Modal unification step by step

Sam van Gool1 \quad Johannes Marti2

1IRIF, Université Paris Cité
2Universität Zürich

Juli 2, 2023
Overview

We characterize the unification problem in some modal logics as a homomorphism problem for finite graphs.
Syntax of modal logic

The set $F(V)$ of modal formulas over V:

$$
\varphi ::= p, q, \ldots \in V \mid T \mid \varphi \land \varphi \mid \neg \varphi \mid \Box \varphi
$$

Plus $\Diamond \varphi ::= \neg \Box \neg \varphi$ and standard definitions for \bot, \lor, \rightarrow and \leftrightarrow.

Semantics of modal logic

Semantics in Kripke models \((W, R, v)\), where \(W\) is a set, \(R \subseteq W \times W\) and \(v : V \rightarrow P(W)\):

\[
[p] := v(p) \quad [\top] := W \quad [\varphi \land \psi] := [\varphi] \cap [\psi] \\
[\neg \varphi] := W \setminus [\varphi] \quad [\Box \varphi] := \{w \mid R[w] \subseteq [\varphi]\}
\]

It follows that \([\Diamond \varphi] = \{w \mid R[w] \cap [\varphi] \neq \emptyset\}\).

\[
\begin{aligned}
&z : \overline{p} \\
\uparrow \\
&u : p \\
&\quad \downarrow \quad \downarrow
\\
&w : \overline{p} \\
&v : \overline{p}
\end{aligned}
\]

\[
[\Box p] = \{w, u, z\} \quad [\Diamond \Box \bot] = \{w, v\}
\]
The modal logics \mathbf{K} and \mathbf{Alt}_1

$\varphi \in \mathbf{K}$ iff $[\varphi] = W$ holds in all Kripke models (W, R, v).

$\varphi \in \mathbf{Alt}_1$ iff $[\varphi] = W$ holds in all Kripke models (W, R, v), with $|R[w]| \leq 1$, for all $w \in W$.
The unifiability problem

A K-unifier for a formula $\varphi \in F(V)$ over V is a substitution $\sigma : V \rightarrow F(\emptyset)$ such that $\sigma(\varphi) \in K$.

The unifiability problem for K:
INPUT: a modal formula φ
QUESTION: Is there a K-unifier for φ?

Same definitions with Alt_1 in place of K.
Examples

<table>
<thead>
<tr>
<th>φ</th>
<th>$\sigma(p) = ?$</th>
<th>$\sigma(\varphi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \rightarrow \Box p$</td>
<td>$p \leftrightarrow \top$</td>
<td>$\top \rightarrow \Box \top$</td>
</tr>
<tr>
<td>$p \leftrightarrow \Box \neg p$</td>
<td>none (why?)</td>
<td></td>
</tr>
</tbody>
</table>

Some results on unifiability in modal logic

1. Ghilardi (1990’s): Decidability for transitive modal logics
3. Wolter & Zakharyaschev (2008): Undecidability for \mathbf{K} with universal modality
4. Jeřábek (2015): \mathbf{K} has nullary unification type
5. Balbiani and Tinchev (2016): \mathbf{Alt}_1-unifiability is in PSPACE
Duality step by step

\[F_0(V) \rightarrow F_1(V) \rightarrow \cdots \rightarrow F_n(V) \rightarrow \cdots \]

\[T_0(V) \leftarrow T_1(V) \leftarrow \cdots \leftarrow T_n(V) \leftarrow \cdots \]
Characterization for Alt_1

To characterize Alt_1-unifiability we use graphs with a binary relation S and a unary predicate E. Example:

$$a \rightarrow b$$

Theorem

The formula φ is Alt_1-unifiable if and only if there is a graph homomorphism $C_n \rightarrow P(\varphi)$ for some n.
The “canonical” graphs C_n

Theorem
The formula φ is Alt_1-unifiable if and only if there is a graph homomorphism $C_n \to P(\varphi)$ for some n.

