Formalisation of Nominal Equational Reasoning

Mauricio Ayala-Rincón
37th International Workshop on Unification - UNIF (FSCD 2023)
Sapienza Università di Roma, July 2nd, 2023

Mathematics and Computer Science Departments

Universidade de Brasília

† Research supported by the Brazilian agencies CAPES, CNPq, and FAPDF
1. Motivation
 Synthesis on Unification modulo

2. Bindings and Nominal Syntax

3. Nominal C-unification

4. Issues Adapting First-Order to Nominal AC-Unification
 An Algorithm for Nominal AC-Matching

5. Synthesis on Nominal Equational Modulo

6. Work in Progress and Future Work
Motivation
Equational Problems

- Equality check: $s = t$?
- Matching: There exists σ such that $s\sigma = t$?
- Unification: There exists σ such that $s\sigma = t\sigma$?

s and t are terms in some signature and σ is a substitution.
Goal: to identify two expressions.
Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

- Identify $f(x, a)$ and $f(b, y)$
Goal: to identify two expressions.
Method: replace variables by other expressions.

Example: for x and y variables, a and b constants, and f a function symbol,

- Identify $f(x, a)$ and $f(b, y)$
- solution $\{x/b, y/a\}$.
• \mathcal{F} set of function symbols.
• \mathcal{V} set of variables.
• x, y, z variables.
• a, b, c constant symbols.
• f, g, h function symbols.
• $\mathcal{T}(\mathcal{F}, \mathcal{V})$ set of terms over \mathcal{F} and \mathcal{V}.
• s, t, u terms.
• $\sigma, \gamma, \delta : \mathcal{V} \rightarrow \mathcal{T}(\mathcal{F}, \mathcal{V})$ set of substitutions.

Substitutions have finite domain: $\{ v | v\sigma \neq v \}$ is finite.
Example:

- Solution $\sigma = \{x/b\}$ for $f(x, y) = f(b, y)$ is more general than solution $\gamma = \{x/b, y/b\}$.

σ is more general than γ:

there exists δ such that $\sigma \delta = \gamma$;

$\delta = \{y/b\}$.
Equational Problems - Syntactic Unification

Goal: *algorithm* that *unifies* terms.

Example:

- \(h(x, y, z) = h(f(w, w), f(x, x), f(y, y)) \)
Equational Problems - Syntactic Unification

Goal: algorithm that unifies terms.

Example:

- \(h(x, y, z) = h(f(w, w), f(x, x), f(y, y)) \)
- \(h(f(w, w), y, z) = h(f(w, w), f(f(w, w), f(w, w)), f(y, y)), \) partial solution:
 \(\{x / f(w, w)\} \)
Goal: algorithm that unifies terms.

Example:

\[h(x, y, z) = h(f(w, w), f(x, x), f(y, y)) \]

\[h(f(w, w), y, z) = h(f(w, w), f(f(w, w), f(w, w)), f(y, y)), \text{ partial solution:} \]
\[\{x/f(w, w)\} \]

\[h(f(w, w), f(f(w, w), f(w, w)), z) = h(f(w, w), f(f(w, w), f(w, w)), f(f(w, w), f(w, w))), \text{ partial solution:} \]
\[\{x/f(w, w), y/f(f(w, w), f(w, w))\} \]
Equational Problems - Syntactic Unification

Goal: *algorithm* that *unifies* terms.

Example:

- $h(x, y, z) = h(f(w, w), f(x, x), f(y, y))$

- $h(f(w, w), y, z) =$
 $h(f(w, w), f(f(w, w), f(w, w)), f(y, y))$, partial solution:
 \{x/f(w, w)\}

- $h(f(w, w), f(f(w, w), f(w, w)), z) =$
 $h(f(w, w), f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))$, partial solution: \{x/f(w, w), y/f(f(w, w), f(w, w))\}

- $h(f(w, w), f(f(w, w), f(w, w)), f(f(w, w), f(w, w))) =$
 $h(f(w, w), f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))$, solution: \{x/f(w, w), y/f(f(w, w), f(w, w)), z/f(f(f(w, w), f(w, w)), f(f(w, w), f(w, w)))\}.
Interesting questions:

- Correctness and Completeness.
- Complexity.
- With adequate data structures, there are linear solutions (Huet, Martelli-Montanari 1976, Petterson-Wegman 1978).

Syntactic unification is of type *unary* and linear.
When operators have algebraic equational properties, the problem is not as simple.

Example: for \(f \) commutative (C), \(f(x, y) \approx f(y, x) \):

- \(f(x, y) = f(a, b) \)?

The unification problem is of type *finitary*.
When operators have algebraic equational properties, the problem is not as simple.

