One-Variable Unification in K

Stéphane Desarzens

University of Bern

2nd July 2023

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Overview

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms in K

Minimal Formulas

Characterising Unifiability in Special Case

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Syntax

Definition

The set $\operatorname{Fm}(X)$ of *formulas* with variables in a set X is defined as the smallest set such that for all $\varphi, \psi \in \operatorname{Fm}(X)$ and $x \in X$,

$$egin{aligned} & x\in \mathrm{Fm}(X), & & & & & \top\in\mathrm{Fm}(X), \\ &
eggin{aligned} & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & &$$

We denote by $\operatorname{Fm}(X) := \langle \operatorname{Fm}(X), \wedge, \neg, \top, \Box \rangle$ the formula algebra over X. We define the notations $\bot, \lor, \rightarrow, \leftrightarrow$ for formulas as usual. For $\varphi \in \operatorname{Fm}(X)$ define $\Diamond \varphi := \neg \Box \neg \varphi$.

One-Variable Unification in K

Modal logic K

Syntax

Kripke Semantics Unification

Normal Forms

Minimal Formulas

Substitutions

Definition

A substitution is a homomorphism $\sigma \colon \mathbf{Fm}(X) \to \mathbf{Fm}(Y)$, that is, a map $\operatorname{Fm}(X) \to \operatorname{Fm}(Y)$ such that

$$\sigma(\top) = \top, \qquad \qquad \sigma(\neg\varphi) = \neg\sigma(\varphi), \\ \sigma(\varphi \land \psi) = \sigma(\varphi) \land \sigma(\psi), \qquad \qquad \sigma(\Box\varphi) = \Box\sigma(\varphi).$$

Remark

Each substitution $\operatorname{Fm}(X) \to \operatorname{Fm}(Y)$ is uniquely determined by its values on X.

One-Variable Unification in K

Modal logic K

Syntax

Kripke Semantice Unification

Vormal Forms

Minimal Formulas

Modal Degree

Definition

Define the modal degree (modal depth) $md(\varphi)$ of a formula $\varphi \in Fm(X)$ recursively:

$$\begin{split} \mathsf{md}(x) &\coloneqq 0, & \mathsf{md}(\top) \coloneqq 0, \\ \mathsf{md}(\neg \varphi) &\coloneqq \mathsf{md}(\varphi), & \mathsf{md}(\varphi \wedge \psi) &\coloneqq \mathsf{max}(\mathsf{md}(\varphi), \mathsf{md}(\psi)), \\ \mathsf{md}(\Box \varphi) &\coloneqq \mathsf{md}(\varphi) + 1. \end{split}$$

I.e., count the maximal number of nested occurrences of \Box . For $n \in \mathbb{N}$ define $\operatorname{Fm}(X, n)$ as the set of formulas of degree *at* most *n*.

For a substitution $\sigma \colon \operatorname{Fm}(X) \to \operatorname{Fm}(Y)$ define its modal degree as $\operatorname{md}(\sigma) \coloneqq \sup_{p \in X} \operatorname{md}(\sigma(p))$.

One-Variable Unification in K

Modal logic K

Syntax

Kripke Semantics Unification

Vormal Forms

Minimal Formulas

Kripke Semantics

Definition

A Kripke frame is a pair $F = \langle W, R \rangle$ where $R \subseteq W \times W$ is a binary relation on the non-empty set W. For $w, v \in W$ with *Rwv* we say that v is a successor of w or that v is accessible from w.

A valuation V on F with variables in a set X is a map $X \rightarrow \mathcal{P}(W)$.

A Kripke model is a triple $M = \langle W, R, V \rangle$ where $\langle W, R \rangle$ is a Kripke frame and V is a valuation on $\langle W, R \rangle$.

One-Variable Unification in K

Modal logic K

Syntax

Kripke Semantics Unification

Normal Forms

Minimal Formulas

Definition

Let $M = \langle W, R, V \rangle$ be a Kripke model with variables in X. For $w \in W$ we define recursively, when a formula $\varphi \in Fm(X)$ is *true at w*, written $M, w \Vdash \varphi$.

$$\begin{array}{ccc} M, w \Vdash x \iff w \in V(x) \\ M, w \Vdash \top \text{ holds} \\ M, w \Vdash \neg \varphi \iff M, w \nvDash \varphi \\ M, w \Vdash \varphi \land \psi \iff M, w \Vdash \varphi \text{ and } M, w \Vdash \psi \\ M, w \Vdash \Box \varphi \iff \text{ for all } v \in W, Rwv \implies M, v \Vdash \varphi \end{array}$$

Remark

 $M, w \Vdash \Diamond \varphi \iff$ there is $v \in W$ with Rwv and $M, v \Vdash \varphi$

One-Variable Unification in K

Modal logic K

Syntax

Kripke Semantics Unification

Normal Forms

Minimal Formulas

Unification

Definition

A formula is *valid* if it is true at all points of all Kripke models. A substitution $\sigma \colon \mathbf{Fm}(X) \to \mathbf{Fm}(Y)$ is said to *unify* φ if $\sigma(\varphi)$ is valid. In this case σ is a *unifier* of φ , and φ is *unifiable*.

