
Inferring RPO Symbol Ordering

Wei Du 1 Paliath Narendran 1 Michael Rusinowitch 2

1University at Albany–SUNY, Albany, NY, USA
e-mail: {wdu2, pnarendran}@albany.edu

2LORIA-INRIA Nancy-Grand Est
e-mail: rusi@loria.fr

Outline

Introduction

NP-Completeness

The One Rule Case

2 / 16

Background

Termination is a property of term rewriting system (TRS).

Term orderings are important to show termination of TRS.

Dershowitz introduced recursive path ordering (RPO).

We study RPO in the context of string rewriting systems (SRS).

3 / 16

RPO Definition on Strings

Definition 1
Let Σ be an alphabet and ≻ be an ordering on Σ.
Then x >rpo y iff any of these is true:
(1) y = ε and |x | > 0.
(2) x = au, y = av , and u >rpo v .
(3) x = au, y = bv , and either

(3a) u ≥rpo y , or
(3b) a ≻ b and x >rpo v .

Example: BAB >rpo ACC with the ordering A ≻ B ≻ C
Hint: first use (3a), then (2), (3b), (3b), finally (1).

4 / 16

RPO Characterization when ≻ is Total

Definition 2
Let max(w , Σ) denote the maximal symbol of Σ that occurs in w .
mul(w , Σ) be the number of times this max symbol occurs in w .
w >rpo w ′ iff any of the following holds:

1. max(w , Σ) ≻ max(w ′, Σ)
2. max(w , Σ) = max(w ′, Σ) and mul(w , Σ) > mul(w ′, Σ)
3. a = max(w , Σ) = max(w ′, Σ), mul(w , Σ) = mul(w ′, Σ),

w = w0aw1aw2 . . .awk

w ′ = u0au1au2 . . .auk

and there exists 0≤ i ≤ k such that wi >rpo ui and
for all j > i we have wj = uj .

5 / 16

RPO Property on Strings

Let w and w ′ be two strings that do not share a common suffix.
Then w >rpo w ′ iff one of the following holds:

1. max(w , Σ) ≻ max(w ′, Σ)
2. max(w , Σ) = max(w ′, Σ) and mul(w , Σ) > mul(w ′, Σ)
3. a = max(w , Σ) = max(w ′, Σ), mul(w , Σ) = mul(w ′, Σ), and

µ(a,w) >rpo µ(a,w ′) where µ(a,w) is the longest suffix of
w that does not contain a.

Example: BAB >rpo ACC with the ordering A ≻ B ≻ C
Hint: first use case 3 where µ(A,BAB) = B and µ(A,ACC) = CC ,
then use case 1 where B ≻ C .

6 / 16

The SYMBOL-ORDER Problem

Input: A string-rewriting system {li → ri | 1≤ i ≤ n}

Question: Is there a symbol ordering ≻ such that
li >rpo ri for all i?

For arbitary TRSs, this is known to be NP complete (M.S.
Krishnamoorthy and P. Narendran).

How about for SRS?

7 / 16

2-3-SAT Problem is NP-Complete

2-3-SAT: A set contains 2-clauses (with only negative literals)
and 3-clauses (with only positive literals).

2-3-SAT problem is NP-complete by a reduction from 3-SAT:
Let L be the set of literals and let C be the set of clauses.

1 Replace all negative literals in the 3-SAT as shown below:
∀¬a ∈ L: let L← (L\¬a)∪a′ and C ← C ∪{¬a∨¬a′,a∨a′}

2 Replace the clause (a∨a′) above by clauses with new literals:
Let L← L∪{z1,z2} and
C ← (C \a∨a′)∪{a∨a′∨ z1,a∨a′∨ z2,¬z1∨¬z2}

8 / 16

SYMBOL-ORDER Problem is NP-Complete

Reduce the 2-3-SAT problem to the SYMBOL-ORDER problem:
Let Φ be any CNF formula as stated in the 2-3-SAT problem.
For each variable xi in Φ, we introduce a symbol ai .
We then use symbol d to simulate truth and falsehood of a
variable: xi is true iff ai ≻ d , and xi is false iff ai ≺ d .
For each 3-clause (xi ∨ xj ∨ xk) we introduce the rule

aiajak → d

and for each 2-clause (¬xm ∨ ¬xn) we add the rules

damand → anam and
danamd → aman

9 / 16

The One Rule Case: Definitions

We use x
∃
>rpo y to denote “there is an ordering ≻ on Σ

such that x >rpo y ”.

For two strings x ,y , we define

∆x ,y = {a ∈ Σ | #a(x) = #a(y)}.

The Parikh vector of a string w over an (ordered)
alphabet {a1, . . . ,an} is the n-tuple

π(w) =
(

#a1(w), . . . ,#an(w)
)

10 / 16

The One Rule Case: Properties

Let x and y be distinct strings.
(1) If #a(x) > #a(y) for some a ∈ Σ, then x

∃
>rpo y .

(2) If #a(y) > #a(x) for all a ∈ Σ, then x ̸
∃
>rpo y .

Let x , y be two strings with no common suffix.
Then x

∃
>rpo y iff either

(a) there exists a such that #a(x) > #a(y) or
(b) there exists a in ∆x ,y and µ(a,x)

∃
>rpo µ(a,y).

11 / 16

The One Rule Case: Algorithm

Theorem
There is a polynomial time algorithm solving the
SYMBOL-ORDER problem for one-rule string-rewriting systems.

As a preprocessing step remove common suffixes first.
Then compute Parikh vectors of all suffixes of x and y .
Let $ be a new symbol occurs only at the beginning of x and y .
The algorithm builds a list L of length ≤ |Σ|+1 containing pairs of
suffixes (xi , yj) such that xi

∃
>rpo yj .

12 / 16

The One Rule Case: Algorithm Continued

Initialize list L to empty;
For i = 1 to |x |:

1 If xi = µ(a,x) for some a, then continue else go to the next i .
2 Let yj = µ(a,y).
3 If #b(xi) > #b(yj) for any symbol b, then add (xi , yj) to L.
4 Otherwise compute ∆xi ,yj and if (µ(c,xi), µ(c,yj)) ∈ L for any

symbol c ∈∆xi ,yj then add (xi , yj) to L.

If (µ($,x), µ($,y)) ∈ L then True else False

13 / 16

The One Rule Case: Algorithm Analysis

The algorithm runs in quadratic time:
The sets of vectors π(xi) and π(yi) can be computed in
quadratic time.

Then we can compute a table (i , j) 7→∆xi ,yj in quadratic time.

Therefore we proved the theorem by construction.

14 / 16

References I

N. Dershowitz.
Orderings for term-rewriting systems.
Theoretical Computer Science 17(3): 279–301. 1982.

M. S. Krishnamoorthy and P. Narendran.
On recursive path ordering.
Theoretical Computer Science, 40:323–328, 1985.

P. Narendran and M. Rusinowitch.
The theory of total unary RPO is decidable.
Computational Logic – CL 2000, First International
Conference, London, UK, 24-28 July, 2000, Proceedings,
volume 1861 of Lecture Notes in Computer Science, pages
660–672. Springer, 2000.

15 / 16

Questions

Thank you!

16 / 16