Example: for \(f \) **commutative** (C), \(f(x, y) \approx f(y, x) \):

- \(f(x, y) = f(a, b) \)?
- Solutions: \(\{ x/a, y/b \} \) and \(\{ x/b, y/a \} \).

The unification problem is of type **finitary**.
Example: for f associative (A), $f(f(x, y), z) \approx f(x, f(y, z))$:

- $f(x, a) = f(a, x)$?

The unification problem is of type *infinitary*.
Example: for f associative (A), $f(f(x,y),z) \approx f(x,f(y,z))$:

- $f(x,a) = f(a,x)$?
- Solutions: $\{x/a\}, \{x/f(a,a)\}, \{x/f(a,f(a,a))\}, \ldots$

The unification problem is of type *infinitary*.
Example: for f AC with unity (U), $f(x, e) \approx x$:

- $f(x, y) = f(a, b)$?

The unification problem is of type *finitary*.
Example: for f AC with $unity$ (U), $f(x, e) \approx x$:

- $f(x, y) = f(a, b)$?
- Solutions: $\{x/e, y/f(a, b)\}$, $\{x/f(a, b), y/e\}$, $\{x/a, y/b\}$, and $\{x/b, y/a\}$.

The unification problem is of type $finitary$.
Example: for \(f \) A, and idempotent (I), \(f(x, x) \approx x \):

- \(f(x, f(y, x)) = f(f(x, z), x) \)?
Example: for f A, and idempotent (I), $f(x, x) \approx x$:

- $f(x, f(y, x)) = f(f(x, z), x)$?
- Solutions: $\{y/f(u, f(x, u)), z/u\}, \ldots$

The unification problem is of type zero (Schmidt-Schauß 1986, Baader 1986).
Example: for + AC, and h homomorphism (h),
$h(x + y) \approx h(x) + h(y)$:

- $h(y) + a = y + z$?

Example: for + AC, and \(h \) homomorphism (\(h \)),
\[h(x + y) \approx h(x) + h(y) : \]

- \(h(y) + a = y + z \)?
- Solutions: \(\{ y / a, z / h(a) \} , \{ y / h(a) + a, z / h^2(a) \} , \ldots , \{ y / h^k(a) + \ldots + h(a) + a, z / h^{k+1}(a) \} , \ldots \)

The unification problem is of type zero and undecidable (Narendran 1996). The same happens for ACU\(h \) (Nutt 1990, Baader 1993).
Motivation

Synthesis on Unification modulo
<table>
<thead>
<tr>
<th>Theory</th>
<th>Unif. type</th>
<th>Equality-checking</th>
<th>Matching</th>
<th>Unification</th>
<th>Related work</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntactic</td>
<td>1</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>R65, MM76, PW78</td>
</tr>
<tr>
<td>C</td>
<td>ω</td>
<td>O(n^2)</td>
<td>NP-comp.</td>
<td>NP-comp.</td>
<td>BKN87, KN87</td>
</tr>
<tr>
<td>A</td>
<td>∞</td>
<td>O(n)</td>
<td>NP-comp.</td>
<td>NP-hard</td>
<td>M77, BKN87</td>
</tr>
<tr>
<td>AU</td>
<td>∞</td>
<td>O(n)</td>
<td>NP-comp.</td>
<td>decidable</td>
<td>M77, KN87</td>
</tr>
<tr>
<td>AI</td>
<td>0</td>
<td>O(n)</td>
<td>NP-comp.</td>
<td>NP-comp.</td>
<td>Klíma02, SS86, Baader86</td>
</tr>
<tr>
<td>Theory</td>
<td>Unif. type</td>
<td>Equality-checking</td>
<td>Matching</td>
<td>Unification</td>
<td>Related work</td>
</tr>
<tr>
<td>----------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>AC</td>
<td>ω</td>
<td>$O(n^3)$</td>
<td>NP-comp.</td>
<td>NP-comp.</td>
<td>BKN87, KN87, KN92</td>
</tr>
<tr>
<td>ACU</td>
<td>ω</td>
<td>$O(n^3)$</td>
<td>NP-comp.</td>
<td>NP-comp.</td>
<td>KN92</td>
</tr>
<tr>
<td>AC(U)I</td>
<td>ω</td>
<td>-</td>
<td>-</td>
<td>NP-comp.</td>
<td>KN92, BMMO20</td>
</tr>
<tr>
<td>D</td>
<td>ω</td>
<td>-</td>
<td>NP-hard</td>
<td>NP-hard</td>
<td>TA87</td>
</tr>
<tr>
<td>ACh</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>undecidable</td>
<td>B93, N96, EL18</td>
</tr>
<tr>
<td>ACUh</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>undecidable</td>
<td>B93, N96</td>
</tr>
</tbody>
</table>
Bindings and Nominal Syntax
Systems with bindings frequently appear in mathematics and computer science, but are not captured adequately in first-order syntax.

