Inferring RPO Symbol Ordering

Wei Du ${ }^{1}$ Paliath Narendran ${ }^{1}$ Michael Rusinowitch ${ }^{2}$

${ }^{1}$ University at Albany-SUNY, Albany, NY, USA e-mail: \{wdu2, pnarendran\}@albany.edu
${ }^{2}$ LORIA-INRIA Nancy-Grand Est e-mail: rusi@loria.fr

Outline

- Introduction

■ NP-Completeness

- The One Rule Case

Background

- Termination is a property of term rewriting system (TRS).
- Term orderings are important to show termination of TRS.
- Dershowitz introduced recursive path ordering (RPO).

We study RPO in the context of string rewriting systems (SRS).

RPO Definition on Strings

Definition 1

Let Σ be an alphabet and \succ be an ordering on Σ.
Then $x>_{\text {rpo }} y$ iff any of these is true:
(1) $y=\varepsilon$ and $|x|>0$.
(2) $x=a u, y=a v$, and $u>_{r p o} v$.
(3) $x=a u, y=b v$, and either
(3a) $u \geq_{\text {rpo }} y$, or
(3b) $a \succ b$ and $x>_{r p o} v$.
Example: $B A B>_{\text {rpo }} A C C$ with the ordering $A \succ B \succ C$ Hint: first use (3a), then (2), (3b), (3b), finally (1).

RPO Characterization when \succ is Total

Definition 2

Let $\max (w, \Sigma)$ denote the maximal symbol of Σ that occurs in w. $m u l(w, \Sigma)$ be the number of times this max symbol occurs in w. $w>_{\text {rpo }} w^{\prime}$ iff any of the following holds:

1. $\max (w, \Sigma) \succ \max \left(w^{\prime}, \Sigma\right)$
2. $\max (w, \Sigma)=\max \left(w^{\prime}, \Sigma\right)$ and $\operatorname{mul}(w, \Sigma)>\operatorname{mul}\left(w^{\prime}, \Sigma\right)$
3. $a=\max (w, \Sigma)=\max \left(w^{\prime}, \Sigma\right), \operatorname{mul}(w, \Sigma)=\operatorname{mul}\left(w^{\prime}, \Sigma\right)$,

$$
\begin{gathered}
w=w_{0} a w_{1} a w_{2} \ldots a w_{k} \\
w^{\prime}=u_{0} a u_{1} a u_{2} \ldots a u_{k}
\end{gathered}
$$

and there exists $0 \leq i \leq k$ such that $w_{i}>_{r p o} u_{i}$ and for all $j>i$ we have $w_{j}=u_{j}$.

RPO Property on Strings

Let w and w^{\prime} be two strings that do not share a common suffix. Then $w>_{\text {rpo }} w^{\prime}$ iff one of the following holds:

1. $\max (w, \Sigma) \succ \max \left(w^{\prime}, \Sigma\right)$
2. $\max (w, \Sigma)=\max \left(w^{\prime}, \Sigma\right)$ and $\operatorname{mul}(w, \Sigma)>\operatorname{mul}\left(w^{\prime}, \Sigma\right)$
3. $a=\max (w, \Sigma)=\max \left(w^{\prime}, \Sigma\right), \operatorname{mul}(w, \Sigma)=\operatorname{mul}\left(w^{\prime}, \Sigma\right)$, and $\mu(a, w)>_{\text {rpo }} \mu\left(a, w^{\prime}\right)$ where $\mu(a, w)$ is the longest suffix of w that does not contain a.

Example: $B A B>_{\text {rpo }} A C C$ with the ordering $A \succ B \succ C$ Hint: first use case 3 where $\mu(A, B A B)=B$ and $\mu(A, A C C)=C C$, then use case 1 where $B \succ C$.

The SYMBOL-ORDER Problem

Input: A string-rewriting system $\left\{I_{i} \rightarrow r_{i} \mid 1 \leq i \leq n\right\}$
Question: Is there a symbol ordering \succ such that $l_{i}>_{r p o} r_{i}$ for all i ?

For arbitary TRSs, this is known to be NP complete (M.S. Krishnamoorthy and P. Narendran).

How about for SRS?

2-3-SAT Problem is NP-Complete

- 2-3-SAT: A set contains 2-clauses (with only negative literals) and 3-clauses (with only positive literals).

■ 2-3-SAT problem is NP-complete by a reduction from 3-SAT:
Let L be the set of literals and let C be the set of clauses.
1 Replace all negative literals in the 3-SAT as shown below: $\forall \neg a \in L$: let $L \leftarrow(L \backslash \neg a) \cup a^{\prime}$ and $C \leftarrow C \cup\left\{\neg a \vee \neg a^{\prime}, a \vee a^{\prime}\right\}$
2 Replace the clause ($a \vee a^{\prime}$) above by clauses with new literals: Let $L \leftarrow L \cup\left\{z_{1}, z_{2}\right\}$ and $C \leftarrow\left(C \backslash a \vee a^{\prime}\right) \cup\left\{a \vee a^{\prime} \vee z_{1}, a \vee a^{\prime} \vee z_{2}, \neg z_{1} \vee \neg z_{2}\right\}$

SYMBOL-ORDER Problem is NP-Complete

Reduce the 2-3-SAT problem to the SYMBOL-ORDER problem:
■ Let Φ be any CNF formula as stated in the 2-3-SAT problem.