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics

Unification

Normal Forms

Minimal Formulas

Unification

Definition

A formula is *valid* if it is true at all points of all Kripke models. A substitution $\sigma \colon \mathbf{Fm}(X) \to \mathbf{Fm}(Y)$ is said to *unify* φ if $\sigma(\varphi)$ is valid. In this case σ is a *unifier* of φ , and φ is *unifiable*.

Question

Is there an algorithm that given $\varphi \in Fm(X)$ decides whether φ is unifiable?

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics

Unification

Normal Forms

Minimal Formulas

Trees

Definition

Let X be a set of variables. For each $n \in \mathbb{N}$ define inductively the set $T_n^{\mathcal{P}(X)}$ of $\mathcal{P}(X)$ -labelled (commutative idempotent) trees of degree n by

$$T_0^{\mathcal{P}(X)} \coloneqq \mathcal{P}(X), \qquad T_{n+1}^{\mathcal{P}(X)} \coloneqq \mathcal{P}(X) \times \mathcal{P}(T_n^{\mathcal{P}(X)}).$$

We write A for $A \in T_0^{\mathcal{P}(X)}$. For $\langle A, \{t_1, \ldots, t_k\} \rangle \in T_{n+1}^{\mathcal{P}(X)}$ we write

where each t_i is written in this notation.

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Trees

Example

For $A, B, C \subseteq X$, consider $\langle A, \{\langle A, \{B, C\} \rangle, \langle B, \emptyset \rangle\} \rangle \in T_2^{\mathcal{P}(X)}$. We write:

A

B

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Normal Form Theorem

There exist functions $\iota_n \colon T_n^{\mathcal{P}(X)} \to \operatorname{Fm}(X, n)$ such that

Theorem (Fine '75, Ghilardi '95)

Let X be a finite set and $n \in \mathbb{N}$.

- For each Kripke model M and $w \in M$ there is a unique $t \in T_n^{\mathcal{P}(X)}$ such that $M, w \Vdash \iota_n(t)$.
- For each $\varphi \in \operatorname{Fm}(X, n)$ there is a unique $\Phi \subseteq T_n^{\mathcal{P}(X)}$ such that φ is equivalent to $\bigvee \iota_n[\Phi]$.

We will identify $t \in T_n^{\mathcal{P}(X)}$ and $\iota_n(t) \in \operatorname{Fm}(X, n)$. Similarly, we identify $\Phi \subseteq T_n^{\mathcal{P}(X)}$ and $\bigvee \iota_n[\Phi]$.

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Minimal formulas

For each ground substitution $\sigma \colon \mathbf{Fm}(X) \to \mathbf{Fm}(\emptyset)$ and $n \in \mathbb{N}$ there exists a computable set $\Phi(X, \sigma, n) \subseteq T_n^{\mathcal{P}(X)}$ such that for all $\Psi \subseteq T_n^{\mathcal{P}(X)}$

$$\Psi$$
 is unified by $\sigma \iff \Phi(X, \sigma, n) \subseteq \Psi$.

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Minimal formulas – Example

There is a concrete way to compute $\Phi(X, \sigma, n)$. For example let σ : **Fm**({*p*}) \rightarrow **Fm**(\emptyset) be defined by $\sigma(p) \coloneqq \Box \bot$. Compute $\Phi(\{p\}, \sigma, 1)$. 1. Write down all elements of $T_2^{\mathcal{P}(\emptyset)}$.

One-Variable Unification in K

Svntax

Minimal Formulas

Minimal formulas - Example

There is a concrete way to compute $\Phi(X, \sigma, n)$. For example let $\sigma: \operatorname{Fm}(\{p\}) \to \operatorname{Fm}(\emptyset)$ be defined by $\sigma(p) \coloneqq \Box \bot$. Compute $\Phi(\{p\}, \sigma, 1)$. 2. Add the label $p \in X$ to a node if $\sigma(p)$ is true at this node,

considered as a Kripke frame.

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Minimal formulas - Example

There is a concrete way to compute $\Phi(X, \sigma, n)$. For example let σ : **Fm**($\{p\}$) \rightarrow **Fm**(\emptyset) be defined by $\sigma(p) := \Box \bot$. Compute $\Phi(\{p\}, \sigma, 1)$. 3. Cut away leaves until each tree is of degree 1.

This set is $\Phi(\{p\}, \sigma, 1)$.

