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Syntax

Definition
The set Fm(X ) of formulas with variables in a set X is defined
as the smallest set such that for all ϕ,ψ ∈ Fm(X ) and x ∈ X ,

x ∈ Fm(X ), > ∈ Fm(X ),

¬ϕ ∈ Fm(X ), ϕ ∧ ψ ∈ Fm(X ),

�ϕ ∈ Fm(X ).

We denote by Fm(X ) := 〈Fm(X ),∧,¬,>,�〉 the formula
algebra over X .
We define the notations ⊥,∨,→,↔ for formulas as usual.
For ϕ ∈ Fm(X ) define ♦ϕ := ¬�¬ϕ.
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Substitutions

Definition
A substitution is a homomorphism σ : Fm(X )→ Fm(Y ), that
is, a map Fm(X )→ Fm(Y ) such that

σ(>) = >, σ(¬ϕ) = ¬σ(ϕ),

σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ), σ(�ϕ) = �σ(ϕ).

Remark
Each substitution Fm(X )→ Fm(Y ) is uniquely determined
by its values on X .
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Modal Degree

Definition
Define the modal degree (modal depth) md(ϕ) of a formula
ϕ ∈ Fm(X ) recursively:

md(x) := 0, md(>) := 0,
md(¬ϕ) := md(ϕ), md(ϕ ∧ ψ) := max(md(ϕ),md(ψ)),

md(�ϕ) := md(ϕ) + 1.

I.e., count the maximal number of nested occurrences of �.
For n ∈ N define Fm(X , n) as the set of formulas of degree at
most n.
For a substitution σ : Fm(X )→ Fm(Y ) define its modal
degree as md(σ) := supp∈X md(σ(p)).
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Kripke Semantics

Definition
A Kripke frame is a pair F = 〈W ,R〉 where R ⊆W ×W is a
binary relation on the non-empty set W . For w , v ∈W with
Rwv we say that v is a successor of w or that v is accessible
from w .
A valuation V on F with variables in a set X is a map
X → P(W ).
A Kripke model is a triple M = 〈W ,R,V 〉 where 〈W ,R〉 is a
Kripke frame and V is a valuation on 〈W ,R〉.
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Definition
Let M = 〈W ,R,V 〉 be a Kripke model with variables in X .
For w ∈W we define recursively, when a formula ϕ ∈ Fm(X )
is true at w , written M,w  ϕ.

M,w  x ⇐⇒ w ∈ V (x)

M,w  > holds
M,w  ¬ϕ ⇐⇒ M,w 1 ϕ

M,w  ϕ ∧ ψ ⇐⇒ M,w  ϕ and M,w  ψ

M,w  �ϕ ⇐⇒ for all v ∈W ,Rwv =⇒ M, v  ϕ

Remark
M,w  ♦ϕ ⇐⇒ there is v ∈W with Rwv and M, v  ϕ
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Unification

Definition
A formula is valid if it is true at all points of all Kripke models.
A substitution σ : Fm(X )→ Fm(Y ) is said to unify ϕ if σ(ϕ)
is valid. In this case σ is a unifier of ϕ, and ϕ is unifiable.

Question
Is there an algorithm that given ϕ ∈ Fm(X ) decides whether
ϕ is unifiable?
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Unification

Definition
A formula is valid if it is true at all points of all Kripke models.
A substitution σ : Fm(X )→ Fm(Y ) is said to unify ϕ if σ(ϕ)
is valid. In this case σ is a unifier of ϕ, and ϕ is unifiable.

Question
Is there an algorithm that given ϕ ∈ Fm(X ) decides whether
ϕ is unifiable?
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Trees

Definition
Let X be a set of variables. For each n ∈ N define inductively
the set TP(X )

n of P(X )-labelled (commutative idempotent)
trees of degree n by

T
P(X )
0 := P(X ), T

P(X )
n+1 := P(X )× P(T

P(X )
n ).

We write A for A ∈ T
P(X )
0 . For 〈A, {t1, . . . , tk}〉 ∈ T

P(X )
n+1

we write

A
t1
.
.
.
tk

where each ti is written in this notation.
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Trees

Example
For A,B,C ⊆ X , consider
〈A, {〈A, {B,C}〉, 〈B, ∅〉}〉 ∈ T

P(X )
2 . We write:

A

A

B

B

C

We adapt the notation if convenient. For
〈{p}, {∅}〉 ∈ T

P({p})
1 we write:

p
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Normal Form Theorem

There exist functions ιn : T
P(X )
n → Fm(X , n) such that

Theorem (Fine ’75, Ghilardi ’95)
Let X be a finite set and n ∈ N.
I For each Kripke model M and w ∈ M there is a unique

t ∈ T
P(X )
n such that M,w  ιn(t).

I For each ϕ ∈ Fm(X , n) there is a unique Φ ⊆ T
P(X )
n

such that ϕ is equivalent to
∨
ιn[Φ].

