
Aleksy Schubert

Second-order unification and functional arity

Aleksy Schubert

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw

2nd of May, 2023

The context of the problem

Programmers do not want to type a lot.

Therefore need ways to automatically infer some coding
information.
In particular types are mostly optional.

Application of a function M to an argument N

M N

introduces a unification constraint.
In STLC:

XM
.
= XN → XMN

where XM,XN ,XMN are unification variables.

Aleksy Schubert

The context of the problem

Programmers do not want to type a lot.
Therefore need ways to automatically infer some coding
information.

In particular types are mostly optional.

Application of a function M to an argument N

M N

introduces a unification constraint.
In STLC:

XM
.
= XN → XMN

where XM,XN ,XMN are unification variables.

Aleksy Schubert

The context of the problem

Programmers do not want to type a lot.
Therefore need ways to automatically infer some coding
information.
In particular types are mostly optional.

Application of a function M to an argument N

M N

introduces a unification constraint.
In STLC:

XM
.
= XN → XMN

where XM,XN ,XMN are unification variables.

Aleksy Schubert

The context of the problem

Programmers do not want to type a lot.
Therefore need ways to automatically infer some coding
information.
In particular types are mostly optional.

Application of a function M to an argument N

M N

introduces a unification constraint.

In STLC:
XM

.
= XN → XMN

where XM,XN ,XMN are unification variables.

Aleksy Schubert

The context of the problem

Programmers do not want to type a lot.
Therefore need ways to automatically infer some coding
information.
In particular types are mostly optional.

Application of a function M to an argument N

M N

introduces a unification constraint.
In STLC:

XM
.
= XN → XMN

where XM,XN ,XMN are unification variables.

Aleksy Schubert

In polymorphic systems

Types are more complicated

A,B ::= C | X | A→ B | ∀X.A

Applications of a function M to an argument N is more

complicated

M A1 . . .AnN
This introduces a unification constraint

FMA1 . . .An
.
= XN → XM A1...AnN

where FM is a second-order unification variable,
XN,XM A1...AnN are unification variables.

Aleksy Schubert

In polymorphic systems

Types are more complicated

A,B ::= C | X | A→ B | ∀X.A

Applications of a function M to an argument N is more

complicated

M A1 . . .AnN

This introduces a unification constraint

FMA1 . . .An
.
= XN → XM A1...AnN

where FM is a second-order unification variable,
XN,XM A1...AnN are unification variables.

Aleksy Schubert

In polymorphic systems

Types are more complicated

A,B ::= C | X | A→ B | ∀X.A

Applications of a function M to an argument N is more

complicated

M A1 . . .AnN
This introduces a unification constraint

FMA1 . . .An
.
= XN → XM A1...AnN

where FM is a second-order unification variable,
XN,XM A1...AnN are unification variables.

Aleksy Schubert

If we are (un)lucky...

Constraints fall within the second-order unification
language.

If we are (un)lucky – second-order abstract syntaxt is
necessary.

Aleksy Schubert

If we are (un)lucky...

Constraints fall within the second-order unification
language.
If we are (un)lucky – second-order abstract syntaxt is
necessary.

Aleksy Schubert

What kind of programming language?

M,N ::= x | λx.M | ΛX.M | MA | MN

Type application critical for unification.
Type application omitted⇒ seminunification.

Aleksy Schubert

Additional restrictions

Motivation for types:

Expression of intent with regard to the program.
Gentler writing of the code.

Too big types are ineffective.
Example (J.B.Wells):

b : ∀γ.(γ → γ)→ β,
c : ∀.(µ1 → δ1)→ (δ2 → µ2)→ (τ2 → τ2),
`
b(λx.cxx)

where τ1 ≤ µ1, τ2 ≤ µ2 is an instance of the
seminunification problem.

Aleksy Schubert

Additional restrictions

Motivation for types:
Expression of intent with regard to the program.

Gentler writing of the code.

Too big types are ineffective.
Example (J.B.Wells):

b : ∀γ.(γ → γ)→ β,
c : ∀.(µ1 → δ1)→ (δ2 → µ2)→ (τ2 → τ2),
`
b(λx.cxx)

where τ1 ≤ µ1, τ2 ≤ µ2 is an instance of the
seminunification problem.

Aleksy Schubert

Additional restrictions

Motivation for types:
Expression of intent with regard to the program.
Gentler writing of the code.

Too big types are ineffective.
Example (J.B.Wells):

b : ∀γ.(γ → γ)→ β,
c : ∀.(µ1 → δ1)→ (δ2 → µ2)→ (τ2 → τ2),
`
b(λx.cxx)

where τ1 ≤ µ1, τ2 ≤ µ2 is an instance of the
seminunification problem.

