Inferring RPO Symbol Ordering

Wei Du¹ Paliath Narendran¹ Michael Rusinowitch²

¹University at Albany-SUNY, Albany, NY, USA e-mail: {wdu2, pnarendran}@albany.edu

> ²LORIA-INRIA Nancy-Grand Est e-mail: rusi@loria.fr

Introduction

NP-Completeness

The One Rule Case

- Termination is a property of term rewriting system (TRS).
- Term orderings are important to show termination of TRS.
- Dershowitz introduced recursive path ordering (RPO).

We study RPO in the context of string rewriting systems (SRS).

Definition 1

Let Σ be an alphabet and \succ be an ordering on Σ . Then $x >_{rpo} y$ iff any of these is true: (1) $y = \varepsilon$ and |x| > 0. (2) x = au, y = av, and $u >_{rpo} v$. (3) x = au, y = bv, and either (3a) $u \ge_{rpo} y$, or (3b) $a \succ b$ and $x >_{rpo} v$.

Example: $BAB >_{rpo} ACC$ with the ordering $A \succ B \succ C$ Hint: first use (3a), then (2), (3b), (3b), finally (1).

RPO Characterization when \succ is Total

Definition 2

Let $max(w, \Sigma)$ denote the maximal symbol of Σ that occurs in w. $mul(w, \Sigma)$ be the number of times this max symbol occurs in w. $w >_{rpo} w'$ iff any of the following holds:

1.
$$max(w, \Sigma) \succ max(w', \Sigma)$$

2.
$$max(w, \Sigma) = max(w', \Sigma)$$
 and $mul(w, \Sigma) > mul(w', \Sigma)$

3.
$$a = max(w, \Sigma) = max(w', \Sigma), mul(w, \Sigma) = mul(w', \Sigma),$$

$$w = w_0 a w_1 a w_2 \dots a w_k$$

$$w' = u_0 a u_1 a u_2 \dots a u_k$$

and there exists $0 \le i \le k$ such that $w_i >_{rpo} u_i$ and for all j > i we have $w_j = u_j$.

Let w and w' be two strings that <u>do not share a common suffix</u>. Then $w >_{rpo} w'$ iff one of the following holds:

1.
$$max(w, \Sigma) \succ max(w', \Sigma)$$

2.
$$max(w, \Sigma) = max(w', \Sigma)$$
 and $mul(w, \Sigma) > mul(w', \Sigma)$

3. $a = max(w, \Sigma) = max(w', \Sigma)$, $mul(w, \Sigma) = mul(w', \Sigma)$, and $\mu(a, w) >_{rpo} \mu(a, w')$ where $\mu(a, w)$ is the longest suffix of w that does not contain a.

Example: $BAB >_{rpo} ACC$ with the ordering $A \succ B \succ C$ Hint: first use case 3 where $\mu(A, BAB) = B$ and $\mu(A, ACC) = CC$, then use case 1 where $B \succ C$. Input: A string-rewriting system $\{l_i \rightarrow r_i \mid 1 \le i \le n\}$

Question: Is there a symbol ordering \succ such that $l_i >_{rpo} r_i$ for all i?

For arbitary TRSs, this is known to be <u>NP complete</u> (M.S. Krishnamoorthy and P. Narendran).

How about for SRS?

- 2-3-SAT: A set contains 2-clauses (with only negative literals) and 3-clauses (with only positive literals).
- 2-3-SAT problem is NP-complete by a reduction from 3-SAT:
 Let L be the set of literals and let C be the set of clauses.
 - **1** Replace all negative literals in the 3-SAT as shown below: $\forall \neg a \in L$: let $L \leftarrow (L \setminus \neg a) \cup a'$ and $C \leftarrow C \cup \{\neg a \lor \neg a', a \lor a'\}$
 - 2 Replace the clause $(a \lor a')$ above by clauses with new literals: Let $L \leftarrow L \cup \{z_1, z_2\}$ and $C \leftarrow (C \setminus a \lor a') \cup \{a \lor a' \lor z_1, a \lor a' \lor z_2, \neg z_1 \lor \neg z_2\}$

