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Syntax One-Variable

Unification in K

Definition
The set Fm(X) of formulas with variables in a set X is defined
as the smallest set such that for all ¢, € Fm(X) and x € X,

x € Fm(X), T € Fm(X),
—weFm(X), ¢A¢€Fm(X),
O¢ € Fm(X).

We denote by Fm(X) := (Fm(X), A, —, T,0) the formula
algebra over X.

We define the notations L, V, —, <+ for formulas as usual.
For ¢ € Fm(X) define Q¢ = —O-p.



SU bstltutlons One-Variable

Unification in K

Definition
A substitution is a homomorphism o: Fm(X) — Fm(Y'), that
is, a map Fm(X) — Fm(Y') such that

o(T)=T, o(—p) = —o(p),
a(pANY)=oa(p) Na(ih), o(O¢p) = Oo(y).

Remark

Each substitution Fm(X) — Fm(Y') is uniquely determined
by its values on X.



One-Variable

MOdal Degree Unification in K

Definition
Define the modal degree (modal depth) md(y) of a formula
¢ € Fm(X) recursively:

md(x) := 0, md(T) =0,
md(—p) == md(p), md(p A 9) = max(md(¢), md(¢))),
md(Oy) = md(y) + 1.

|.e., count the maximal number of nested occurrences of [J.
For n € N define Fm(X, n) as the set of formulas of degree at

most n.
For a substitution o: Fm(X) — Fm(Y') define its modal

degree as md(o) = sup,ecx md(a(p)).
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Krlpke SemantICS Unification in K

Kripke Semantics

Definition

A Kripke frame is a pair F = (W, R) where RC W x W is a
binary relation on the non-empty set W. For w,v € W with
Rwv we say that v is a successor of w or that v is accessible
from w.

A valuation V on F with variables in a set X is a map

X = P(W).

A Kripke model is a triple M = (W, R, V') where (W R) is a
Kripke frame and V is a valuation on (W, R).
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Unification in K

Definition

Let M = (W, R, V) be a Kripke model with variables in X.

For w € W we define recursively, when a formula ¢ € Fm(X)  «rike semantics
is true at w, written M, w I .

M,wlFx <= we V(x)
M,w IF T holds
M,wlF—p < M,wk ¢
MwlkpAYp < M,wlkpand M, w Ik
M,wlFOp <= forallve W,Rwv — M,vIF ¢

Remark

M,w - Qp <= thereisv € W with Rwv and M,v IF ¢
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U n ification Unification in K

Unification

Definition

A formula is valid if it is true at all points of all Kripke models.
A substitution o: Fm(X) — Fm(Y) is said to unify ¢ if o(p)
is valid. In this case o is a unifier of , and ¢ is unifiable.



U nlflcatlon One-Variable

Unification in K

Unification
Definition
A formula is valid if it is true at all points of all Kripke models.

A substitution o: Fm(X) — Fm(Y) is said to unify ¢ if o(p)
is valid. In this case o is a unifier of , and ¢ is unifiable.

Question

Is there an algorithm that given ¢ € Fm(X) decides whether
@ is unifiable?



One-Variable

TreeS Unification in K

Definition

Let X be a set of variables. For each n € N define inductively
the set T, *) of P(X)-labelled (commutative idempotent)
trees of degree n by

Normal Forms

100 = P, TR = PO < PTT),

We write |A|for A € Tg)(x). For (A, {t1,...,t}) € P(X

we write
t

o=3

tk

where each t; is written in this notation.



One-Variable

Trees Unification in K

Example
For A7 B7 C g X’ ConSider Normal Forms
<A7 {<A7 {Bv C}>7 <37 ®>}> € TQP(X) We write:

(A8l
® [

We adapt the notation if convenient. For
({p},{0}) € Tlp({p}) we write:

(—]
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Normal Form Theorem Unification in K

There exist functions tn: Tp ) — Fm(X, n) such that
Theorem (Fine '75, Ghilardi '95)
Let X be a finite set and n € N.
» For each Kripke model M and w € M there is a unique
te T/ such that M, w I cp(t).

» For each ¢ € Fm(X, n) there is a unique ® C
such that ¢ is equivalent to \/ tp[®].

Normal Forms

7PX)

We will identify t € 77 and tn(t) € Fm(X, n). Similarly,
we identify ¢ C 77 and V tn[®].
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Minimal formulas Unification in K

Minimal

For each ground substitution o: Fm(X) — Fm(0) and n€ N gk
there exists a computable set ®(X,0,n) C 77 such that
for all W C T,ZD(X)

V is unified by 0 <= ®(X,0,n) C V.



