On Anti-unification in Absorption Theories

Andrés Felipe González Barragan[†] (UnB)

David M. Cerna (CAS ICS), Mauricio Ayala-Rincón (UnB)

Temur Kutsia (RISC - U. Linz)

[†]Author supported by a Brazilian CAPES Scholarship

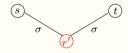
37th Int. Workshop on Unification (UNIF), FSCD 2003 Rome, July 2nd, 2023

Outline

- 1. Motivation
- 2. Absorption Theory
- 3. Anti-Unification Algorithm for absorption theory
- 4. Conclusions and Future work

Unification

Goal: find a substitution that identifies two expressions (terms).



where $t\sigma \approx r' \approx s\sigma$.

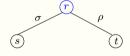
Example 1

Identify the terms h(g(a), y) and h(g(z), f(w)). Using the substitution $\sigma = \{y \mapsto f(w), z \mapsto a\}$ the expressions unify to h(g(a), b).

Anti-unification

Goal: find the commonalities between two expressions (terms).

An expression with such commonalities is called a generalization.



where $r\sigma \approx s$ and $r\rho \approx t$.

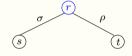
Example 2

Generalize the terms h(g(a), y) and h(g(z), f(w)).

Anti-unification

Goal: find the commonalities between two expressions (terms).

An expression with such commonalities is called a generalization.



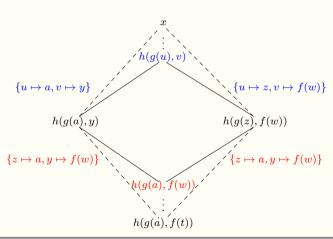
where $r\sigma \approx s$ and $r\rho \approx t$.

Example 2

Generalize the terms h(g(a), y) and h(g(z), f(w)). generalization: h(g(u), v), with substitutions $\sigma = \{u \mapsto a, v \mapsto u\}$ and

$$\rho = \{u \mapsto z, v \mapsto f(w)\}.$$

Unification and Anti-unification



One interesting example of verbatim plagiarism:

- (Original sentence). All around the world, technology is continuing to become a part of everyday life, and its capabilities are progressing rapidly.
- (Possibly sentence with plagiarism). All over the world, technology became a part of our lives, and its capabilities are progressing very quickly.

Then finding the common parts and the differences in the sentences:

- All around the world, technology is continuing to become a part of everyday life, and its capabilities are progressing rapidly.
- All over the world, technology became a part of our lives, and its capabilities are progressing very quickly.

All \square the world, technology \square a part of \square , and its capabilities are progressing \square .

Applications of anti-unification include:

- searching parallel recursion schemes to transform sequential algorithms into parallel algorithms (Barwell et al. [BBH18]);
- preventing bugs and misconfigurations in software (Mehta et al. [MBK⁺20]);
- finding duplicate code and similarities;
- detecting code clones (i.e., plagiarism).

Absorption Theory

Absorption Theory

- ullet The alphabet consists of a countable set of variables ${\mathcal V}$ and set ${\mathcal F}$ of function and with a special constant symbol \star (The wild card).
- Terms over this alphabet, $\mathcal{T}(\mathcal{F}, \mathcal{V})(\mathcal{T})$ and $\mathcal{T}(\mathcal{F} \cup \{\star\}, \mathcal{V})(\mathcal{T}_{\star})$, defined as usually:

$$t := x \mid f(t_1, \dots, t_n)$$

- A finite set E that consists of equations $s \approx t$.
- A preorder \prec_E , which states that $s \prec_E t$ if there exists a substitution σ such that $s\sigma \approx_E t$.

Absorption Theory

Type of anti-unification problems

The type of an anti-unification modulo ${\cal E}$ problem is classified as below.

- Nullary(0): if there are terms s and t such that $mcsg_E(s,t)$ does not exist. Also, called $type\ zero$.
- Unitary(1): if for all s and t, $mcsg_E(s,t)$ has just one generalization.
- Finitary(ω): if for all s and t, $mcsg_E(s,t)$ has more than one generalization.
- Infinitary(∞): there are terms s and t such that $mcsg_E(s,t)$ is infinite.

