Matching in Quantitative Equational Theories UNIF 2023, Rome

Georg Ehling

Temur Kutsia

Research Institute for Symbolic Computation, JKU Linz, Austria

July 2nd, 2023

(Quantitative) Equational Theories

Quantitative Equational Reasoning

Fix a signature Ω and a set of variables X.

"Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.

(Quantitative) Equational Theories

Fix a signature Ω and a set of variables X.

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
 - ightharpoonup pprox is reflexive, transitive, symmetric, stable under substitutions and compatible with Ω -operations

(Quantitative) Equational Theories

Fix a signature Ω and a set of variables X.

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
 - ullet pprox is reflexive, transitive, symmetric, stable under substitutions and compatible with Ω -operations
- Quantitative setting (Mardare-Plotkin-Panangaden 2016): Indexed equations $s \approx_{\varepsilon} t$ for $\varepsilon \in \mathbb{Q}_{\geqslant 0}$

(Quantitative) Equational Theories

Fix a signature Ω and a set of variables X.

- "Classical" setting: Equations $s \approx t$ between terms $s, t \in T(\Omega, X)$.
 - pprox is reflexive, transitive, symmetric, stable under substitutions and compatible with Ω -operations
- Quantitative setting (Mardare-Plotkin-Panangaden 2016): Indexed equations $s \approx_{\varepsilon} t$ for $\varepsilon \in \mathbb{Q}_{\geqslant 0}$
 - Intuition: "s is within ε of t" \rightsquigarrow think of metric spaces: $d(s,t) \leqslant \varepsilon$
 - $s \approx_0 t$ corresponds to $s \approx t$
 - Transitivity has to be replaced by the triangle inequality: $r \approx_{\varepsilon} s$ and $s \approx_{\delta} t$ imply $r \approx_{\varepsilon + \delta} t$.

Quantitative Equational Reasoning

References

Inference rules for quantitative equational logic

 $F \vdash s \approx_{\varepsilon} t$ (Assum.) for $s \approx_{\varepsilon} t \in E$

Matching Problems

Let $s, t \in T(\Omega, X)$ be terms, E a set of equations.

Matching problem: $s \lesssim_E^? t$

Find a substitution σ such that $E \vdash s\sigma \approx t$.

Matching Problems

Quantitative Equational Reasoning

Let $s, t \in T(\Omega, X)$ be terms, E a set of equations.

Matching problem: $s \lesssim_F^? t$

Find a substitution σ such that $E \vdash s\sigma \approx t$.

Let $s,t\in T(\Omega,X)$ be terms, E a set of indexed equations, $arepsilon\in\mathbb{Q}_{\geqslant 0}$

Quantitative matching problems

- $s \leq_{\varepsilon}^{?} t$: Find a substitution σ such that $E \vdash s\sigma \approx_{\varepsilon} t$.
- $s \lesssim_?^? t$: Find the least $\delta \in \mathbb{Q}_{\geqslant 0}$ such that there exists a substitution σ satisfying $E \vdash s\sigma \approx_\delta t$.

For this talk: Focus on the first problem ("fixed-range matching").

Assumptions

Quantitative Equational Reasoning

- Running assumption: E is finite. We may assume that all equations from E have indices in \mathbb{N} .
- **Notation:** Write $E = E_0 \sqcup E_+$, where

$$\begin{split} E_0 &= \{ s \approx_\varepsilon t \in E \mid \varepsilon = 0 \} \\ E_+ &= \{ s \approx_\varepsilon t \in E \mid \varepsilon > 0 \} \end{split} \qquad \text{("crisp part")}. \end{split}$$

- Note: E_0 can be viewed as a classical (non-quantitative) equational theory.
- Assume that E_0 has finitary unification type and that a unification algorithm for E_0 is given.

