , b,Y )), g have type
int × atom × int → int, and int → int.

The initial tuple is: ({g(1, a, h(X )) = h(g(Y , b,Y ))},
{g(1, a, h(X )) ∈ int, h(g(Y , b,Y )) ∈ int, int

.
= α, int

.
= α})

We can immediately see that the terms do not unify, syntactically.
But if we replace X by any integer and Y by any integer, the
terms are well-typed. The algorithm should return false.

({g(1, a, h(X )) = h(g(Y , b,Y ))},
{g(1, a, h(X )) ∈ int, h(g(Y , b,Y )) ∈ int, int

.
= α, int

.
= α})
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Soundness

We want to make sure that our algorithm has the expected
behaviour. In particular:

We always detect ill-typed terms.

We return an MGU if there is a substitution for which the
terms are well-typed, have the same type and are equal.

We return wrong when there is no substitution for which the
terms can have the same type and be well-typed.

We return false if there is a substitution for which the terms
are well-typed and have the same type, but they cannot be
unified.
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Proof Progress

We state the following propositions, that lead to the soundness
proof.

The algorithm terminates. (proved)

If the algorithm terminates it outputs either a unifier, false or
wrong . (proved)

If the algorithm outputs a unifier, the unifier is a MGU. (use
Martelli-Montanari proof)

If the algorithm outputs wrong , then either there is a type
error in one of the terms, or there is no substitution for which
both terms have the same type.

If the algorithm outputs false, then either there is a
substitution for which the terms have the same type, but they
do not unify.
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The End

Thank you!

João Barbosa, Mário Florido, V́ıtor Santos Costa Typed Unification 25 / 25


	Relevant Concepts
	Types
	Typed Unification
	Soundness