Type of some Theories

Absorption Theory ○○●○○○○○

Type	Authors and References	Procedure or Term
1	G. Plotkin and [Plo70, Rey70]	Dec, Sol, Rec
	J. Reynolds	
ω	M. Alpuente et al. [AEEM14]	A-left, A-right
ω	M. Alpuente et al. [AEEM14]	С
ω	D. Cerna [CK20a]	Start-C, Sat-C, M
∞	D. Cerna and T. Kutsia [CK20a]	M, Id-left,Id-right
		ld-both (1,2,3)
0	D. Cerna and T. Kutsia [CK20b]	$e_f \triangleq e_g$
	f(g(x,y),x)	
	1 ω ω ω ω	1 G. Plotkin and [Plo70, Rey70] J. Reynolds ω M. Alpuente et al. [AEEM14] ω M. Alpuente et al. [AEEM14] ω D. Cerna [CK20a] ∞ D. Cerna and T. Kutsia [CK20a]

Absorption Theory ○○○●○○○○

Theory	Type	Authors and References	Procedure or Term
AC, ACU	ω	M. Alpuente et al. [AEEM14]	AC-left, AC-right
AU_2 , CU_2 , ACU_2	0	D. Cerna and T. Kutsia [CK20b]	$e_f \triangleq e_g$
			f(g(x,y),x)
$(UI)_2$, $(ACUI)_2$	0	D. Cerna and T. Kutsia [CK20b]	$e_f \triangleq e_g$
			$f(g(f(x,y),e_f),x)$
Semirings (S), SC	0	D. Cerna [Cer20]	$e_f \triangleq e_g$
			$\prod_{i=1}^{n} m_i$
			$\prod_{i=1}^{n} x$

Type of some Theories

Theory	Type	Authors and References	Procedure or Term
$Absorption_{\geq 1} \; (\mathtt{Abs})$?	_	_
$(ACU)_2$, $(ACU)_2Abs$	0	D. Cerna [Cer20]	$e_f \triangleq e_g$
			$\prod_{i=1}^{n} x$
Simply-typed λ -calculus	0	D. Cerna and	$\lambda xy.f(x) \triangleq \lambda xy.f(y)$
		M. Buran[BC22]	
$IAbs_1(UI)_2Abs$	\emptyset,∞ ?	_	_

Absorption Theory

- An anti-unification equation (AUE) between s and t in a normal form is denoted by $s \stackrel{x}{\triangleq}_E t$, where x is called as label.
- A valid set of AUEs is a set of AUEs where all the labels are different.
- An AUE $s \stackrel{\sim}{=} t$ is *solved* if head(s) and head(t) are not related absorption symbols, where $s,t \in \mathcal{T}$.
- An AUE $s \stackrel{\mbox{\tiny \'e}}{=} t$ is *wild* if one of the terms is the wild card and the other belongs to $\mathcal{T}.$

Absorption Theory

Absorption Theory

Absorption is an important algebraic attribute in some magmas: for some function symbol f there is a constant ε_f such that

$$f(x, \varepsilon_f) \approx \varepsilon_f$$
, or/and $f(\varepsilon_f, x) \approx \varepsilon_f$

Equational theories with these equations are called an absorption theories (Abs).

Example 3

Let's find one generalization of the AUE $\varepsilon_f \triangleq_{\mathtt{Abs}} f(f(a,b),c)$.

