Inferring RPO Symbol Ordering

Wei Du ¹ Paliath Narendran ¹ Michael Rusinowitch ²

¹University at Albany–SUNY, Albany, NY, USA
e-mail: {wdu2, pnarendran}@albany.edu

²LORIA-INRIA Nancy-Grand Est
e-mail: rusi@loria.fr
Outline

- Introduction
- NP-Completeness
- The One Rule Case
Background

- Termination is a property of term rewriting system (TRS).
- Term orderings are important to show termination of TRS.
- Dershowitz introduced recursive path ordering (RPO).

We study RPO in the context of string rewriting systems (SRS).
Definition 1

Let Σ be an alphabet and \succ be an ordering on Σ. Then $x \succ_{rpo} y$ iff any of these is true:

1. $y = \epsilon$ and $|x| > 0$.
2. $x = au$, $y = av$, and $u \succ_{rpo} v$.
3. $x = au$, $y = bv$, and either
 - $u \geq_{rpo} y$, or
 - $a \succ b$ and $x \succ_{rpo} v$.

Example: $BAB \succ_{rpo} ACC$ with the ordering $A \succ B \succ C$

Hint: first use (3a), then (2), (3b), (3b), finally (1).
RPO Characterization when \succ is Total

Definition 2

Let $\max(w, \Sigma)$ denote the *maximal* symbol of Σ that occurs in w. $\text{mul}(w, \Sigma)$ be the number of times this max symbol occurs in w. $w \succ_{rpo} w'$ iff any of the following holds:

1. $\max(w, \Sigma) \succ \max(w', \Sigma)$
2. $\max(w, \Sigma) = \max(w', \Sigma)$ and $\text{mul}(w, \Sigma) > \text{mul}(w', \Sigma)$
3. $a = \max(w, \Sigma) = \max(w', \Sigma)$, $\text{mul}(w, \Sigma) = \text{mul}(w', \Sigma)$,

$$w = w_0aw_1aw_2\ldots aw_k$$

$$w' = u_0au_1au_2\ldots au_k$$

and there exists $0 \leq i \leq k$ such that $w_i \succ_{rpo} u_i$ and for all $j > i$ we have $w_j = u_j$.

Let w and w' be two strings that do not share a common suffix. Then $w >_{rpo} w'$ iff one of the following holds:

1. $\max(w, \Sigma) \succ \max(w', \Sigma)$
2. $\max(w, \Sigma) = \max(w', \Sigma)$ and $\text{mul}(w, \Sigma) > \text{mul}(w', \Sigma)$
3. $a = \max(w, \Sigma) = \max(w', \Sigma)$, $\text{mul}(w, \Sigma) = \text{mul}(w', \Sigma)$, and $\mu(a, w) >_{rpo} \mu(a, w')$ where $\mu(a, w)$ is the longest suffix of w that does not contain a.

Example: $BAB >_{rpo} ACC$ with the ordering $A \succ B \succ C$
Hint: first use case 3 where $\mu(A, BAB) = B$ and $\mu(A, ACC) = CC$, then use case 1 where $B \succ C$.

The SYMBOL-ORDER Problem

Input: A string-rewriting system \(\{ l_i \rightarrow r_i \mid 1 \leq i \leq n \} \)

Question: Is there a symbol ordering \(\succ \) such that \(l_i \succ_{rpo} r_i \) for all \(i \)?

For arbitrary TRSs, this is known to be **NP complete** (M.S. Krishnamoorthy and P. Narendran).

How about for SRS?
2-3-SAT Problem is NP-Complete

- 2-3-SAT: A set contains 2-clauses (with only negative literals) and 3-clauses (with only positive literals).

- 2-3-SAT problem is NP-complete by a reduction from 3-SAT: Let L be the set of literals and let C be the set of clauses.

