One-Variable Unification in K

Modal logic K
Syntax
Kripke Semantics Unification

Stéphane Desarzens

Characterising

University of Bern

2nd July 2023

Overview

Modal logic K
Syntax
Kripke Semantics
Unification
Modal logic K

Normal Forms in K

Minimal Formulas

Characterising Unifiability in Special Case

Syntax

Definition

The set $\operatorname{Fm}(X)$ of formulas with variables in a set X is defined as the smallest set such that for all $\varphi, \psi \in \operatorname{Fm}(X)$ and $x \in X$,

Syntax

Kripke Semantics Unification

$$
\begin{array}{rr}
x \in \operatorname{Fm}(X), & \quad \top \in \operatorname{Fm}(X), \\
\neg \varphi \in \operatorname{Fm}(X), & \varphi \wedge \psi \in \operatorname{Fm}(X), \\
\square \varphi \in \operatorname{Fm}(X) . &
\end{array}
$$

We denote by $\operatorname{Fm}(X):=\langle\operatorname{Fm}(X), \wedge, \neg, \top, \square\rangle$ the formula algebra over X.
We define the notations $\perp, \vee, \rightarrow, \leftrightarrow$ for formulas as usual. For $\varphi \in \operatorname{Fm}(X)$ define $\diamond \varphi:=\neg \square \neg \varphi$.

Substitutions

Definition

A substitution is a homomorphism $\sigma: \operatorname{Fm}(X) \rightarrow \mathbf{F m}(Y)$, that is, a map $\operatorname{Fm}(X) \rightarrow \operatorname{Fm}(Y)$ such that

$$
\begin{aligned}
\sigma(\top) & =\top, & & \sigma(\neg \varphi)=\neg \sigma(\varphi), \\
\sigma(\varphi \wedge \psi) & =\sigma(\varphi) \wedge \sigma(\psi), & & \sigma(\square \varphi)=\square \sigma(\varphi) .
\end{aligned}
$$

Syntax

Kripke Semantics

[^0]
Modal Degree

Definition

Define the modal degree (modal depth) $\operatorname{md}(\varphi)$ of a formula $\varphi \in \operatorname{Fm}(X)$ recursively:

$$
\operatorname{md}(x):=0, \quad \operatorname{md}(\top):=0
$$

$$
\operatorname{md}(\neg \varphi):=\operatorname{md}(\varphi), \quad \operatorname{md}(\varphi \wedge \psi):=\max (\operatorname{md}(\varphi), \operatorname{md}(\psi))
$$

$\operatorname{md}(\square \varphi):=\operatorname{md}(\varphi)+1$.
I.e., count the maximal number of nested occurrences of \square.

For $n \in \mathbb{N}$ define $\operatorname{Fm}(X, n)$ as the set of formulas of degree at most n.
For a substitution $\sigma: \mathbf{F m}(X) \rightarrow \mathbf{F m}(Y)$ define its modal degree as $\operatorname{md}(\sigma):=\sup _{p \in X} \operatorname{md}(\sigma(p))$.

Kripke Semantics

Definition

A Kripke frame is a pair $F=\langle W, R\rangle$ where $R \subseteq W \times W$ is a binary relation on the non-empty set W. For $w, v \in W$ with $R w v$ we say that v is a successor of w or that v is accessible from w.
A valuation V on F with variables in a set X is a map $X \rightarrow \mathcal{P}(W)$.
A Kripke model is a triple $M=\langle W, R, V\rangle$ where $\langle W, R\rangle$ is a Kripke frame and V is a valuation on $\langle W, R\rangle$.

Definition

Let $M=\langle W, R, V\rangle$ be a Kripke model with variables in X.
For $w \in W$ we define recursively, when a formula $\varphi \in \operatorname{Fm}(X)$ is true at w, written $M, w \Vdash \varphi$.

$$
\begin{aligned}
& M, w \Vdash x \Longleftrightarrow w \in V(x) \\
& M, w \Vdash \top \text { holds } \\
& M, w \Vdash \neg \varphi \Longleftrightarrow M, w \nVdash \varphi \\
& M, w \Vdash \varphi \wedge \psi \Longleftrightarrow M, w \Vdash \varphi \text { and } M, w \Vdash \psi \\
& M, w \Vdash \square \varphi \Longleftrightarrow \text { for all } v \in W, R w v \Longrightarrow M, v \Vdash \varphi
\end{aligned}
$$

Kripke Semantics Unification

Remark

$M, w \Vdash \diamond \varphi \Longleftrightarrow$ there is $v \in W$ with $R w v$ and $M, v \Vdash \varphi$

Unification

Definition

A formula is valid if it is true at all points of all Kripke models. A substitution $\sigma: \operatorname{Fm}(X) \rightarrow \mathbf{F m}(Y)$ is said to unify φ if $\sigma(\varphi)$ is valid. In this case σ is a unifier of φ, and φ is unifiable.