The idea of the algorithm is to expand the ε_f to get the generalization:

$$\begin{array}{cccc}
\varepsilon_f & \stackrel{x}{\triangleq} f(f(a,b),c) & x \\
f(\varepsilon_f,c) & \stackrel{x}{\triangleq} f(f(a,b),c) & x \\
\varepsilon_f & \stackrel{x}{\triangleq} f(a,b),c & \stackrel{z}{\triangleq} c \\
f(\varepsilon_f,b) & \stackrel{x}{\triangleq} f(a,b) & f(y,z) \\
\varepsilon_f & \stackrel{u}{\triangleq} a,b & \stackrel{v}{\triangleq} b \\
\varepsilon_f & \stackrel{u}{\triangleq} a & f(f(u,v),c) \\
\varepsilon_f & \stackrel{u}{\triangleq} a & f(f(u,b),c)
\end{array}$$

Algorithm for absorption theory

To build the algorithm we consider a quadruple $\langle A;S;T;\theta\rangle$ as a *configuration* in each step of the procedure, where:

- A is the valid set of unsolved AUEs;
- S is the *store*, the valid set of *solved* AUEs;
- T is the abstraction, the valid set of wild AUEs;
- \bullet θ is a *substitution* mapping the labels of the AUEs to the term of the generalization given by the rules.

Inference Rules

Then we define the next rules

(Dec): **Decompose**

$$\langle \{f(s_1, \dots, s_n) \stackrel{x}{\triangleq} f(t_1, \dots, t_n)\} \sqcup A; S; \theta \rangle$$

$$\stackrel{Dec}{\Longrightarrow} \langle \{s_1 \stackrel{y_1}{\triangleq} t_1, \dots, s_n \stackrel{y_n}{\triangleq} t_n\} \cup A; S; \theta \{x \mapsto f(y_1, \dots, y_n)\} \rangle$$

For f any function symbol, n > 0, and y_1, \ldots, y_n are fresh variables.

Inference Rules

(Solve): **Solve**

$$\langle \{s \overset{x}{\triangleq} t\} \sqcup A; S; T; \theta \rangle \overset{Sol}{\Longrightarrow} \langle A; \{s \overset{x}{\triangleq} t\} \cup S; T; \theta \rangle$$

Where $head(s) \neq head(t)$ are not related absorption symbols.

(Mer): Merge

$$\langle \emptyset; \{s \overset{x}{\triangleq} t\} \cup \{s \overset{y}{\triangleq} t\} \cup S; \theta \rangle \overset{Mer}{\Longrightarrow} \langle \emptyset; \{s \overset{y}{\triangleq} t\} \cup S; \theta \{x \mapsto y\} \rangle$$

Inference Rules

(ExpLA1): Expansion for Absorption, Left 1

$$\langle \{ \varepsilon_f \stackrel{x}{\triangleq} f(t_1, t_2) \} \sqcup A; S; T; \theta \rangle$$

$$\stackrel{\text{ExpLA1}}{\Longrightarrow} \langle \{ \varepsilon_f \stackrel{y_1}{\triangleq} t_1 \} \cup A; S; \{ \star \stackrel{y_2}{\triangleq} t_2 \} \cup T; \theta \{ x \mapsto f(y_1, y_2) \} \rangle$$

(ExpLA2): Expansion for Absorption, Left 2

$$\begin{split} & \langle \{\varepsilon_f \overset{x}{\triangleq} f(t_1, t_2)\} \sqcup A; S; T; \theta \rangle \\ & \xrightarrow{\text{ExpLA2}} & \langle \{\varepsilon_f \overset{y_2}{\triangleq} t_2\} \cup A; S; \{\star \overset{y_1}{\triangleq} t_1\} \cup T; \theta \{x \mapsto f(y_1, y_2)\} \rangle \end{split}$$

Inference Rules

(ExpRA1): Expansion for Absorption, Right 1

$$\langle \{f(s_1, s_2) \overset{x}{\triangleq} \varepsilon_f\} \sqcup A; S; T; \theta \rangle$$

$$\overset{\text{ExpRA1}}{\Longrightarrow} \langle \{s_1 \overset{y_1}{\triangleq} \varepsilon_f\} \cup A; S; \{s_2 \overset{y_2}{\triangleq} \star\} \cup T; \theta \{x \mapsto f(y_1, y_2)\} \rangle$$

(ExpRA2): Expansion for Absorption, Right 2

$$\begin{split} & \langle \{f(s_1,s_2) \overset{x}{\triangleq} \varepsilon_f\} \sqcup A; S; T; \theta \rangle \\ & \overset{y_2}{\Longrightarrow} \langle \{s_2 \overset{\Delta}{\triangleq} \varepsilon_f\} \cup A; S; \{s_1 \overset{y_1}{\triangleq} \star\} \cup T; \theta \{x \mapsto f(y_1,y_2)\} \rangle \end{split}$$

Algorithm Ant_Unif

The algorithm ANT_UNIF is an exhaustive application of the inference rules to transform an initial configuration $\langle A; \emptyset; \emptyset; \iota \rangle$ into a set of final configurations with an empty set of unsolved AUEs of the form $\langle \emptyset, S, T, \theta \rangle$ and there are no different AUEs with the same terms s,t and with a different label.

