Second-order unification and functional arity

Aleksy Schubert

Faculty of Mathematics, Informatics and Mechanics, University of Warsaw

2nd of May, 2023
Programmers do not want to type a lot.

In STLC:

\[X \text{ M} = X \text{ N} \rightarrow X \text{ MN} \]

where \(X \text{ M} \), \(X \text{ N} \), and \(X \text{ MN} \) are unification variables.
Programmers do not want to type a lot. Therefore need ways to automatically infer some coding information.
Programmers do not want to type a lot.
Therefore need ways to automatically infer some coding information.
In particular types are mostly optional.
The context of the problem

- Programmers do not want to type a lot.
- Therefore need ways to automatically infer some coding information.
- In particular types are mostly optional.
- Application of a function \(M \) to an argument \(N \)

\[M \rightarrow N \]

introduces a unification constraint.
Programmers do not want to type a lot. Therefore need ways to automatically infer some coding information. In particular types are mostly optional.

Application of a function M to an argument N

$M \ N$

introduces a unification constraint.

In STLC:

$$X_M \doteq X_N \rightarrow X_{MN}$$

where X_M, X_N, X_{MN} are unification variables.
In polymorphic systems

- Types are more complicated

\[A, B ::= C \mid X \mid A \to B \mid \forall X.A \]
In polymorphic systems

- Types are more complicated

\[A, B ::= C | X | A \rightarrow B | \forall X.A \]

- Applications of a function \(M \) to an argument \(N \) is more complicated

\[M\, A_1 \ldots A_n\, N \]
In polymorphic systems

- Types are more complicated

\[A, B ::= C \mid X \mid A \rightarrow B \mid \forall X.A \]

- Applications of a function \(M \) to an argument \(N \) is more complicated

\[M A_1 \ldots A_n N \]

- This introduces a unification constraint

\[F_M A_1 \ldots A_n \vdash X_N \rightarrow X_M A_1 \ldots A_n N \]

where \(F_M \) is a second-order unification variable, \(X_N, X_M A_1 \ldots A_n N \) are unification variables.
If we are (un)lucky...

- Constraints fall within the second-order unification language.
If we are (un)lucky...

- Constraints fall within the second-order unification language.
- If we are (un)lucky – second-order abstract syntax is necessary.
What kind of programming language?

\[M, N ::= x \mid \lambda x. M \mid \Lambda X. M \mid MA \mid MN \]

Type application critical for unification.
Type application omitted \(\Rightarrow\) seminunification.
Motivation for types:

- Expression of intent with regard to the program.
- Gentler writing of the code.
- Too big types are ineffective.

Example (J.B.Wells):

\[
\begin{align*}
\forall \gamma. (\gamma \rightarrow \gamma) \rightarrow \beta, \\
\forall \mu_1. (\mu_1 \rightarrow \delta_1) \rightarrow (\delta_2 \rightarrow \mu_2) \rightarrow (\tau_2 \rightarrow \tau_2),
\end{align*}
\]

\[\vdash b (\lambda x. cxx)\]

where \(\tau_1 \leq \mu_1\), \(\tau_2 \leq \mu_2\) is an instance of the seminunification problem.
Additional restrictions

Motivation for types:

- Expression of intent with regard to the program.
Motivation for types:
- Expression of intent with regard to the program.
- Gentler writing of the code.
Motivation for types:
- Expression of intent with regard to the program.
- Gentler writing of the code.

Too big types are ineffective.