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Special case

A natural frame structure on $T_2^{\mathcal{P}(\emptyset)}$ is $F(\emptyset, 2)$. Consider another frame structure F on $T_2^{\mathcal{P}(\emptyset)}$:

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Characterising Unifiability in Special Case

Proposition

 $F(\emptyset, 2), t \Vdash \iota_2(t) \text{ and } F, t \Vdash \iota_2(t) \text{ for all } t \in T_2^{\mathcal{P}(\emptyset)}.$

Theorem

For all $\varphi \in \operatorname{Fm}(\{p\}, 1)$ the following are equivalent:

- 1. φ is unifiable.
- 2. φ is unified by one of the following substitutions: $p \mapsto \top$, $p \mapsto \bot$, $p \mapsto \Box \bot$, $p \mapsto \Diamond \top$.
- 3. There is a valuation V on F such that $\langle F, V \rangle$, $w \Vdash \varphi$ for all $w \in F$.

Proof.

2. \Rightarrow 1. is trivial. For 1. \Rightarrow 3. let σ : **Fm**({*p*}) \rightarrow **Fm**(\emptyset) be a ground unifier of φ . Set $V_{\sigma}(p) \coloneqq \{w \in F \mid F, w \Vdash \sigma(p)\}$. This is well-defined because $\sigma(p)$ is without variables, and hence truth of $\sigma(p)$ does not depend on the valuation. That this valuation is appropriate follows from

$$\langle F, V_{\sigma} \rangle, w \Vdash \varphi \iff F, w \Vdash \sigma(\varphi).$$

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Characterising Unifiability in Special Case

Recall: $\varphi \in \operatorname{Fm}(\{p\}, 1)$ and

- 2. φ is unified by one of the following substitutions: $p \mapsto \top$, $p \mapsto \bot$, $p \mapsto \Box \bot$, $p \mapsto \Diamond \top$.
- 3. There is a valuation V on F such that $\langle F, V \rangle, w \Vdash \varphi$ for all $w \in F$.

Proof of 3. \Rightarrow 2. Let $V: \{p\} \rightarrow \mathcal{P}(F)$ be a valuation on F such that $\langle F, V \rangle, w \Vdash \varphi$ for all $w \in F$. Let $\Phi \subseteq T_1^{\{p\}}$ such that φ is equivalent to Φ . Approach: Since $\langle F, V \rangle, w \Vdash \Phi$ we can show that certain elements must lie in Φ . By case analysis on we show $\Phi(\{p\}, \sigma, 1) \subseteq \Phi$ for one of the four substitutions $p \mapsto \top$, $p \mapsto \bot$, $p \mapsto \Box \bot$, $p \mapsto \Diamond \top$.

Proof of 3. \Rightarrow 2. Recall: $\Phi \subseteq T_1^{\{p\}}$ is such that $\langle F, V \rangle, w \Vdash \Phi$ for all $w \in F$.

The frame F

Using Fine's normal form, we get $A, B, C, D \subseteq \{p\}$ and $t_a = (A), t_b = (B) \rightarrow (A), t_c = (C) \rightarrow (C), t_d = (D)$ such that $\langle F, V \rangle, w \Vdash t_w$ and $t_w \in \Phi$ for all $w \in F$.

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

One-Variable Unification in K

Proof of 3. \Rightarrow 2. Recall:

$$t_a = (A), t_b = (B) \rightarrow (A), t_c = (C) \rightarrow (C), t_d = (D)$$

Claim: no matter the values of $A, B, C, D \subseteq \{p\}$, there always is some σ , among the four mentioned ones, such that $\Phi(\{p\}, \sigma, 1) \subseteq \{t_a, t_b, t_c, t_d\}$. Proof by case distinction.

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Normal Forms

Minimal Formulas

Characterising Unifiability in Special Case

Proof of 3. \Rightarrow 2. Recall:

$$t_a = (A), \ t_b = (B) \rightarrow (A), \ t_c = (C) \rightarrow (C), \ t_d = (D) \rightarrow (D)$$

Claim: no matter the values of $A, B, C, D \subseteq \{p\}$, there always is some σ , among the four mentioned ones, such that $\Phi(\{p\}, \sigma, 1) \subseteq \{t_a, t_b, t_c, t_d\}$. Proof by case distinction. For example, if $A = \{p\}$ and $B = \{p\}$ then

$$\{t_a, t_b\} = \{ (p), (p) \rightarrow p \} = \Phi(\{p\}, p \mapsto \top, 1).$$

Hence in this case $\Phi(\{p\}, p \mapsto \top, 1) \subseteq \{t_a, t_b, t_c, t_d\} \subseteq \Phi$ and Φ is unified by $p \mapsto \top$.

Limits of this approach

The previous result says: a formula $\varphi \in \operatorname{Fm}(\{p\}, 1)$ is unifiable iff there is a (ground-definable) valuation on F which makes φ true everywhere in F.

Proposition (Jeřábek '23)

The formula $\varphi := (\Box p \rightarrow p) \land (q \leftrightarrow \neg \Box q)$ is not unifiable and for every finite frame G there is a ground-definable valuation which makes φ true everywhere on G.

l.e., to use the same approach for two variables, the corresponding F would need to be infinite.

One-Variable Unification in K

Modal logic K

Syntax Kripke Semantics Unification

Vormal Forms

Minimal Formulas