Modal unification step by step

Sam van Gool ${ }^{1}$ Johannes Marti ${ }^{2}$
${ }^{1}$ IRIF, Université Paris Cité
${ }^{2}$ Universität Zürich

Juli 2, 2023

Overview

We characterize the unification problem in some modal logics as a homomorphism problem for finite graphs.

Syntax of modal logic

The set $F(\mathrm{~V})$ of modal formulas over V :

$$
\varphi::=p, q, \ldots \in \mathrm{~V}|\top| \varphi \wedge \varphi|\neg \varphi| \square \varphi
$$

Plus $\diamond \varphi:=\neg \square \neg \varphi$ and standard definitions for \perp, \vee, \rightarrow and \leftrightarrow.

Semantics of modal logic

Semantics in Kripke models (W, R, v), where W is a set, $R \subseteq W \times W$ and $v: V \rightarrow \mathcal{P}(W):$

$$
\begin{aligned}
& \llbracket p \rrbracket:=v(p) \quad \llbracket \top \rrbracket:=W \quad \llbracket \varphi \wedge \psi \rrbracket:=\llbracket \varphi \rrbracket \cap \llbracket \psi \rrbracket \\
& \llbracket \neg \varphi \rrbracket:=W \backslash \llbracket \varphi \rrbracket \quad \llbracket \square \varphi \rrbracket:=\{w \mid R[w] \subseteq \llbracket \varphi \rrbracket\}
\end{aligned}
$$

It follows that $\llbracket \diamond \varphi \rrbracket=\{w \mid R[w] \cap \llbracket \varphi \rrbracket \neq \emptyset\}$.

$$
\llbracket \square p \rrbracket=\{w, u, z\}
$$

$$
\llbracket \diamond \square \perp \rrbracket=\{w, v\}
$$

The modal logics \mathbf{K} and $\mathbf{A l t}_{1}$

$\varphi \in \mathbf{K}$ iff $\llbracket \varphi \rrbracket=W$ holds in all Kripke models (W, R, v).
$\varphi \in \mathbf{A l t}_{1}$ iff $\llbracket \varphi \rrbracket=W$ holds in all Kripke models (W, R, v), with $|R[w]| \leq 1$, for all $w \in W$.

The unifiability problem

A K-unifier for a formula $\varphi \in F(\mathrm{~V})$ over V is a substitution $\sigma: \mathrm{V} \rightarrow F(\emptyset)$ such that $\sigma(\varphi) \in \mathbf{K}$.

The unifiability problem for \mathbf{K} :
INPUT: a modal formula φ
QUESTION: Is there a K-unifier for φ ?

Same definitions with Alt $_{1}$ in place of \mathbf{K}.

Examples

φ	$\sigma(p)=?$	$\sigma(\varphi)$
$p \rightarrow \square p$	$p \mapsto \top$	$\top \rightarrow \square \top$
$p \leftrightarrow \square \neg p$	none (why?)	

Some results on unifiability in modal logic

1. Ghilardi (1990's): Decidability for transitive modal logics
2. Baader \& Morawska and Baader \& Narendran (2000's): Decidability for fragments
3. Wolter \& Zakharyaschev (2008): Undecidability for K with universal modality
4. Jeřábek (2015): K has nullary unification type
5. Balbiani and Tinchev (2016): Alt ${ }_{1}$-unifiability is in PSPACE

Duality step by step

Characterization for $\mathbf{A l t}_{1}$

To characterize Alt $_{1}$-unifiability we use graphs with a binary relation S and a unary predicate E. Example:

Theorem
The formula φ is $\mathbf{A l t}_{1}$-unifiable if and only if there is a graph homomorphism $C_{n} \rightarrow P(\varphi)$ for some n.