Aleksy Schubert

Additional restrictions

Motivation for types:
Expression of intent with regard to the program.
Gentler writing of the code.

Too big types are ineffective.

Example (J.B.Wells):

b : ∀γ.(γ → γ)→ β,
c : ∀.(µ1 → δ1)→ (δ2 → µ2)→ (τ2 → τ2),
`
b(λx.cxx)

where τ1 ≤ µ1, τ2 ≤ µ2 is an instance of the
seminunification problem.

Aleksy Schubert

Additional restrictions

Motivation for types:
Expression of intent with regard to the program.
Gentler writing of the code.

Too big types are ineffective.
Example (J.B.Wells):

b : ∀γ.(γ → γ)→ β,
c : ∀.(µ1 → δ1)→ (δ2 → µ2)→ (τ2 → τ2),
`
b(λx.cxx)

where τ1 ≤ µ1, τ2 ≤ µ2 is an instance of the
seminunification problem.

Aleksy Schubert

Additional restrictions

All types in inference can be at most of size n.

Quantified variables restricted to occur only up to certain
depth (Giannini, Ronchi Della Rocca).

What if we bound the arity or functional rank?

arity(c) = 0 for a constant c and
arity(A1 → · · · → An → c) = max(arity(A1), . . . , arity(An), n),
rank(c) = 0 for a constant c, and
rank(A→ B) = max(rank(A) + 1, rank(B)).

Aleksy Schubert

Additional restrictions

All types in inference can be at most of size n.
Quantified variables restricted to occur only up to certain
depth (Giannini, Ronchi Della Rocca).

What if we bound the arity or functional rank?

arity(c) = 0 for a constant c and
arity(A1 → · · · → An → c) = max(arity(A1), . . . , arity(An), n),
rank(c) = 0 for a constant c, and
rank(A→ B) = max(rank(A) + 1, rank(B)).

Aleksy Schubert

Additional restrictions

All types in inference can be at most of size n.
Quantified variables restricted to occur only up to certain
depth (Giannini, Ronchi Della Rocca).

What if we bound the arity or functional rank?

arity(c) = 0 for a constant c and
arity(A1 → · · · → An → c) = max(arity(A1), . . . , arity(An), n),
rank(c) = 0 for a constant c, and
rank(A→ B) = max(rank(A) + 1, rank(B)).

Aleksy Schubert

Additional restrictions

All types in inference can be at most of size n.
Quantified variables restricted to occur only up to certain
depth (Giannini, Ronchi Della Rocca).

What if we bound the arity or functional rank?
arity(c) = 0 for a constant c and
arity(A1 → · · · → An → c) = max(arity(A1), . . . , arity(An), n),

rank(c) = 0 for a constant c, and
rank(A→ B) = max(rank(A) + 1, rank(B)).

Aleksy Schubert

Additional restrictions

All types in inference can be at most of size n.
Quantified variables restricted to occur only up to certain
depth (Giannini, Ronchi Della Rocca).

What if we bound the arity or functional rank?
arity(c) = 0 for a constant c and
arity(A1 → · · · → An → c) = max(arity(A1), . . . , arity(An), n),
rank(c) = 0 for a constant c, and
rank(A→ B) = max(rank(A) + 1, rank(B)).

Aleksy Schubert

Result

Type-checking and type-inference in domain-free
languages is undecidable when arity or rank are restricted.

Aleksy Schubert

Result

Type-checking and type-inference in domain-free
languages is undecidable when arity or rank are restricted.

Aleksy Schubert

Example

Consider SOU instance

An → Fbc .
= F(b→ a)(b→ c)

Aleksy Schubert

(Misleading) Machine simulation

C0 → FB1 . . .Bko .
= FA1 . . .Ap(Cn−1 → o)

Aleksy Schubert

Verification of machine consistency

(Fs1 . . . sp o′)→ GD′1 . . .D
′
l
.
= GD1 . . .Dl

s→ 〈b, o〉 〈s, 1〉 in case π3(s) = b,
s→ o 〈s, 1〉 in case π3(s) = •, or π2(s) = •,
s→ 〈s′, 1〉 〈s, 2〉 in case π3(s) = π2(s′) and π1(s′) = π2(s),
s→ 〈s′, 2〉 〈s, 3〉 in case π3(s) = π2(s′) and π1(s′) = π2(s),
a→ 〈s, 3〉 〈a, 4〉 in case π1(s) = a, a→ 〈b, 4〉 〈a, 4〉.

Aleksy Schubert

Conclusions

Restriction to bounded types leads to decidable
type-checking, type reconstruction.
Restriction to types with bounded arity/rank may lead to
undecidable type-checking, type reconstruction.

Aleksy Schubert

The End

Aleksy Schubert