For instance, the formulas

\[\forall x_1, x_2 : x_1 + 1 + x_2 > 0 \quad \text{and} \quad \forall y_1, y_2 : 1 + y_2 + y_1 > 0 \]

are not syntactically equal, but should be considered equivalent in a system with binding and AC operators.
The nominal setting extends first-order syntax, replacing the concept of syntactical equality by α-equivalence, which let us represent smoothly those systems.

Profiting from the nominal paradigm implies adapting basic notions (substitution, rewriting, equality) to it.
Consider a set of variables $\mathbf{X} = \{X, Y, Z, \ldots\}$ and a set of atoms $\mathbf{A} = \{a, b, c, \ldots\}$.
Definition 1 (Nominal Terms)
Nominal terms are inductively generated according to the grammar:

\[s, t ::= a \mid \pi \cdot X \mid \langle \rangle \mid [a]t \mid \langle s, t \rangle \mid f t \mid f^{AC} t \]

where \(\pi \) is a permutation that exchanges a finite number of atoms.

To guarantee that AC function applications have at least two arguments, we have the notion of well-formed terms.
$a\#t$ means that if a occurs in t then it does so under an abstractor $[a]$.

A context is a set of constraints of the form $a\#X$. Contexts are denoted as Δ, Γ or ∇.
An atom permutation π represents an exchange of a finite amount of atoms in \mathcal{A} and is presented by a list of swappings:

$$\pi = (a_1\ b_1) :: \ldots :: (a_n\ b_n) :: nil$$
Permutations act on atoms and terms:

- $(a \ b) \cdot a = b$;
- $(a \ b) \cdot b = a$;
- $(a \ b) \cdot f(a, c) = f(b, c)$;
- $(a \ b) :: (b \ c) \cdot [a]⟨a, c⟩ = (b \ c)[b]⟨b, c⟩ = [c]⟨c, b⟩$.
Two important predicates are the *freshness* predicate $\#$, and the *α-equality* predicate \approx_{α}.

- $a \# t$ means that if a occurs in t then it must do so under an abstractor $[a]$.
- $s \approx_{\alpha} t$ means that s and t are α-equivalent.
A context is a set of constraints of the form $a \# X$. Contexts are denoted by the letters Δ, ∇ or Γ.
Advantages of the name binding nominal approach

Freshness conditions \(a \# s \), and *atom permutations* \(\pi \cdot s \).

Example

\(\beta \) and \(\eta \) rules as nominal rewriting rules:

\[
\text{app} \langle \text{lam}[a] M, N \rangle \rightarrow \text{subs} \langle [a] M, N \rangle \quad (\beta)
\]

\[
a \# M \vdash \text{lam}[a] \text{app} \langle M, a \rangle \rightarrow M \quad (\eta)
\]

Some substitution rules:

\[
b \# M \vdash \text{subs} \langle [b] M, N \rangle \rightarrow M
\]

\[
a \# N \vdash \text{subs} \langle [b] \text{lam}[a] M, N \rangle \rightarrow \text{lam}[a] \text{sub} \langle [b] M, N \rangle
\]

\[
c \# M, c \# N \vdash \text{subs} \langle [b] \text{lam}[a] M, N \rangle \rightarrow \text{lam}[c] \text{sub} \langle [b] (a \ c) \cdot M, N \rangle
\]
Advantages of the name binding nominal approach

- First-order terms with binders and *implicit* atom dependencies.
- Easy syntax to present *name binding* predicates as
 \[a \in \text{FreeVar}(M), \; a \in \text{BoundVar}([a]s), \] and operators as renaming: \((a \; b) \cdot s \).
- Built-in \(\alpha \)-equivalence and first-order *implicit substitution*.
- Feasible syntactic equational reasoning: efficient equality-check, matching, and unification algorithms.
Derivation Rules for Freshness

\[
\begin{align*}
\Delta \vdash a \# \langle \rangle & \quad (\# \langle \rangle) \\
(\pi^{-1}(a) \# X) \in \Delta & \quad (\# X) \\
\Delta \vdash a \# \pi \cdot X & \quad (\# X) \\
\Delta \vdash a \# t & \quad (\# [a] t) \\
\Delta \vdash a \# [b] t & \quad (\# [a] b) \\
\Delta \vdash a \# t & \quad (\# s) \\
\Delta \vdash a \# [s, t] & \quad (\# pair) \\
\Delta \vdash a \# t & \quad (\# app)
\end{align*}
\]
Derivation Rules for alpha-Equivalence