Example 4

Apply Ant_Unif to the anti-unification problem $g(\varepsilon_f, a) \triangleq g(f(h(\varepsilon_f), a), \varepsilon_f)$.

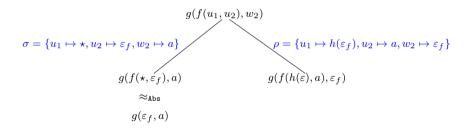
$$\langle \{g(\varepsilon_f, a) \stackrel{\triangle}{\triangleq} g(f(h(\varepsilon_f), a), \varepsilon_f)\}; \emptyset; \emptyset; \iota \rangle \stackrel{Dec}{\Longrightarrow}$$

$$\langle \{\varepsilon_f \stackrel{\omega_1}{\triangleq} f(h(\varepsilon_f), a), a \stackrel{\omega_2}{\triangleq} \varepsilon_f\}; \emptyset; \emptyset; \{x \mapsto g(w_1, w_2)\} \rangle \stackrel{ExplA2}{\Longrightarrow}$$

$$\langle \{\varepsilon_f \stackrel{\Delta}{\triangleq} a, a \stackrel{\Delta}{\triangleq} \varepsilon_f\}; \emptyset; \{\star \stackrel{\Delta}{\triangleq} h(\varepsilon_f)\}; \{x \mapsto g(f(u_1, u_2), w_2)\} \rangle \stackrel{Sol}{\Longrightarrow}$$

$$\langle \{\varepsilon_f \stackrel{\Delta}{\triangleq} a\}; \{a \stackrel{\omega_2}{\triangleq} \varepsilon_f\}; \{\star \stackrel{\Delta}{\triangleq} h(\varepsilon_f)\}; \{x \mapsto g(f(u_1, u_2), w_2)\} \rangle \stackrel{Sol}{\Longrightarrow}$$

$$\langle \emptyset; \{\varepsilon_f \stackrel{\Delta}{\triangleq} a, a \stackrel{\omega_2}{\triangleq} \varepsilon_f\}; \{\star \stackrel{\Delta}{\triangleq} h(\varepsilon_f)\}; \{x \mapsto g(f(u_1, u_2), w_2)\} \rangle$$



Then, $g(f(u_1, u_2), w_2)$ is a generalization with the substitutions σ and ρ .

Abstraction Set

Abstraction Set

Let t be a term in Abs-normal form, and σ be a substitution with images in Abs-normal form. The abstraction of t with respect to σ is the set:

$$\uparrow(t,\sigma):=\{r\mid r\sigma\approx_{\text{\tiny Abs}}t,\, r\text{ is an Abs-normal form, and } \textit{Var}(r)\subseteq\textit{Dom}(\sigma)\}$$

Example 5

Find the abstraction set of $h(\varepsilon_f)$ with respect to $\rho = \{u_2 \mapsto a, w_2 \mapsto \varepsilon_f\}$:

$$\uparrow (h(\varepsilon_f), \rho) = \{h(\varepsilon_f), h(w_2), h(f(w_2, \star)), h(f(\star, w_2)), h(f(u_2, w_2)), \dots \}$$

Where \star could be replaced by a term whose variables are included in $Dom(\rho)$. For example, $h(f(w_2,a))$ and $h(f(w_2,h(g(u_2,w_2))))$ belong to the abstraction set.