 1. Replace all negative literals in the 3-SAT as shown below:
 \[\forall \neg a \in L: \text{ let } L \leftarrow (L \setminus \neg a) \cup a' \text{ and } C \leftarrow C \cup \{ \neg a \vee \neg a', a \vee a' \} \]

 2. Replace the clause $(a \vee a')$ above by clauses with new literals:
 \[\text{Let } L \leftarrow L \cup \{z_1, z_2\} \text{ and } C \leftarrow (C \setminus a \vee a') \cup \{a \vee a' \vee z_1, a \vee a' \vee z_2, \neg z_1 \vee \neg z_2\} \]
Reduce the 2-3-SAT problem to the SYMBOL-ORDER problem:

- Let Φ be any CNF formula as stated in the 2-3-SAT problem.
- For each variable x_i in Φ, we introduce a symbol a_i.
- We then use symbol d to simulate truth and falsehood of a variable: x_i is true iff $a_i \succ d$, and x_i is false iff $a_i \prec d$.
- For each 3-clause $(x_i \lor x_j \lor x_k)$ we introduce the rule

$$a_ia_ja_k \rightarrow d$$

and for each 2-clause $(\neg x_m \lor \neg x_n)$ we add the rules

$$da_m a_n d \rightarrow a_n a_m$$

$$da_n a_m d \rightarrow a_m a_n$$
The One Rule Case: Definitions

- We use $x \succ_{rpo} y$ to denote “there is an ordering \succ on Σ such that $x \succ_{rpo} y$”.

- For two strings x, y, we define

$$\Delta_{x, y} = \{ a \in \Sigma \mid \#a(x) = \#a(y) \}.$$

- The *Parikh vector* of a string w over an (ordered) alphabet $\{a_1, \ldots, a_n\}$ is the n-tuple

$$\pi(w) = \left(\#a_1(w), \ldots, \#a_n(w) \right).$$
Let x and y be distinct strings.

(1) If $\#_a(x) > \#_a(y)$ for some $a \in \Sigma$, then $x \gtrdot_{rpo} y$.

(2) If $\#_a(y) > \#_a(x)$ for all $a \in \Sigma$, then $x \not\gtrdot_{rpo} y$.

Let x, y be two strings with no common suffix. Then $x \gtrdot_{rpo} y$ iff either

(a) there exists a such that $\#_a(x) > \#_a(y)$ or

(b) there exists a in $\Delta_{x,y}$ and $\mu(a, x) \gtrdot_{rpo} \mu(a, y)$.

The One Rule Case: Algorithm

Theorem

There is a polynomial time algorithm solving the SYMBOL-ORDER problem for one-rule string-rewriting systems.

As a preprocessing step remove common suffixes first.
Then compute Parikh vectors of all suffixes of x and y.
Let $\$ be a new symbol occurs only at the beginning of x and y.
The algorithm builds a list L of length $\leq |\Sigma| + 1$ containing pairs of suffixes (x_i, y_j) such that $x_i \rpo y_j$.

Initialize list L to empty;

For $i = 1$ to $|x|$:

1. If $x_i = \mu(a, x)$ for some a, then continue else go to the next i.
2. Let $y_j = \mu(a, y)$.
3. If $\#_b(x_i) > \#_b(y_j)$ for any symbol b, then add (x_i, y_j) to L.
4. Otherwise compute Δ_{x_i,y_j} and if $(\mu(c, x_i), \mu(c, y_j)) \in L$ for any symbol $c \in \Delta_{x_i,y_j}$ then add (x_i, y_j) to L.

If $(\mu(\$, x), \mu(\$, y)) \in L$ then True else False
The One Rule Case: Algorithm Analysis

The algorithm runs in quadratic time:

- The sets of vectors $\pi(x_i)$ and $\pi(y_i)$ can be computed in quadratic time.

- Then we can compute a table $(i,j) \mapsto \Delta_{x_i,y_j}$ in quadratic time.

Therefore we proved the theorem by construction.
N. Dershowitz.
Orderings for term-rewriting systems.

M. S. Krishnamoorthy and P. Narendran.
On recursive path ordering.

P. Narendran and M. Rusinowitch.
The theory of total unary RPO is decidable.
Thank you!