First steps towards a solution

• Matching problem: $s \lesssim_{\varepsilon}^{?} t$

First steps towards a solution

Quantitative Equational Reasoning

- Matching problem: $s \leq_{i=1}^{n} t$
- Idea: Consider $B_{\varepsilon}(t) := \{\text{terms } t' \mid E \vdash t' \approx_{\varepsilon} t\}.$

$$\sigma$$
 solves $s \lesssim_{\varepsilon}^{?} t \iff E \vdash s\sigma \approx_{\varepsilon} t$

$$\iff s\sigma \in B_{\varepsilon}(t)$$

$$\iff \exists v \in B_{\varepsilon}(t) \text{ such that } \sigma \text{ solves } s \lesssim^{?} v \text{ (syntactically)}$$

 \rightsquigarrow compute $B_{\varepsilon}(t)$ and match s against all its elements.

First steps towards a solution

Quantitative Equational Reasoning

- Matching problem: $s \leq_{i=1}^{n} t$
- Idea: Consider $B_{\varepsilon}(t) := \{\text{terms } t' \mid E \vdash t' \approx_{\varepsilon} t\}.$

$$\sigma$$
 solves $s \lesssim_{\varepsilon}^{?} t \iff E \vdash s\sigma \approx_{\varepsilon} t$

$$\iff s\sigma \in B_{\varepsilon}(t)$$

$$\iff \exists v \in B_{\varepsilon}(t) \text{ such that } \sigma \text{ solves } s \lesssim^{?} v \text{ (syntactically)}$$

- \rightsquigarrow compute $B_{\varepsilon}(t)$ and match s against all its elements.
- Problem: $B_{\varepsilon}(t)$ need not be finite!

Examples

Quantitative Equational Reasoning

- $E = \{f(x) \approx_1 g(x, y)\}, t = f(a), \text{ where } a \in \Omega \text{ is a constant.}$ Then: $E \vdash f(a) \approx_1 g(a, v)$ \Rightarrow every instance of g(a, y) is in $B_1(f(a))$ $\Rightarrow B_1(t)$ is infinite.
- $E = \{x \approx_0 f(x)\}, t = a \text{ (constant)}.$ Then $f^n(a) \in B_0(a)$ for every n $\Rightarrow B_0(t)$ is infinite.

Examples

Quantitative Equational Reasoning

- $E = \{f(x) \approx_1 g(x, y)\}, t = f(a), \text{ where } a \in \Omega \text{ is a constant.}$ Then: $E \vdash f(a) \approx_1 g(a, y)$ \Rightarrow every instance of g(a, y) is in $B_1(f(a))$ $\Rightarrow B_1(t)$ is infinite.
- $E = \{x \approx_0 f(x)\}, t = a \text{ (constant)}.$ Then $f^n(a) \in B_0(a)$ for every n $\Rightarrow B_0(t)$ is infinite.

To guarantee finiteness, compute a finite representation $\mathcal{R}_{\varepsilon}(t)$ of $\mathcal{B}_{\varepsilon}(t)$ that contains:

- non-ground terms from $B_{\varepsilon}(t)$, but not all of their instances
- representatives of terms up to E_0

Examples

- $E = \{f(x) \approx_1 g(x, y)\}, t = f(a), \text{ where } a \in \Omega \text{ is a constant.}$ Then: $E \vdash f(a) \approx_1 g(a, y)$
 - \Rightarrow every instance of g(a, y) is in $B_1(f(a))$
 - $\Rightarrow B_1(t)$ is infinite.
 - \rightsquigarrow take $\mathcal{R}_1(t) = \{f(a), g(a, y)\}$ instead!
- $E = \{x \approx_0 f(x)\}, t = a \text{ (constant)}.$ Then $f^n(a) \in B_0(a)$ for every n $\Rightarrow B_0(t)$ is infinite. \rightsquigarrow take $\mathcal{R}_0(a) = \{a\}$ instead!

To guarantee finiteness, compute a finite representation $\mathcal{R}_{\varepsilon}(t)$ of $\mathcal{B}_{\varepsilon}(t)$ that contains:

- non-ground terms from $B_{\varepsilon}(t)$, but not all of their instances
- representatives of terms up to E_0

Compact representation of the ball

Definition

Define $\mathcal{R}_{\varepsilon}(x) := \{x\}$ if x is a variable, and otherwise, set

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\varsigma}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \cup \bigcup_{\substack{l \cong_{\delta} r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma),$$

Computing Balls

where

- $l \approx_{\delta} r$ is a fresh, unoriented variant of an equation in E_+
- $mcu_{E_0}(I, t)$ is a minimal complete set of E_0 -unifiers of I and t