Example (J.B.Wells):
\[
b : \forall \gamma. (\gamma \rightarrow \gamma) \rightarrow \beta,
\]
\[
c : \forall. (\mu_1 \rightarrow \delta_1) \rightarrow (\delta_2 \rightarrow \mu_2) \rightarrow (\tau_2 \rightarrow \tau_2),
\]
\[\vdash b (\lambda x. cxx)\]
where \(\tau_1 \leq \mu_1\), \(\tau_2 \leq \mu_2\) is an instance of the
seminunification problem.
Additional restrictions

- Motivation for types:
 - Expression of intent with regard to the program.
 - Gentler writing of the code.
- Too big types are ineffective.
- Example (J.B. Wells):

\[
\begin{align*}
 b & : \forall \gamma. (\gamma \rightarrow \gamma) \rightarrow \beta, \\
 c & : \forall. (\mu_1 \rightarrow \delta_1) \rightarrow (\delta_2 \rightarrow \mu_2) \rightarrow (\tau_2 \rightarrow \tau_2), \\
 \vdash b(\lambda x. cxx)
\end{align*}
\]

where \(\tau_1 \leq \mu_1, \quad \tau_2 \leq \mu_2 \) is an instance of the seminunification problem.
Additional restrictions

- All types in inference can be at most of size n.

[Aleksy Schubert]
Additional restrictions

- All types in inference can be at most of size n.
- Quantified variables restricted to occur only up to certain depth (Giannini, Ronchi Della Rocca).
All types in inference can be at most of size n.
Quantified variables restricted to occur only up to certain depth (Giannini, Ronchi Della Rocca).
What if we bound the arity or functional rank?
Additional restrictions

- All types in inference can be at most of size n.
- Quantified variables restricted to occur only up to certain depth (Giannini, Ronchi Della Rocca).

What if we bound the arity or functional rank?

- $\text{arity}(c) = 0$ for a constant c and
 $\text{arity}(A_1 \to \cdots \to A_n \to c) = \max(\text{arity}(A_1), \ldots, \text{arity}(A_n), n)$,
Additional restrictions

- All types in inference can be at most of size n.
- Quantified variables restricted to occur only up to certain depth (Giannini, Ronchi Della Rocca).

What if we bound the arity or functional rank?

- $\text{arity}(c) = 0$ for a constant c and
 $\text{arity}(A_1 \to \cdots \to A_n \to c) = \max(\text{arity}(A_1), \ldots, \text{arity}(A_n), n)$,
- $\text{rank}(c) = 0$ for a constant c, and
 $\text{rank}(A \to B) = \max(\text{rank}(A) + 1, \text{rank}(B))$.
Type-checking and type-inference in domain-free languages is undecidable when arity or rank are restricted.
Type-checking and type-inference in domain-free languages is undecidable when arity or rank are restricted.
Example

Consider SOU instance

\[A_n \rightarrow Fbc \equiv F(b \rightarrow a)(b \rightarrow c) \]
(Misleading) Machine simulation

\[C_0 \rightarrow FB_1 \ldots B_k o \equiv FA_1 \ldots A_p (C_{n-1} \rightarrow o) \]
Verification of machine consistency

\[(Fs_1 \ldots sp \ o') \to GD'_1 \ldots D'_l \equiv GD_1 \ldots D_l\]

\[s \to \langle b, o \rangle \rightsquigarrow \langle s, 1 \rangle \text{ in case } \pi_3(s) = b,\]
\[s \to o \rightsquigarrow \langle s, 1 \rangle \text{ in case } \pi_3(s) = \bullet, \text{ or } \pi_2(s) = \bullet,\]
\[s \to \langle s', 1 \rangle \rightsquigarrow \langle s, 2 \rangle \text{ in case } \pi_3(s) = \pi_2(s') \text{ and } \pi_1(s') = \pi_2(s),\]
\[s \to \langle s', 2 \rangle \rightsquigarrow \langle s, 3 \rangle \text{ in case } \pi_3(s) = \pi_2(s') \text{ and } \pi_1(s') = \pi_2(s),\]
\[a \to \langle s, 3 \rangle \rightsquigarrow \langle a, 4 \rangle \text{ in case } \pi_1(s) = a,\]
\[a \to \langle b, 4 \rangle \rightsquigarrow \langle a, 4 \rangle.\]
Conclusions

- Restriction to bounded types leads to decidable type-checking, type reconstruction.
- Restriction to types with bounded arity/rank may lead to undecidable type-checking, type reconstruction.
The End

Aleksy Schubert