Minimal formulas — Examp|e One-Variable

Unification in K

There is a concrete way to compute ®(X, o, n).

For example let o: Fm({p}) — Fm(0) be defined by Minirmal
J(p) =01, Compute q)({p}’ o, 1) Formulas

1. Write down all elements of Tf(@).

O O—0

O—>Q—>DQ<<O>_D



Minimal formulas — Examp|e One-Variable

Unification in K

There is a concrete way to compute ®(X, o, n).

For example let o: Fm({p}) — Fm(0) be defined by

o(p) :=0OL. Compute ®({p},0o,1). Minimal
2. Add the label p € X to a node if o(p) is true at this node,
considered as a Kripke frame.

) O—®

oo oB g
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Minimal formulas — Example Unification in K

There is a concrete way to compute ®(X, o, n).

For example let o: Fm({p}) — Fm(0) be defined by B
o(p) =0L. Compute ®({p},0,1). Formuras
3. Cut away leaves until each tree is of degree 1.

®  O-®

o0 o<f

This set is ¢({p},0,1).
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Special case Unification in K

A natural frame structure on -,-27?(0) is F(0,2).

Consider another frame structure F on TQP(@):

C b c b Characterising
(- nifiability in
lSJpecial Ct;,se
d a d a
(a) F(0,2) (b) F
Proposition

F(0,2), tIF ia(t) and F,tIF ip(t) forall t € T2 O,
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Theorem
For all ¢ € Fm({p},1) the following are equivalent:

1. @ is unifiable.

2. @ is unified by one of the following substitutions: p — T,
p— L, p—0OL p—OT.
3. There is a valuation V' on F such that (F, V), w |- ¢ for

a” w € F Characterising
Unifiability in
Special Case
Proof.

2. = 1. is trivial. For 1. = 3. let o: Fm({p}) — Fm(0) be a
ground unifier of . Set V,(p) ={w € F | F,w - o(p)}.
This is well-defined because o(p) is without variables, and
hence truth of o(p) does not depend on the valuation. That
this valuation is appropriate follows from

(F,Vo),wikp <= F,wlk o(p).
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Recall: ¢ € Fm({p},1) and
2.  is unified by one of the following substitutions: p +— T,
p— L, p—=0OL, p—=OT.
3. There is a valuation V on F such that (F, V), w IF ¢ for
allwe F.

Characterising

Proof of 3. = 2. Unifabity I
Let V: {p} — P(F) be a valuation on F such that ’
(F,Vy,wlF @ forallweF. Let $ C Tl{p} such that ¢ is

equivalent to .

Approach: Since (F, V), w IF ® we can show that certain

elements must lie in ®. By case analysis on we show

®({p},0,1) C ® for one of the four substitutions p— T,

p— L, p—0OL p— OT.
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Proof of 3. = 2.
Recall: ¢ C Tl{p} is such that (F, V), w |- ® for all w € F.

c b
d a
Characterising
c(O—— Ui SRy fir

Special Case
The frame F

Using Fine's normal form, we get A, B, C,D C {p} and

2@ W@ = O W=

such that (F,V),w I+ t, and t, € ® for all w € F.



Proof of 3. = 2.

Recall:

=@ 0@, @), =O

Claim: no matter the values of A, B, C,D C {p}, there
always is some o, among the four mentioned ones, such that

(D({p},a, 1) - {t37 tp, te, td}-
Proof by case distinction.
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Proof of 3. = 2.

Recall:

taZ@, tb=, tc:@—>, td:@<

Claim: no matter the values of A, B, C,D C {p}, there
always is some o, among the four mentioned ones, such that Hieresieitii

Unifiability in
¢({p}7 0-7 1) g {t37 tb, tc, td} Special Case
Proof by case distinction. For example, if A= {p} and
B = {p} then

{tts} ={(P), } = o({p}.p— T,1).

Hence in this case ®({p}, p+— T,1) C {ta, tp, tc, tg} C P
and & is unified by p — T. O]



Limits of this approach

The previous result says: a formula ¢ € Fm({p},1) is
unifiable iff there is a (ground-definable) valuation on F which
makes ¢ true everywhere in F.

Proposition (Jerabek '23)

The formula ¢ .= (Op — p) A (g <> —0q) is not unifiable
and for every finite frame G there is a ground-definable
valuation which makes ¢ true everywhere on G.

l.e., to use the same approach for two variables, the
corresponding F would need to be infinite.
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