Compact representation of the ball

Definition

Define $\mathcal{R}_{\varepsilon}(x) := \{x\}$ if x is a variable, and otherwise, set

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \cup \bigcup_{\substack{l \cong_{\delta} r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \text{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma),$$

where

- $l \cong_{\delta} r$ is a fresh, unoriented variant of an equation in E_{+}
- $mcu_{E_0}(I, t)$ is a minimal complete set of E_0 -unifiers of I and t

Remarks

- $\mathcal{R}_{\varepsilon}(t)$ is finite and defined uniquely up to renaming variables.
- $\mathcal{R}_0(t) = \{t\}$
- If $\varepsilon \leqslant \delta$, then $\mathcal{R}_{\varepsilon}(t) \subseteq \mathcal{R}_{\delta}(t)$

Definition

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \approxeq_{\delta} r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

Computing Balls

00000

$$E = \{ f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

Definition

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \approxeq_{\delta} r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

Computing Balls

00000

$$E = \{ f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

$$\mathcal{R}_2(g(b)) = \{g(b)\} \cup igcup_{\substack{\zeta=1,2\s\in\mathcal{R}_\zeta(b)}} \mathcal{R}_{2-\zeta}(g(s)) \cup \mathcal{R}_1(f(b,y))$$

Computing Balls

00000

References

Definition

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\varsigma}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \approxeq_{\delta} r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

$$E = \{ f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

$$\mathcal{R}_2(g(b)) = \{g(b)\} \cup \bigcup_{\substack{\zeta=1,2\\s\in\mathcal{R}_\zeta(b)}} \mathcal{R}_{2-\zeta}(g(s)) \cup \mathcal{R}_1(f(b,y))$$

Note:
$$\mathcal{R}_{\zeta}(b) = \{b\}$$

Definition

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \cong \delta r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

Computing Balls

00000

$$E = \{ f(x,y) \approx_1 g(x), f(x,a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

$$\mathcal{R}_2(g(b)) = \{g(b)\} \cup \mathcal{R}_0(g(b)) \cup \mathcal{R}_1(g(b)) \cup \mathcal{R}_1(f(b,y))$$

Definition

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \cong \delta r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

Computing Balls

00000

$$E = \{ f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

$$\mathcal{R}_2(g(b)) = \{g(b)\} \cup \mathcal{R}_1(f(b,y))$$

Definition

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\varsigma}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \approxeq_{\delta} r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

Computing Balls

00000

$$E = \{ f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

$$\mathcal{R}_{2}(g(b)) = \{g(b)\} \cup \mathcal{R}_{1}(f(b,y))$$

= $\{g(b)\} \cup \{f(b,y)\} \cup \bigcup_{\substack{s_{1} \in \mathcal{R}_{1}(b) \ s_{2} \in \mathcal{R}_{1}(y)}} \mathcal{R}_{0}(f(s_{1},s_{2})) \cup \mathcal{R}_{0}(h(b))$

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \cong \delta r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

Computing Balls

00000

$$E = \{ f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

$$\mathcal{R}_2(g(b)) = \{g(b)\} \cup \mathcal{R}_1(f(b,y))$$

= $\{g(b)\} \cup \{f(b,y)\} \cup \mathcal{R}_0(f(b,y)) \cup \mathcal{R}_0(h(b))$

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_j \in \mathcal{R}_{\zeta}(t_j)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \cong \delta r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

Computing Balls

00000

$$E = \{ f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

$$\mathcal{R}_{2}(g(b)) = \{g(b)\} \cup \mathcal{R}_{1}(f(b,y))$$

$$= \{g(b)\} \cup \{f(b,y)\} \cup \mathcal{R}_{0}(f(b,y)) \cup \mathcal{R}_{0}(h(b))$$

$$= \{g(b), f(b,y), h(b)\}$$

Quantitative Equational Reasoning

$$\mathcal{R}_{\varepsilon}(t) = \{t\} \cup \bigcup_{\substack{\zeta \in \mathbb{N}, \\ 0 < \zeta \leqslant \varepsilon, \\ t = f(t_1, \dots, t_n), \\ s_i \in \mathcal{R}_{\zeta}(t_i)}} \mathcal{R}_{\varepsilon - \zeta}(f(s_1, \dots, s_n)) \quad \cup \bigcup_{\substack{l \cong \delta r \in E_+, \\ \delta \leqslant \varepsilon, \\ \sigma \in \operatorname{mcu}_{E_0}(l, t)}} \mathcal{R}_{\varepsilon - \delta}(r\sigma)$$