- For each variable x_{i} in Φ, we introduce a symbol a_{i}.

■ We then use symbol d to simulate truth and falsehood of a variable: x_{i} is true iff $a_{i} \succ d$, and x_{i} is false iff $a_{i} \prec d$.
■ For each 3-clause ($x_{i} \vee x_{j} \vee x_{k}$) we introduce the rule

$$
a_{i} a_{j} a_{k} \rightarrow d
$$

and for each 2-clause ($\left.\neg x_{m} \vee \neg x_{n}\right)$ we add the rules

$$
\begin{array}{ll}
d a_{m} a_{n} d & \rightarrow a_{n} a_{m} \\
d a_{n} a_{m} d & \rightarrow a_{m} a_{n}
\end{array}
$$

The One Rule Case: Definitions

- We use $x>_{\text {rpo }}$ y to denote "there is an ordering \succ on Σ such that $x>_{\text {rpo }} y^{\prime \prime}$.

■ For two strings x, y, we define

$$
\Delta_{x, y}=\left\{a \in \Sigma \mid \#_{a}(x)=\#_{a}(y)\right\}
$$

- The Parikh vector of a string w over an (ordered) alphabet $\left\{a_{1}, \ldots, a_{n}\right\}$ is the n-tuple

$$
\pi(w)=\left(\#_{a_{1}}(w), \ldots, \#_{a_{n}}(w)\right)
$$

The One Rule Case: Properties

- Let x and y be distinct strings.
(1) If $\#_{a}(x)>\#_{a}(y)$ for some $a \in \Sigma$, then $x>_{\text {rpo }}^{\exists} y$.
(2) If $\#_{a}(y)>\#_{a}(x)$ for all $a \in \Sigma$, then $x \stackrel{\exists}{\ngtr}_{\text {rpo }} y$.
- Let x, y be two strings with no common suffix.

Then $x>_{r p o} y$ iff either
(a) there exists a such that $\#_{a}(x)>\#_{a}(y)$ or
(b) there exists a in $\Delta_{x, y}$ and $\mu(a, x)>_{r p o}^{\exists} \mu(a, y)$.

The One Rule Case: Algorithm

Theorem

There is a polynomial time algorithm solving the
SYMBOL-ORDER problem for one-rule string-rewriting systems.
As a preprocessing step remove common suffixes first.
Then compute Parikh vectors of all suffixes of x and y.
Let $\$$ be a new symbol occurs only at the beginning of x and y.
The algorithm builds a list L of length $\leq|\Sigma|+1$ containing pairs of suffixes $\left(x_{i}, y_{j}\right)$ such that $x_{i} \stackrel{\exists}{r p o}^{\exists} y_{j}$.

The One Rule Case: Algorithm Continued

- Initialize list L to empty;
- For $i=1$ to $|x|$:

1 If $x_{i}=\mu(a, x)$ for some a, then continue else go to the next i.
2 Let $y_{j}=\mu(a, y)$.
3 If $\#_{b}\left(x_{i}\right)>\#_{b}\left(y_{j}\right)$ for any symbol b, then add $\left(x_{i}, y_{j}\right)$ to L.
4 Otherwise compute $\Delta_{x_{i}, y_{j}}$ and if $\left(\mu\left(c, x_{i}\right), \mu\left(c, y_{j}\right)\right) \in L$ for any symbol $c \in \Delta_{x_{i}, y_{j}}$ then add $\left(x_{i}, y_{j}\right)$ to L.

- If $(\mu(\$, x), \mu(\$, y)) \in L$ then True else False

The One Rule Case: Algorithm Analysis

The algorithm runs in quadratic time:

- The sets of vectors $\pi\left(x_{i}\right)$ and $\pi\left(y_{i}\right)$ can be computed in quadratic time.
- Then we can compute a table $(i, j) \mapsto \Delta_{x_{i}, y_{j}}$ in quadratic time.

Therefore we proved the theorem by construction.

References I

N. Dershowitz.Orderings for term-rewriting systems.
Theoretical Computer Science 17(3): 279-301. 1982.
D. S. Krishnamoorthy and P. Narendran.

On recursive path ordering.
Theoretical Computer Science, 40:323-328, 1985.
目 P. Narendran and M. Rusinowitch.
The theory of total unary RPO is decidable.
Computational Logic - CL 2000, First International Conference, London, UK, 24-28 July, 2000, Proceedings, volume 1861 of Lecture Notes in Computer Science, pages 660-672. Springer, 2000.

Questions

Thank you!