The graphs C_0, C_1 and C_2:
The “canonical” graphs C_n

Theorem

The formula φ is Alt_1-unifiable if and only if there is a graph homomorphism $C_n \rightarrow P(\varphi)$ for some n.

The graphs C_0, C_1 and C_2:

C_0:

C_1:

C_2:

Theorem

The formula φ is Alt_1-unifiable if and only if there is a path $v_0Sv_1S\ldots Sv_n$ in $P(\varphi)$, with v_0Sv_0 and $v_n \in E$.
Example: Computing $P(\varphi)$ for $\varphi = p \rightarrow \Box p$
New result for Alt$_1$

Balbiani and Tinchev (2016): Alt$_1$-unifiability is in PSPACE

Theorem

Unifiability in Alt$_1$ is PSPACE-complete.

This follows from:

Theorem

The formula φ is Alt$_1$-unifiable if and only if there is a path $v_0Sv_1S\ldots Sv_n$ in $P(\varphi)$, with v_0Sv_0 and $v_n \in E$.
Characterization for \mathbf{K}

Theorem

The formula φ is \mathbf{K}-unifiable if and only if there is a \mathcal{P}-graph homomorphism $C_n \rightarrow \mathcal{P}(\varphi)$ for some n.

A \mathcal{P}-graph (X, R) is a set X with a relation $R \subseteq X \times \mathcal{P}(X)$. A \mathcal{P}-graph homomorphism from (X, R) to (X', R') is a function $h : X \rightarrow X'$ such that for all $x \in X$ and $U \subseteq X$

$$\text{if } (x, U) \in R \text{ then } (h(x), h[U]) \in R'$$.
An intermediate case: de Bruijn graphs

We define a logic for which the “canonical” graphs are:
Conclusions

1. Unifiability problems in modal logic can be reformulated in terms of graph homomorphism.
2. For Alt_1 we obtain a new PSPACE lower bound.
3. For \mathbf{K} decidability remains difficult.
Conclusions

1. Unifiability problems in modal logic can be reformulated in terms of graph homomorphism.
2. For Alt_1 we obtain a new PSPACE lower bound.
3. For K decidability remains difficult.

Thank you!
Homomorphisms give rise to unifiers for $\varphi = p \rightarrow \Box p$

Recall $P(\varphi)$, C_0, C_1 and C_2:

- $C_0 \rightarrow P(\varphi)$ with $\top \mapsto p$
- $C_0 \rightarrow P(\varphi)$ with $\top \mapsto \overline{p}$
- $C_1 \rightarrow P(\varphi)$ with $\Diamond \top \mapsto \overline{p}$, $\Box \bot \mapsto p$
- $C_2 \rightarrow P(\varphi)$ with $\Diamond \Diamond \top \mapsto \overline{p}$, $\Diamond \Box \bot \mapsto p$, $\Box \bot \mapsto p$

The homomorphism becomes unifier

- $p \mapsto \top$
- $p \mapsto \bot$
- $p \mapsto \Box \bot$
- $p \mapsto \Box \Box \bot$

($(\Box \Box \bot \equiv \Diamond \bot \lor \Diamond \bot)$
Additional example: $P(\varphi)$ for $\varphi = p \iff \Box \neg p$

$\begin{array}{cccccc}
p & \bar{p} & p & p & \bar{p} \\
\checkmark & \times & \times & \checkmark & \checkmark & \times
\end{array}$

No $C_n \rightarrow P(\varphi)$ because $P(\varphi)$ has no reflexive point.
$\Rightarrow p \iff \Box \neg p$ is not unifiable!
A more complex example in \textbf{Alt}_1

Consider $\varphi = (\Diamond p \rightarrow p \land q) \land (\Diamond \neg q \rightarrow p \land \neg q) \land (\Box \bot \rightarrow \neg p)$.

The graph $P(\varphi)$:

A unifier is $p \mapsto \Diamond \top, q \mapsto \Diamond \Diamond \top$.