Computing Balls

Example

$$E = \{ f(x, y) \approx_1 g(x), f(x, a) \approx_1 h(x) \}.$$
 Solve $h(x) \lesssim_2 g(b)$.

$$\mathcal{R}_{2}(g(b)) = \{g(b)\} \cup \mathcal{R}_{1}(f(b,y))$$

$$= \{g(b)\} \cup \{f(b,y)\} \cup \mathcal{R}_{0}(f(b,y)) \cup \mathcal{R}_{0}(h(b))$$

$$= \{g(b), f(b,y), h(b)\}$$

 $\rightsquigarrow \sigma = \{x \mapsto b\}$ is a solution.

First results

Proposition

If $E = E_+$ is regular and t is a ground term, then $\mathcal{R}_{\varepsilon}(t) = B_{\varepsilon}(t)$.

First results

Quantitative Equational Reasoning

Proposition

If $E = E_+$ is regular and t is a ground term, then $\mathcal{R}_{\varepsilon}(t) = B_{\varepsilon}(t)$.

Quantitative matching algorithm 1:

Input: Regular $E = E_+$; E-matching problem $s \lesssim_{\varepsilon} t$ with t ground.

Output: A complete set of solutions.

- \bullet $S \leftarrow \emptyset$
- **2** Compute $\mathcal{R}_{\varepsilon}(t)$
- **③** For each $u \in \mathcal{R}_{\varepsilon}(t)$:
- $S ← S ∪ {syntactic matchers of s to u}$
- Return S

Relaxing the assumptions: non-regular E_+

Consider the case where $E = E_+$ need not be regular.

$$E = \{f(x) \approx_1 g(x, y)\}; \text{ solve } g(x, b) \lesssim_1^? f(a).$$

 $\mathcal{R}_1(f(a)) = \{f(a), g(a, y)\}.$

Relaxing the assumptions: non-regular E_+

Consider the case where $E = E_+$ need not be regular.

Example 1

$$E = \{f(x) \approx_1 g(x, y)\}; \text{ solve } g(x, b) \lesssim_1^? f(a).$$

 $\mathcal{R}_1(f(a)) = \{f(a), g(a, y)\}.$

Syntactic matching does not succeed.

The solution $\sigma = \{x \mapsto a\}$ can be found via syntactic **unification** of g(x,b) and g(a,y).

Relaxing the assumptions: non-regular E_+

Consider the case where $E = E_+$ need not be regular.

Example 1

$$E = \{f(x) \approx_1 g(x, y)\}; \text{ solve } g(x, b) \lesssim_1^? f(a).$$

 $\mathcal{R}_1(f(a)) = \{f(a), g(a, y)\}.$

Syntactic matching does not succeed.

The solution $\sigma = \{x \mapsto a\}$ can be found via syntactic **unification** of g(x,b) and g(a,y).

$$E = \{a \approx_1 f(g(x), h(x)), g(b) \approx_1 b, h(c) \approx_1 c\}.$$

Then
$$\mathcal{R}_2(a) = \{a\} \cup \mathcal{R}_1(f(g(x), h(x))) \ni f(b, c)$$
.

Relaxing the assumptions: non-regular E_+

Consider the case where $E = E_+$ need not be regular.

Example 1

$$E = \{f(x) \approx_1 g(x, y)\}; \text{ solve } g(x, b) \lesssim_1^? f(a).$$

 $\mathcal{R}_1(f(a)) = \{f(a), g(a, y)\}.$

Syntactic matching does not succeed.

The solution $\sigma = \{x \mapsto a\}$ can be found via syntactic **unification** of g(x,b) and g(a,y).