Unification

Definition

A formula is valid if it is true at all points of all Kripke models. A substitution $\sigma: \operatorname{Fm}(X) \rightarrow \mathbf{F m}(Y)$ is said to unify φ if $\sigma(\varphi)$ is valid. In this case σ is a unifier of φ, and φ is unifiable.

Question

Is there an algorithm that given $\varphi \in \operatorname{Fm}(X)$ decides whether φ is unifiable?

Definition

Let X be a set of variables. For each $n \in \mathbb{N}$ define inductively the set $T_{n}^{\mathcal{P}(X)}$ of $\mathcal{P}(X)$-labelled (commutative idempotent) trees of degree n by

$$
T_{0}^{\mathcal{P}(X)}:=\mathcal{P}(X), \quad T_{n+1}^{\mathcal{P}(X)}:=\mathcal{P}(X) \times \mathcal{P}\left(T_{n}^{\mathcal{P}(X)}\right)
$$

We write A for $A \in T_{0}^{\mathcal{P}(X)}$. For $\left\langle A,\left\{t_{1}, \ldots, t_{k}\right\}\right\rangle \in T_{n+1}^{\mathcal{P}(X)}$ we write

where each t_{i} is written in this notation.

Example

For $A, B, C \subseteq X$, consider
$\langle A,\{\langle A,\{B, C\}\rangle,\langle B, \emptyset\rangle\}\rangle \in T_{2}^{\mathcal{P}(X)}$. We write:

We adapt the notation if convenient. For $\langle\{p\},\{\emptyset\}\rangle \in T_{1}^{\mathcal{P}(\{p\})}$ we write:

Normal Form Theorem

There exist functions $\iota_{n}: T_{n}^{\mathcal{P}(X)} \rightarrow \operatorname{Fm}(X, n)$ such that Theorem (Fine '75, Ghilardi '95)
Let X be a finite set and $n \in \mathbb{N}$.

- For each Kripke model M and $w \in M$ there is a unique $t \in T_{n}^{\mathcal{P}(X)}$ such that $M, w \Vdash \iota_{n}(t)$.
- For each $\varphi \in \operatorname{Fm}(X, n)$ there is a unique $\Phi \subseteq T_{n}^{\mathcal{P}(X)}$ such that φ is equivalent to $\bigvee \iota_{n}[\Phi]$.
We will identify $t \in T_{n}^{\mathcal{P}(X)}$ and $\iota_{n}(t) \in \operatorname{Fm}(X, n)$. Similarly, we identify $\Phi \subseteq T_{n}^{\mathcal{P}(X)}$ and $\bigvee \iota_{n}[\Phi]$.

Minimal formulas

For each ground substitution $\sigma: \operatorname{Fm}(X) \rightarrow \mathbf{F m}(\emptyset)$ and $n \in \mathbb{N}$ there exists a computable set $\Phi(X, \sigma, n) \subseteq T_{n}^{\mathcal{P}(X)}$ such that for all $\Psi \subseteq T_{n}^{\mathcal{P}(X)}$

Minimal
Formulas
Characterising Unifiability in Special Case
Ψ is unified by $\sigma \Longleftrightarrow \Phi(X, \sigma, n) \subseteq \Psi$.

Minimal formulas - Example

There is a concrete way to compute $\Phi(X, \sigma, n)$.
For example let $\sigma: \operatorname{Fm}(\{p\}) \rightarrow \mathbf{F m}(\emptyset)$ be defined by $\sigma(p):=\square \perp$. Compute $\Phi(\{p\}, \sigma, 1)$.

1. Write down all elements of $T_{2}^{\mathcal{P}(\emptyset)}$.

Minimal formulas - Example

There is a concrete way to compute $\Phi(X, \sigma, n)$.
For example let $\sigma: \operatorname{Fm}(\{p\}) \rightarrow \mathbf{F m}(\emptyset)$ be defined by $\sigma(p):=\square \perp$. Compute $\Phi(\{p\}, \sigma, 1)$.
2. Add the label $p \in X$ to a node if $\sigma(p)$ is true at this node, considered as a Kripke frame.

Minimal formulas - Example

There is a concrete way to compute $\Phi(X, \sigma, n)$.
For example let $\sigma: \mathbf{F m}(\{p\}) \rightarrow \mathbf{F m}(\emptyset)$ be defined by $\sigma(p):=\square \perp$. Compute $\Phi(\{p\}, \sigma, 1)$.
3. Cut away leaves until each tree is of degree 1 .

This set is $\Phi(\{p\}, \sigma, 1)$.

Special case

A natural frame structure on $T_{2}^{\mathcal{P}(\emptyset)}$ is $F(\emptyset, 2)$.
Consider another frame structure F on $T_{2}^{\mathcal{P}(\emptyset)}$:

(a) $F(\emptyset, 2)$

(b) F

Proposition
$F(\emptyset, 2), t \Vdash \iota_{2}(t)$ and $F, t \Vdash \iota_{2}(t)$ for all $t \in T_{2}^{\mathcal{P}(\emptyset)}$.