\[\Delta \vdash \emptyset \approx_{\alpha} \emptyset \] (\(\approx_{\alpha} \emptyset \))

\[\Delta \vdash s \approx_{\alpha} t \] (\(\approx_{\alpha} \text{app} \))

\[\Delta \vdash fs \approx_{\alpha} ft \] (\(\approx_{\alpha} \text{app} \))

\[\Delta \vdash s \approx_{\alpha} (a \ b) \cdot t, a \# t \] (\(\approx_{\alpha} [a]b \))

\[\Delta \vdash \pi \cdot X \approx_{\alpha} \pi' \cdot X \] (\(\approx_{\alpha} \text{var} \))

\[ds(\pi, \pi') \# X \subseteq \Delta \] (\(\approx_{\alpha} \text{var} \))

\[\Delta \vdash a \approx_{\alpha} a \] (\(\approx_{\alpha} \text{atom} \))

\[\Delta \vdash a \approx_{\alpha} a \] (\(\approx_{\alpha} \text{atom} \))

\[\Delta \vdash s \approx_{\alpha} t \] (\(\approx_{\alpha} \text{atom} \))

\[\Delta \vdash [a]s \approx_{\alpha} [a]t \] (\(\approx_{\alpha} [a]a \))

\[\Delta \vdash \langle s_0, s_1 \rangle \approx_{\alpha} \langle t_0, t_1 \rangle \] (\(\approx_{\alpha} \text{pair} \))
Let f be a C function symbol.

We add rule $(\approx_{\alpha} \text{c-app})$ for dealing with C functions:

$$
\Delta \vdash s_2 \approx_{\alpha} t_1 \quad \Delta \vdash s_1 \approx_{\alpha} t_2
$$

$$
\Delta \vdash f^C\langle s_1, s_2 \rangle \approx_{\alpha} f^C\langle t_1, t_2 \rangle
$$
Let f be an AC function symbol.

We add rule $\left(\approx_\alpha \text{ac-app} \right)$ for dealing with AC functions:

\[
\begin{align*}
\Delta \vdash S_i(f^{AC} s) & \approx_\alpha S_j(f^{AC} t) \quad \Delta \vdash D_i(f^{AC} s) & \approx_\alpha D_j(f^{AC} t) \\
\Delta \vdash f^{AC} s & \approx_\alpha f^{AC} t
\end{align*}
\]

$S_n(f\ *)$ selects the n^{th} argument of the flattened subterm $f\ *$.

$D_n(f\ *)$ deletes the n^{th} argument of the flattened subterm $f\ *$.
Derivation Rules as a Sequent Calculus

Deriving $\vdash \forall[a] \oplus \langle a, fa \rangle \approx_\alpha \forall[b] \oplus \langle fb, b \rangle$, where \oplus is C:

\[
\begin{align*}
a \approx_\alpha a & \quad (\approx_\alpha \text{atom}) \\
fa \approx_\alpha fa & \quad (\approx_\alpha \text{app}) \\
\oplus \langle a, fa \rangle & \approx_\alpha (a \ b) \cdot \oplus \langle fb, b \rangle & \quad (\approx_\alpha \text{c-app}) \\
\end{align*}
\]

\[
\begin{align*}
a \approx_\alpha a & \quad (\approx_\alpha \text{atom}) \\
fa \approx_\alpha fa & \quad (\approx_\alpha \text{app}) \\
a \# b & \quad (\# \text{atom}) \\
a \# fb & \quad (\# \text{app}) \\
a \# \langle fb, b \rangle & \quad (\# \text{pair}) \\
\end{align*}
\]

\[
\begin{align*}
[a] \oplus \langle a, fa \rangle & \approx_\alpha [b] \oplus \langle fb, b \rangle & \quad (\approx_\alpha \text{app}) \\
\forall[a] \oplus \langle a, fa \rangle & \approx_\alpha \forall[b] \oplus \langle fb, b \rangle & \quad (\approx_\alpha \text{app}) \\
\end{align*}
\]
Nominal C-unification
Nominal C-unification

Unification problem: \(\langle \Gamma, \{ s_1 \approx_\alpha t_1, \ldots s_n \approx_\alpha t_n \} \rangle \)

Unification solution: \(\langle \Delta, \sigma \rangle \), such that

- \(\Delta \vdash \Gamma \sigma \);
- \(\Delta \vdash s_i \sigma \approx_\alpha t_i \sigma, 1 \leq i \leq n \).