Example 2

$$E = \{a \approx_1 f(g(x), h(x)), g(b) \approx_1 b, h(c) \approx_1 c\}.$$

Then $\mathcal{R}_2(a) = \{a\} \cup \mathcal{R}_1(f(g(x), h(x))) \ni f(b, c).$

Relaxing the assumptions: non-regular E_+

Consider the case where $E = E_+$ need not be regular.

Example 1

$$E = \{f(x) \approx_1 g(x, y)\}; \text{ solve } g(x, b) \lesssim_1^? f(a).$$

 $\mathcal{R}_1(f(a)) = \{f(a), g(a, y)\}.$

Syntactic matching does not succeed.

The solution $\sigma = \{x \mapsto a\}$ can be found via syntactic **unification** of g(x,b) and g(a,y).

$$E = \{a \approx_1 f(g(x), h(x)), g(b) \approx_1 b, h(c) \approx_1 c\}.$$

Then
$$\mathcal{R}_2(a) = \{a\} \cup \mathcal{R}_1(f(g(x), h(x))) \ni f(b, c).$$

But
$$E \not\vdash a \approx_2 f(b, c)!$$

Relaxing the assumptions: non-empty E_0

Now, consider non-empty E_0 .

Quantitative Equational Reasoning

Recall: $\mathcal{R}_{\varepsilon}(t)$ represents terms up to equality modulo E_0 .

By assumption, we know how to solve unification in E_0 . Can we just replace syntactic unification by unification modulo E_0 to solve the matching problem in *E*?

Relaxing the assumptions: non-empty E_0

Now, consider non-empty E_0 .

Recall: $\mathcal{R}_{\varepsilon}(t)$ represents terms up to equality modulo E_0 .

By assumption, we know how to solve unification in E_0 . Can we just replace syntactic unification by unification modulo E_0 to solve the matching problem in *E*?

Example 1

Quantitative Equational Reasoning

$$E = \{f(a, x) \approx_1 g(x, a), a \approx_0 b\}.$$
Solve $f(b, y) \lesssim_1 g(c, b)$.
$$\mathcal{R}_1(g(c, b)) = \{g(c, b), f(a, c)\}.$$

$$\sigma = \{y \mapsto c\} \text{ is an } E_0\text{-unifier of } f(b, y) \text{ and } f(a, c).$$

Relaxing the assumptions: non-empty E_0

Now, consider non-empty E_0 .

Recall: $\mathcal{R}_{\varepsilon}(t)$ represents terms up to equality modulo E_0 .

By assumption, we know how to solve unification in E_0 . Can we just replace syntactic unification by unification modulo E_0 to solve the matching problem in *E*?

Example 2

Quantitative Equational Reasoning

$$E = \{f(a,x) \approx_0 g(x), a \approx_1 b\}; \text{ solve } f(b,y) \lesssim_1 g(a).$$

Then $\mathcal{R}_1(g(a)) = \{g(a), g(b)\}.$

There is no E_0 -unifier!

To find the solution, one would also need to compute $\hat{R}_1(f(b, v)) = \{f(b, v), f(a, v)\}$

Outlook

Quantitative Equational Reasoning

Possible future work:

- Results for matching in the more general cases, in particular for non-empty E_0 (\rightsquigarrow combining methods)
- Different (e.g., rule-based) approaches for quantitative matching
- Other equational problems in the quantitative setting (unification, anti-unification)
- Different versions of quantitative equational reasoning, e.g. Gavazzo-Di Florio (2023)

References

- [1] Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon Plotkin. "Quantitative Equational Reasoning". In: Foundations of Probabilistic Programming. Ed. by Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva. Cambridge University Press, 2020, pp. 333–360.
- [2] Garrett Birkhoff and P. Hall. "On the Structure of Abstract Algebras". In: Mathematical Proceedings of the Cambridge Philosophical Society 31 (1935), pp. 433–454.
- [3] Francesco Gavazzo and Cecilia Di Florio. "Elements of Quantitative Rewriting". In: *Proc. ACM Program. Lang.* 7.POPL (Jan. 2023).
- [4] Radu Mardare, Prakash Panangaden, and Gordon Plotkin. "Quantitative Algebraic Reasoning". In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. LICS '16. New York, NY, USA: Association for Computing Machinery, 2016, pp. 700–709.