Theorem

For all $\varphi \in \operatorname{Fm}(\{p\}, 1)$ the following are equivalent:

1. φ is unifiable.
2. φ is unified by one of the following substitutions: $p \mapsto T$, $p \mapsto \perp, p \mapsto \square \perp, p \mapsto \diamond T$.
3. There is a valuation V on F such that $\langle F, V\rangle$,w $\Vdash \varphi$ for all $w \in F$.

Proof.

2. $\Rightarrow 1$. is trivial. For $1 . \Rightarrow 3$. let $\sigma: \operatorname{Fm}(\{p\}) \rightarrow \mathbf{F m}(\emptyset)$ be a ground unifier of φ. Set $V_{\sigma}(p):=\{w \in F \mid F, w \Vdash \sigma(p)\}$.
This is well-defined because $\sigma(p)$ is without variables, and hence truth of $\sigma(p)$ does not depend on the valuation. That this valuation is appropriate follows from

$$
\left\langle F, V_{\sigma}\right\rangle, w \Vdash \varphi \Longleftrightarrow F, w \Vdash \sigma(\varphi) .
$$

Recall: $\varphi \in \operatorname{Fm}(\{p\}, 1)$ and

2. φ is unified by one of the following substitutions: $p \mapsto T$, $p \mapsto \perp, p \mapsto \square \perp, p \mapsto \diamond T$.
3. There is a valuation V on F such that $\langle F, V\rangle$,w $\Vdash \varphi$ for all $w \in F$.

Proof of $3 . \Rightarrow 2$.

Let $V:\{p\} \rightarrow \mathcal{P}(F)$ be a valuation on F such that $\langle F, V\rangle, w \Vdash \varphi$ for all $w \in F$. Let $\Phi \subseteq T_{1}^{\{p\}}$ such that φ is equivalent to Φ.
Approach: Since $\langle F, V\rangle, w \Vdash \Phi$ we can show that certain elements must lie in Φ. By case analysis on we show $\Phi(\{p\}, \sigma, 1) \subseteq \Phi$ for one of the four substitutions $p \mapsto \top$, $p \mapsto \perp, p \mapsto \square \perp, p \mapsto \diamond T$.

Proof of $3 . \Rightarrow 2$.
Recall: $\Phi \subseteq T_{1}^{\{p\}}$ is such that $\langle F, V\rangle, w \Vdash \Phi$ for all $w \in F$.

The frame F

Using Fine's normal form, we get $A, B, C, D \subseteq\{p\}$ and

such that $\langle F, V\rangle, w \Vdash t_{w}$ and $t_{w} \in \Phi$ for all $w \in F$.

Proof of $3 . \Rightarrow 2$.
Recall:
$t_{a}=(A), t_{b}=(B), t_{c}=(C), t_{d}=(D)$
Claim: no matter the values of $A, B, C, D \subseteq\{p\}$, there always is some σ, among the four mentioned ones, such that $\Phi(\{p\}, \sigma, 1) \subseteq\left\{t_{a}, t_{b}, t_{c}, t_{d}\right\}$.
Proof by case distinction.

Proof of $3 . \Rightarrow 2$.
Recall:
$t_{a}=\left(A, t_{b}=B \rightarrow A, t_{c}=C \rightarrow C, t_{d}=D\right.$
Claim: no matter the values of $A, B, C, D \subseteq\{p\}$, there always is some σ, among the four mentioned ones, such that $\Phi(\{p\}, \sigma, 1) \subseteq\left\{t_{a}, t_{b}, t_{c}, t_{d}\right\}$.

Characterising Unifiability in Special Case

Proof by case distinction. For example, if $A=\{p\}$ and $B=\{p\}$ then

$$
\left\{t_{a}, t_{b}\right\}=\{p, p \rightarrow p\}=\Phi(\{p\}, p \mapsto \top, 1)
$$

Hence in this case $\Phi(\{p\}, p \mapsto \top, 1) \subseteq\left\{t_{a}, t_{b}, t_{c}, t_{d}\right\} \subseteq \Phi$ and Φ is unified by $p \mapsto T$.

Limits of this approach

The previous result says: a formula $\varphi \in \operatorname{Fm}(\{p\}, 1)$ is unifiable iff there is a (ground-definable) valuation on F which makes φ true everywhere in F.
Proposition (Jeřábek '23)
The formula $\varphi:=(\square p \rightarrow p) \wedge(q \leftrightarrow \neg \square q)$ is not unifiable and for every finite frame G there is a ground-definable valuation which makes φ true everywhere on G.
I.e., to use the same approach for two variables, the corresponding F would need to be infinite.

[^0]: Remark
 Each substitution $\mathrm{Fm}(X) \rightarrow \mathrm{Fm}(Y)$ is uniquely determined by its values on X.