We introduced nominal (equality-check, matching) and unification algorithms that provide solutions given as triples of the form:

\[\langle \Delta, \sigma, FP \rangle \]

where \(FP \) is a set of fixed-point equations of the form \(\pi \cdot X \approx_\alpha X \).

This provides a finite representation of the infinite set of solutions that may be generated from such fixed-point equations.
Nominal C-unification

Fixed point equations such as $\pi \cdot X \simeq_\alpha^? X$ may have infinite independent solutions.

For instance, in a signature in which \oplus and \star are C, the unification problem: $\langle \emptyset, \{(a \ b)X \simeq_\alpha^? X\} \rangle$

has solutions:

\[
\begin{align*}
\langle \{a\#X, b\#X\}, id\rangle, \\
\langle \emptyset, \{X/a \oplus b\}\rangle, \langle \emptyset, \{X/a \star b\}\rangle, \ldots \\
\langle \{a\#Z, b\#Z\}, \{X/(a \oplus b) \oplus Z\}\rangle, \ldots \\
\langle \emptyset, \{X/(a \oplus b) \star (b \oplus a)\}\rangle, \ldots
\end{align*}
\]
Issues Adapting First-Order to Nominal AC-Unification
We modified Stickel-Fages’s seminal AC-unification algorithm to avoid mutual recursion and verified it in the PVS proof assistant.

We formalised the algorithm’s termination, soundness, and completeness [AFSS22].
Let f be an AC function symbol. The solutions that come to mind when unifying:

$$f(X, Y) \approx? f(a, W)$$

are:

$$\{X \rightarrow a, Y \rightarrow W\} \text{ and } \{X \rightarrow W, Y \rightarrow a\}$$

Are there other solutions?
Yes!

For instance, \(\{X \rightarrow f(a, Z_1), \ Y \rightarrow Z_2, \ W \rightarrow f(Z_1, Z_2)\} \) and \(\{X \rightarrow Z_1, \ Y \rightarrow f(a, Z_2), \ W \rightarrow f(Z_1, Z_2)\} \).
Example

the AC Step for AC-unification.

How do we generate a complete set of unifiers for:

\[f(X, X, Y, a, b, c) \approx? f(b, b, b, c, Z) \]
Eliminate common arguments in the terms we are trying to unify.

Now, we must unify

\[f(X, X, Y, a) \approx f(b, b, Z) \]
According to the number of times each argument appears, transform the unification problem into a linear equation on \mathbb{N}:

$$2X_1 + X_2 + X_3 = 2Y_1 + Y_2,$$

Above, variable X_1 corresponds to argument X, variable X_2 corresponds to argument Y, and so on.
Generate a basis of solutions to the linear equation.

Table 1: Solutions for the Equation \(2X_1 + X_2 + X_3 = 2Y_1 + Y_2\)

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>Y_1</th>
<th>Y_2</th>
<th>2X_1 + X_2 + X_3</th>
<th>2Y_1 + Y_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Associate new variables with each solution.

Table 2: Solutions for the Equation $2X_1 + X_2 + X_3 = 2Y_1 + Y_2$

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>Y_1</td>
<td>Y_2</td>
<td>$2X_1 + X_2 + X_3$</td>
<td>$2Y_1 + Y_2$</td>
<td>New Variables</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Z_1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Z_2</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Z_3</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Z_4</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Z_5</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>Z_6</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>Z_7</td>
</tr>
</tbody>
</table>
Observing the previous Table, relate the “old” variables and the “new” ones:

\[X_1 \approx Z_6 + Z_7 \]
\[X_2 \approx Z_2 + Z_4 + 2Z_5 \]
\[X_3 \approx Z_1 + 2Z_3 + Z_4 \]
\[Y_1 \approx Z_3 + Z_4 + Z_5 + Z_7 \]
\[Y_2 \approx Z_1 + Z_2 + 2Z_6 \]
Decide whether we will include (set to 1) or not (set to 0) every “new” variable. Every “old” variable must be different than zero.

In our example, we have 2^7 possibilities of including/excluding the variables Z_1, \ldots, Z_7, but after observing that X_1, X_2, X_3, Y_1, Y_2 cannot be set to zero, only 69 cases remain.
Drop the cases where the variables representing constants or subterms headed by a different AC function symbol are assigned to more than one of the “new” variables.

For instance, the potential new unification problem

\[
\{ X_1 \approx? Z_6, X_2 \approx? Z_4, X_3 \approx? f(Z_1, Z_4), \\
Y_1 \approx? Z_4, Y_2 \approx? f(Z_1, Z_6, Z_6) \}
\]

should be discarded as the variable \(X_3 \), which represents the constant \(a \), cannot unify with \(f(Z_1, Z_4) \).
Replace “old” variables by the original terms they substituted and proceed with the unification.