We will identify t ∈ T
P(X )
n and ιn(t) ∈ Fm(X , n). Similarly,

we identify Φ ⊆ T
P(X )
n and

∨
ιn[Φ].
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Minimal formulas

For each ground substitution σ : Fm(X )→ Fm(∅) and n ∈ N
there exists a computable set Φ(X , σ, n) ⊆ T

P(X )
n such that

for all Ψ ⊆ T
P(X )
n

Ψ is unified by σ ⇐⇒ Φ(X , σ, n) ⊆ Ψ.
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Minimal formulas – Example

There is a concrete way to compute Φ(X , σ, n).
For example let σ : Fm({p})→ Fm(∅) be defined by
σ(p) := �⊥. Compute Φ({p}, σ, 1).
1. Write down all elements of TP(∅)

2 .
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Minimal formulas – Example

There is a concrete way to compute Φ(X , σ, n).
For example let σ : Fm({p})→ Fm(∅) be defined by
σ(p) := �⊥. Compute Φ({p}, σ, 1).
2. Add the label p ∈ X to a node if σ(p) is true at this node,
considered as a Kripke frame.

p p

p
p

p
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Minimal formulas – Example

There is a concrete way to compute Φ(X , σ, n).
For example let σ : Fm({p})→ Fm(∅) be defined by
σ(p) := �⊥. Compute Φ({p}, σ, 1).
3. Cut away leaves until each tree is of degree 1.

p p

p

This set is Φ({p}, σ, 1).
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Special case

A natural frame structure on T
P(∅)
2 is F (∅, 2).

Consider another frame structure F on T
P(∅)
2 :

a

bc

d

(a) F (∅, 2)

a

bc

d

(b) F

Proposition
F (∅, 2), t  ι2(t) and F , t  ι2(t) for all t ∈ T

P(∅)
2 .
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Theorem
For all ϕ ∈ Fm({p}, 1) the following are equivalent:
1. ϕ is unifiable.
2. ϕ is unified by one of the following substitutions: p 7→ >,

p 7→ ⊥, p 7→ �⊥, p 7→ ♦>.
3. There is a valuation V on F such that 〈F ,V 〉,w  ϕ for

all w ∈ F .

Proof.
2.⇒ 1. is trivial. For 1.⇒ 3. let σ : Fm({p})→ Fm(∅) be a
ground unifier of ϕ. Set Vσ(p) := {w ∈ F | F ,w  σ(p)}.
This is well-defined because σ(p) is without variables, and
hence truth of σ(p) does not depend on the valuation. That
this valuation is appropriate follows from

〈F ,Vσ〉,w  ϕ ⇐⇒ F ,w  σ(ϕ).
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Recall: ϕ ∈ Fm({p}, 1) and
2. ϕ is unified by one of the following substitutions: p 7→ >,

p 7→ ⊥, p 7→ �⊥, p 7→ ♦>.
3. There is a valuation V on F such that 〈F ,V 〉,w  ϕ for

all w ∈ F .

Proof of 3.⇒ 2.
Let V : {p} → P(F ) be a valuation on F such that
〈F ,V 〉,w  ϕ for all w ∈ F . Let Φ ⊆ T

{p}
1 such that ϕ is

equivalent to Φ.
Approach: Since 〈F ,V 〉,w  Φ we can show that certain
elements must lie in Φ. By case analysis on we show
Φ({p}, σ, 1) ⊆ Φ for one of the four substitutions p 7→ >,
p 7→ ⊥, p 7→ �⊥, p 7→ ♦>.
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Proof of 3.⇒ 2.
Recall: Φ ⊆ T

{p}
1 is such that 〈F ,V 〉,w  Φ for all w ∈ F .

a

bc

d

The frame F

Using Fine’s normal form, we get A,B,C ,D ⊆ {p} and

ta = A , tb = B A , tc = C C , td = D

A

D

such that 〈F ,V 〉,w  tw and tw ∈ Φ for all w ∈ F .
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Proof of 3.⇒ 2.
Recall:

ta = A , tb = B A , tc = C C , td = D

A

D
Claim: no matter the values of A,B,C ,D ⊆ {p}, there
always is some σ, among the four mentioned ones, such that
Φ({p}, σ, 1) ⊆ {ta, tb, tc , td}.
Proof by case distinction.

For example, if A = {p} and
B = {p} then

{ta, tb} = { p , p p } = Φ({p}, p 7→ >, 1).

Hence in this case Φ({p}, p 7→ >, 1) ⊆ {ta, tb, tc , td} ⊆ Φ
and Φ is unified by p 7→ >.
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Proof of 3.⇒ 2.
Recall:

ta = A , tb = B A , tc = C C , td = D

A

D
Claim: no matter the values of A,B,C ,D ⊆ {p}, there
always is some σ, among the four mentioned ones, such that
Φ({p}, σ, 1) ⊆ {ta, tb, tc , td}.
Proof by case distinction. For example, if A = {p} and
B = {p} then

{ta, tb} = { p , p p } = Φ({p}, p 7→ >, 1).

Hence in this case Φ({p}, p 7→ >, 1) ⊆ {ta, tb, tc , td} ⊆ Φ
and Φ is unified by p 7→ >.
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Limits of this approach

The previous result says: a formula ϕ ∈ Fm({p}, 1) is
unifiable iff there is a (ground-definable) valuation on F which
makes ϕ true everywhere in F .

Proposition (Jeřábek ’23)
The formula ϕ := (�p → p) ∧ (q ↔ ¬�q) is not unifiable
and for every finite frame G there is a ground-definable
valuation which makes ϕ true everywhere on G .
I.e., to use the same approach for two variables, the
corresponding F would need to be infinite.
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