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The context of the problem

Programmers do not want to type a lot.

Therefore need ways to automatically infer some coding
information.
In particular types are mostly optional.

Application of a function M to an argument N

M N

introduces a unification constraint.
In STLC:

XM
.
= XN → XMN

where XM,XN ,XMN are unification variables.
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In polymorphic systems

Types are more complicated

A,B ::= C | X | A→ B | ∀X.A

Applications of a function M to an argument N is more

complicated

M A1 . . .AnN
This introduces a unification constraint

FMA1 . . .An
.
= XN → XM A1...AnN

where FM is a second-order unification variable,
XN,XM A1...AnN are unification variables.
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If we are (un)lucky...

Constraints fall within the second-order unification
language.

If we are (un)lucky – second-order abstract syntaxt is
necessary.
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What kind of programming language?

M,N ::= x | λx.M | ΛX.M | MA | MN

Type application critical for unification.
Type application omitted⇒ seminunification.
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Additional restrictions

Motivation for types:

Expression of intent with regard to the program.
Gentler writing of the code.

Too big types are ineffective.
Example (J.B.Wells):

b : ∀γ.(γ → γ)→ β,
c : ∀.(µ1 → δ1)→ (δ2 → µ2)→ (τ2 → τ2),
`
b(λx.cxx)

where τ1 ≤ µ1, τ2 ≤ µ2 is an instance of the
seminunification problem.
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Additional restrictions

All types in inference can be at most of size n.

Quantified variables restricted to occur only up to certain
depth (Giannini, Ronchi Della Rocca).

What if we bound the arity or functional rank?

arity(c) = 0 for a constant c and
arity(A1 → · · · → An → c) = max(arity(A1), . . . , arity(An), n),
rank(c) = 0 for a constant c, and
rank(A→ B) = max(rank(A) + 1, rank(B)).
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Result

Type-checking and type-inference in domain-free
languages is undecidable when arity or rank are restricted.

Aleksy Schubert



Result

Type-checking and type-inference in domain-free
languages is undecidable when arity or rank are restricted.

Aleksy Schubert



Example

Consider SOU instance

An → Fbc .
= F(b→ a)(b→ c)
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(Misleading) Machine simulation

C0 → FB1 . . .Bko .
= FA1 . . .Ap(Cn−1 → o)
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Verification of machine consistency

(Fs1 . . . sp o′)→ GD′1 . . .D
′
l
.
= GD1 . . .Dl

s→ 〈b, o〉 〈s, 1〉 in case π3(s) = b,
s→ o 〈s, 1〉 in case π3(s) = •, or π2(s) = •,
s→ 〈s′, 1〉 〈s, 2〉 in case π3(s) = π2(s′) and π1(s′) = π2(s),
s→ 〈s′, 2〉 〈s, 3〉 in case π3(s) = π2(s′) and π1(s′) = π2(s),
a→ 〈s, 3〉 〈a, 4〉 in case π1(s) = a, a→ 〈b, 4〉 〈a, 4〉.
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Conclusions

Restriction to bounded types leads to decidable
type-checking, type reconstruction.
Restriction to types with bounded arity/rank may lead to
undecidable type-checking, type reconstruction.
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The End
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