Some new unification problems may be unsolvable and will be discarded later. For instance:

\[
\{ X \approx ? Z_6, \ Y \approx ? Z_4, \ a \approx ? Z_4, \ b \approx ? Z_4, \ Z \approx ? f(Z_6, Z_6) \}\]
In our example,

\[f(X, X, Y, a, b, c) \approx? f(b, b, b, c, Z) \]

the solutions are:

\[
\begin{align*}
\sigma_1 &= \{ Y \to f(b, b), Z \to f(a, X, X) \} \\
\sigma_2 &= \{ Y \to f(Z_2, b, b), Z \to f(a, Z_2, X, X) \} \\
\sigma_3 &= \{ X \to b, Z \to f(a, Y) \} \\
\sigma_4 &= \{ X \to f(Z_6, b), Z \to f(a, Y, Z_6, Z_6) \}
\end{align*}
\]
We found a loop while solving nominal AC-unification problems using Stickel-Fages’ Diophantine-based algorithm.

For instance

\[f(X, W) \approx ? f(\pi \cdot X, \pi \cdot Y) \]

Variables are associated as below:

- \(U_1 \) is associated with argument \(X \),
- \(U_2 \) is associated with argument \(W \),
- \(V_1 \) is associated with argument \(\pi \cdot X \), and
- \(V_2 \) is associated with argument \(\pi \cdot Y \).
The Diophantine equation associated is $U_1 + U_2 = V_1 + V_2$.

The table with the solutions of the Diophantine equations is shown below. The name of the new variables was chosen to make clearer the loop we will fall into.

Table 3: Solutions for the Equation $U_1 + U_2 = V_1 + V_2$

<table>
<thead>
<tr>
<th>U_1</th>
<th>U_2</th>
<th>V_1</th>
<th>V_2</th>
<th>$U_1 + U_2$</th>
<th>$V_1 + V_2$</th>
<th>New variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Z_1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>W_1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Y_1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>X_1</td>
</tr>
</tbody>
</table>
\{X \approx? \, X_1, \, W \approx? \, Z_1, \, \pi \cdot X \approx? \, X_1, \, \pi \cdot Y \approx? \, Z_1\}
\{X \approx? \, Y_1, \, W \approx? \, W_1, \, \pi \cdot X \approx? \, W_1, \, \pi \cdot Y \approx? \, Y_1\}
\{X \approx? \, Y_1 + X_1, \, W \approx? \, W_1, \, \pi \cdot X \approx? \, W_1 + X_1, \, \pi \cdot Y \approx? \, Y_1\}
\{X \approx? \, Y_1 + X_1, \, W \approx? \, Z_1 + W_1, \, \pi \cdot X \approx? \, W_1 + X_1, \, \pi \cdot Y \approx? \, Z_1 + Y_1\}
\{X \approx? \, X_1, \, W \approx? \, Z_1 + W_1, \, \pi \cdot X \approx? \, W_1 + X_1, \, \pi \cdot Y \approx? \, Z_1\}
\{X \approx? \, Y_1, \, W \approx? \, Z_1 + W_1, \, \pi \cdot X \approx? \, W_1, \, \pi \cdot Y \approx? \, Z_1 + Y_1\}
\{X \approx? \, Y_1 + X_1, \, W \approx? \, Z_1 + W_1, \, \pi \cdot X \approx? \, W_1 + X_1, \, \pi \cdot Y \approx? \, Z_1 + Y_1\}
After instantiateStep

Seven branches are generated:

\[B_1 \rightarrow \{ \pi \cdot X \approx? X \}, \sigma = \{ W \mapsto \pi \cdot Y \} \]

\[B_2 \rightarrow \sigma = \{ W \mapsto \pi^2 \cdot Y, X \mapsto \pi \cdot Y \} \]

\[B_3 \rightarrow \{ f(\pi^2 \cdot Y, \pi \cdot X_1) \approx? f(W, X_1) \}, \sigma = \{ X \mapsto f(\pi \cdot Y, X_1) \} \]

\[B_4 \rightarrow \text{No solution} \]

\[B_5 \rightarrow \text{No solution} \]

\[B_6 \rightarrow \sigma = \{ W \mapsto f(Z_1, \pi \cdot X), Y \mapsto f(\pi^{-1} \cdot Z_1, \pi^{-1} \cdot X) \} \]

\[B_7 \rightarrow \{ f(\pi \cdot Y_1, \pi \cdot X_1) \approx? f(W_1, X_1) \}, \]

\[\sigma = \{ X \mapsto f(Y_1, X_1), W \mapsto f(Z_1, W_1), Y \mapsto f(\pi^{-1} \cdot Z_1, \pi^{-1} \cdot Y_1) \} \]
Focusing on Branch 7, notice that the problem before the AC Step and the problem after the AC Step and instantiating the variables are, respectively:

\[P = \{ f(X, W) \approx^? f(\pi \cdot X, \pi \cdot Y) \} \]

\[P_1 = \{ f(X_1, W_1) \approx^? f(\pi \cdot X_1, \pi \cdot Y_1) \} \]
Issues Adapting First-Order to Nominal AC-Unification

An Algorithm for Nominal AC-Matching
Nominal AC-matching is matching in the nominal setting in the presence of associative-commutative function symbols.