Continue with Example 4:

$$(\varepsilon_f, a) \triangleq g(f(h(\varepsilon_f), a), \varepsilon_f)$$

The final branch:

$$\langle \emptyset; \{ \varepsilon_f \stackrel{u_2}{\triangleq} a, a \stackrel{w_2}{\triangleq} \varepsilon_f \}; \{ \star \stackrel{u_1}{\triangleq} h(\varepsilon_f) \}; \{ x \mapsto g(f(u_1, u_2), w_2) \} \rangle$$

To find a less general generalization, it is possible to replace the variable u_1 in the generalization $g(f(u_1, u_2), w_2)$ for one of the elements of the abstraction set $\uparrow (h(\varepsilon_f), \rho)$.

Then, the term $g(f(h(f(w_2, a)), u_2), w_2)$ is a generalization too.

$$g(f(h(f(w_2,a)),u_2),w_2)$$

$$\sigma = \{u_2 \mapsto \varepsilon_f, w_2 \mapsto a\}$$

$$\rho = \{u_2 \mapsto a, w_2 \mapsto \varepsilon_f\}$$

$$g(f(h(f(a,a)),\varepsilon_f),a)$$

$$g(f(h(f(\varepsilon_f,a)),a),\varepsilon_f)$$

$$\approx_{\mathsf{Abs}}$$

$$g(\varepsilon_f,a)$$

$$g(f(h(\varepsilon_f),a),\varepsilon_f)$$

Algorithm for ANT_UNIF

Termination

The procedure Ant_Unif is terminating. Particularly, for any configuration $\langle A; S; T; \theta \rangle$, it outputs a finite set of configurations of the form $\langle \emptyset; S'; T'; \theta' \rangle$.

Algorithm for ANT_UNIF

Soundness

If $\langle A_0; S_0; T_0; \theta_0 \rangle \Longrightarrow^* \langle \emptyset; S_n; T_n; \theta_n \rangle$ is a derivation to a final configuration, then for each $s \triangleq t \in A_0 \cup S_0 \cup T_0$:

- $x\theta_n$ is a generalization of s and t, and $x\theta_n\sigma_{\mathcal{D}}\approx_{\mathsf{Abs}} s$ and
- $x\theta_n\rho_{\mathcal{D}} \approx_{\mathsf{Abs}} t$.

Conclusions and Future work

- We design an algorithm for anti-unification in absorption theories. The algorithm is terminating and sound.
- We conjecture that the algorithm is complete.
 The complete set of least general generalizers can be built from the computed substitutions, the store, and the abstraction set.

References

María Alpuente, Santiago Escobar, Javier Espert, and José Meseguer.

A modular order-sorted equational generalization algorithm.

Information and Computation, 235:98-136, 2014.

Adam D. Barwell, Christopher Brown, and Kevin Hammond.

Finding parallel functional pearls: Automatic parallel recursion scheme detection in haskell functions via anti-unification. Future Gener, Comput. Syst., 79:669–686, 2018.

Michal Buran and David M. Cerna.

One or nothing: Anti-unification over the simply-typed lambda calculus. CoRR, abs/2207.08918, 2022.

David M. Cerna.

Anti-unification and the theory of semirings. *Theo. Com. Sci.*, 848:133–139, 2020.

David M. Cerna and Temur Kutsia.

Idempotent anti-unification.

ACM Trans. Comput. Log., 21(2):10:1-10:32, 2020.

David M. Cerna and Temur Kutsia

Unital anti-unification: type algorithms.

5th International Conference on Formal Structures for Computation and Deduction, FSCD, 167(6):26:1–26:20, 2020.

Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, Chetan Bansal, Chandra Maddila, B. Ashok, Sumit Asthana, Christian Bird, and Aditya Kumar.

Rex: Preventing bugs and misconfiguration in large services using correlated change analysis.

In 17th USENIX Symposium on Networked Systems Design and Implementation (NSDI), pages 435-448, 2020.

Gordon D. Plotkin.

A note on inductive generalization. *Machine Intelligence 5*, 5:153–163, 1970.

John C. Reynolds.

Transformational system and the algebric structure of atomic formulas.

Machine Intelligence 5, 5:135-151, 1970.