Reduce the 2-3-SAT problem to the SYMBOL-ORDER problem:

- Let Φ be any CNF formula as stated in the 2-3-SAT problem.
- For each variable x_i in Φ , we introduce a symbol a_i .
- We then use symbol d to simulate truth and falsehood of a variable: x_i is true iff $a_i \succ d$, and x_i is false iff $a_i \prec d$.
- For each 3-clause $(x_i \lor x_j \lor x_k)$ we introduce the rule

$$a_i a_j a_k \rightarrow d$$

and for each 2-clause $(\neg x_m \lor \neg x_n)$ we add the rules

$$da_m a_n d \rightarrow a_n a_m$$
 and $da_n a_m d \rightarrow a_m a_n$

• We use $x \stackrel{\exists}{\geq}_{rpo} y$ to denote "there is an ordering \succ on Σ such that $x >_{rpo} y$ ".

• For two strings x, y, we define

$$\Delta_{x,y} = \{ a \in \Sigma \mid \#_a(x) = \#_a(y) \}.$$

■ The <u>*Parikh vector*</u> of a string *w* over an (ordered) alphabet {*a*₁,..., *a_n*} is the *n*-tuple

$$\pi(w) = \left(\#_{a_1}(w), \ldots, \#_{a_n}(w) \right)$$

Let x and y be distinct strings.

(1) If
$$\#_a(x) > \#_a(y)$$
 for some $a \in \Sigma$, then $x \stackrel{\exists}{\geq}_{rpo} y$.
(2) If $\#_a(y) > \#_a(x)$ for all $a \in \Sigma$, then $x \stackrel{\exists}{\neq}_{rpo} y$.

 Let x, y be two strings with no common suffix. Then x [∃]/_{rpo} y iff either

 (a) there exists a such that #_a(x) > #_a(y) or
 (b) there exists a in Δ_{x,y} and μ(a,x) [∃]/_{po} μ(a,y).

Theorem

There is a polynomial time algorithm solving the SYMBOL-ORDER problem for one-rule string-rewriting systems.

As a preprocessing step remove common suffixes first.

Then compute Parikh vectors of all suffixes of x and y.

Let be a new symbol occurs only at the beginning of x and y.

The algorithm builds a list *L* of length $\leq |\Sigma| + 1$ containing pairs of suffixes (x_i, y_j) such that $x_i \stackrel{\exists}{\geq}_{rpo} y_j$.

- Initialize list L to empty;
- For *i* = 1 to |*x*|:
 - **1** If $x_i = \mu(a, x)$ for some *a*, then continue else go to the next *i*.

2 Let
$$y_j = \mu(a, y)$$
.

- 3 If $\#_b(x_i) > \#_b(y_j)$ for any symbol b, then add (x_i, y_j) to L.
- 4 Otherwise compute Δ_{xi,yj} and if (μ(c,xi), μ(c,yj)) ∈ L for any symbol c ∈ Δ_{xi,yi} then add (xi, yj) to L.
- If $(\mu(\$, x), \mu(\$, y)) \in L$ then **True** else **False**

The algorithm runs in quadratic time:

- The sets of vectors π(x_i) and π(y_i) can be computed in quadratic time.
- Then we can compute a table $(i,j) \mapsto \Delta_{x_i,y_j}$ in quadratic time.

Therefore we proved the theorem by construction.

References I

N. Dershowitz.

Orderings for term-rewriting systems. *Theoretical Computer Science* 17(3): 279–301. 1982.

- M. S. Krishnamoorthy and P. Narendran.
 On recursive path ordering.
 Theoretical Computer Science, 40:323–328, 1985.
- P. Narendran and M. Rusinowitch. The theory of total unary RPO is decidable. Computational Logic – CL 2000, First International Conference, London, UK, 24-28 July, 2000, Proceedings, volume 1861 of Lecture Notes in Computer Science, pages 660–672. Springer, 2000.

Thank you!