We proposed (to the best of our knowledge) the first nominal AC-matching algorithm, and formalised it in the PVS proof assistant ([AFFKS23]).
Given an algorithm of unification, one can adapt it by adding as a parameter a set of *protected variables* \(\mathcal{X} \), which cannot be instantiated.

The adapted algorithm can then be used for:

- **Unification** - By putting \(\mathcal{X} = \emptyset \).
- **Matching** - By putting \(\mathcal{X} \) as the set of variables in the right-hand side.
- **\(\alpha \)-Equivalence** - By putting \(\mathcal{X} \) as the set of variables that appear in the problem.
We modify our first-order AC-unification formalisation to obtain a formalised algorithm for nominal AC-matching.
The algorithm is recursive and needs to keep track of:

- the current context Γ,
- the equational constraints we must unify P,
- the substitution σ computed so far,
- the set of variables V that are/were in the problem, and
- the set of protected variables X.

Hence, it’s input is a quintuple $\langle \Gamma, P, \sigma, V, X \rangle$.
We assume the input satisfies $\text{Vars}(\text{rhs}(P)) \subseteq \mathcal{X}$ (notice that to obtain a nominal AC-unification algorithm, we would have to eliminate this hypothesis from the proofs).
The output is a list of solutions, each of the form $\langle \Gamma_1, \sigma_1 \rangle$.
The AC part of the algorithm (ACMatch) is handled by function applyACStep, which relies on two functions: solveAC and instantiateStep.

- **solveAC** builds the linear Diophantine equational system associated with the AC-matching equational constraint, generates the basis of solutions, and uses these solutions to generate the new AC-matching equational constraints.
- **instantiateStep** instantiates the moderated variables that it can.
Idea: for the particular case of matching (unlike unification) all the new moderated variables introduced by \texttt{solveAC} are instantiated by \texttt{instantiateStep}.
Hence, termination is much easier in nominal AC-matching than in first-order AC-unification.
\(\nabla' \vdash \nabla \sigma \) denotes that \(\nabla' \vdash a\#X\sigma \) holds for each \((a\#X) \in \nabla \).

\(\nabla \vdash \sigma \equiv_{\mathcal{V}} \sigma' \) denotes that \(\nabla \vdash X\sigma \equiv_{\alpha} X\sigma' \) for all \(X \) in \(\mathcal{V} \). When \(\mathcal{V} \) is the set of all variables \(X \), we write \(\nabla \vdash \sigma \equiv \sigma' \).
Our algorithm receives as input quintuples. Hence, to state the theorems of soundness and completeness, we need the definition of a solution $\langle \Delta, \delta \rangle$ to a quintuple $\langle \Gamma, P, \sigma, V, \mathcal{X} \rangle$.
Definition 2 (Solution for a Quintuple)

A solution to a quintuple $\langle \Gamma, P, \sigma, V, \mathcal{X} \rangle$ is a pair $\langle \Delta, \delta \rangle$, where the following conditions are satisfied:

1. $\Delta \vdash \Gamma \delta$.
2. If $a \not\approx t \in P$ then $\Delta \vdash a \not\approx t \delta$.
3. If $t \approx s \in P$ then $\Delta \vdash t \delta \approx_\alpha s \delta$.
4. There exists λ such that $\Delta \vdash \lambda \circ \sigma \approx V \delta$.
5. $\text{dom}(\delta) \cap \mathcal{X} = \emptyset$.
Note that if $\langle \Delta, \delta \rangle$ is a solution of $\langle \Gamma, \emptyset, \sigma, X, \mathcal{X} \rangle$ this corresponds to the notion of $\langle \Delta, \delta \rangle$ being an instance of $\langle \Gamma, \sigma \rangle$ that does not instantiate variables in \mathcal{X}.
Theorem 3 (Soundness for AC-Matching)

Let the pair $\langle \Gamma_1, \sigma_1 \rangle$ be an output of $\text{ACMatch}(\langle \emptyset, \{ t \approx s \}, \text{id}, \text{Vars}(t, s), \text{Vars}(s) \rangle)$.