The "canonical" graphs C_{n}

Theorem
The formula φ is $\mathbf{A l t}_{1}$-unifiable if and only if there is a graph homomorphism $C_{n} \rightarrow P(\varphi)$ for some n.
The graphs C_{0}, C_{1} and C_{2} :

The "canonical" graphs C_{n}

Theorem
The formula φ is $\mathbf{A l t}_{1}$-unifiable if and only if there is a graph homomorphism $C_{n} \rightarrow P(\varphi)$ for some n.
The graphs C_{0}, C_{1} and C_{2} :
C_{0} :

Theorem
The formula φ is $\mathbf{A l t}_{1}$-unifiable if and only if there is a path $v_{0} S v_{1} S \ldots S v_{n}$ in $P(\varphi)$, with $v_{0} S v_{0}$ and $v_{n} \in E$.

Example: Computing $P(\varphi)$ for $\varphi=p \rightarrow \square p$

New result for $\mathbf{A l t}_{1}$

Balbiani and Tinchev (2016): Alt ${ }_{1}$-unifiability is in PSPACE
Theorem
Unifiability in $\mathbf{A l t}_{1}$ is PSPACE-complete.

This follows from:
Theorem
The formula φ is $\mathbf{A l t}_{1}$-unifiable if and only if there is a path $v_{0} S v_{1} S \ldots S v_{n}$ in $P(\varphi)$, with $v_{0} S v_{0}$ and $v_{n} \in E$.

Characterization for K

Theorem
The formula φ is \mathbf{K}-unifiable if and only if there is a \mathcal{P}-graph homomorphism $C_{n} \rightarrow P(\varphi)$ for some n.

A \mathcal{P}-graph (X, R) is a set X with a relation $R \subseteq X \times \mathcal{P}(X)$.
A \mathcal{P}-graph homomorphism from (X, R) to $\left(X^{\prime}, R^{\prime}\right)$ is a function $h: X \rightarrow X^{\prime}$ such that for all $x \in X$ and $U \subseteq X$

$$
\text { if }(x, U) \in R \text { then }(h(x), h[U]) \in R^{\prime} .
$$

An intermediate case: de Bruijn graphs

We define a logic for which the "canonical" graphs are:

Conclusions

1. Unifiability problems in modal logic can be reformulated in terms of graph homomorphism.
2. For Alt $_{1}$ we obtain a new PSPACE lower bound.
3. For \mathbf{K} decidability remains difficult.

Conclusions

1. Unifiability problems in modal logic can be reformulated in terms of graph homomorphism.
2. For Alt $_{1}$ we obtain a new PSPACE lower bound.
3. For \mathbf{K} decidability remains difficult.

Thank you!

Homomorphisms give rise to unifiers for $\varphi=p \rightarrow \square p$
Recall $P(\varphi), C_{0}, C_{1}$ and C_{2} :

homomorphism
$C_{0} \rightarrow P(\varphi)$ with $\top \mapsto p$
$C_{0} \rightarrow P(\varphi)$ with $\top \mapsto \bar{p}$
$C_{1} \rightarrow P(\varphi)$ with $\diamond \top \mapsto \bar{p}, \square \perp \mapsto p$
$C_{2} \rightarrow P(\varphi)$ with $\diamond \diamond \top \mapsto \bar{p}, \diamond \square \perp \mapsto p, \square \perp \mapsto p$
becomes unifier
$p \mapsto \top$
$p \mapsto \perp$
$p \mapsto \square \perp$
$p \mapsto \square \square \perp$
$(\square \square \perp \equiv \diamond \square \perp \vee \square \perp)$

Additional example: $P(\varphi)$ for $\varphi=p \leftrightarrow \square \neg p$

No $C_{n} \rightarrow P(\varphi)$ because $P(\varphi)$ has no reflexive point.
$\Rightarrow p \leftrightarrow \square \neg p$ is not unifiable!

A more complex example in Alt $_{1}$

Consider $\varphi=(\diamond p \rightarrow p \wedge q) \wedge(\diamond \neg q \rightarrow p \wedge \neg q) \wedge(\square \perp \rightarrow \neg p)$.
The graph $P(\varphi)$:

A unifier is $p \mapsto \diamond \top, q \mapsto \diamond \diamond T$.