If $\langle \Delta, \delta \rangle$ is an instance of $\langle \Gamma_1, \sigma_1 \rangle$ that does not instantiate the variables in s, then

$\langle \Delta, \delta \rangle$ is a solution to $\langle \emptyset, \{ t \approx s \}, \text{id}, \overline{X}, \text{Vars}(s) \rangle$.

An interpretation of the previous Theorem is that if $\langle \Delta, \delta \rangle$ is an AC-matching instance to one of the outputs of ACMatch, then $\langle \Delta, \delta \rangle$ is an AC-matching solution to the original problem.
Theorem 4 (Completeness for AC-Matching)

Suppose that \(\langle \Delta, \delta \rangle \) is a solution to \(\langle \emptyset, \{ t \approx ? s \}, \text{id}, \mathbb{X}, \text{Vars}(s) \rangle \), that \(\delta \subseteq V \) and that \(\text{Vars}(\Delta) \subseteq V \).

Then, there exists

\[
(\langle \Gamma, \sigma \rangle \in \text{ACMatch}(\langle \emptyset, \{ t \approx ? s \}, \text{id}, V, \text{Vars}(s) \rangle))
\]

such that \(\langle \Delta, \delta \rangle \) is an instance (restricted to the variables of \(V \)) of \(\langle \Gamma, \sigma \rangle \) that does not instantiate the variables of \(s \).
An interpretation of the previous Theorem is that if $\langle \Delta, \delta \rangle$ is an AC-matching solution to the initial problem, then $\langle \Delta, \delta \rangle$ is an AC-matching instance of one of the outputs of ACMatch.
The hypotheses $\delta \subseteq V$ and $\text{Vars}(\Delta) \subseteq V$ are just a technicality that was put to guarantee that the new variables introduced by the algorithm in the AC-part do not clash with the variables in $\text{dom}(\delta)$ or in the terms in $\text{im}(\delta)$ or in $\text{Vars}(\Delta)$.
Synthesis on Nominal Equational Modulo
Synthesis of results on Nominal Unification Modulo

<table>
<thead>
<tr>
<th>Theory</th>
<th>Unif. type</th>
<th>Equality-checking</th>
<th>Matching</th>
<th>Unification</th>
<th>Related work</th>
</tr>
</thead>
<tbody>
<tr>
<td>\approx_α</td>
<td>1</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
<td>$O(n^2)$</td>
<td>UPG04 LV10 CF08 CF10 LSFA2015</td>
</tr>
<tr>
<td>C</td>
<td>∞</td>
<td>$O(n^2 \log n)$</td>
<td>NP-comp.</td>
<td>NP-comp.</td>
<td>LOPSTR2017 FroCoS2017 TCS2019 LOPSTR2019 MSCS2021</td>
</tr>
<tr>
<td>A</td>
<td>∞</td>
<td>$O(n \log n)$</td>
<td>NP-comp.</td>
<td>NP-hard</td>
<td>LSFA2016 TCS2019</td>
</tr>
<tr>
<td>AC</td>
<td>ω</td>
<td>$O(n^3 \log n)$</td>
<td>NP-comp.</td>
<td>NP-comp.</td>
<td>LSFA2016 TCS2019 CICM2023</td>
</tr>
</tbody>
</table>
More on Nominal Reasoning

Also:

- Overlaps in Nominal Rewriting [LSFA 2015]
- Nominal Narrowing [FSCD 2016]
- Nominal Intersection Types [TCS 2018]
- Nominal Disequations [LSFA 2019]
- Nominal Syntax with Permutation Fixed Points [LMCS2020]
Work in Progress and Future Work
Removing the hypotheses $\delta \subseteq V$ and $\text{Vars}(\Delta) \subseteq V$ in the statement of completeness.

Table 4: Quantitative Data.

<table>
<thead>
<tr>
<th>Theory</th>
<th>Theorems</th>
<th>TCCs</th>
<th>Size (.pvs)</th>
<th>Size (.prf)</th>
<th>Size (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[AFFKS23]</td>
<td>6</td>
<td>4</td>
<td>2.8 kB</td>
<td>0.02 MB</td>
<td>< 1%</td>
</tr>
<tr>
<td>unification_alg</td>
<td>11</td>
<td>19</td>
<td>6.9 kB</td>
<td>2.1 MB</td>
<td>9%</td>
</tr>
<tr>
<td>ac_step</td>
<td>45</td>
<td>11</td>
<td>15.8 kB</td>
<td>1.6 MB</td>
<td>7%</td>
</tr>
<tr>
<td>inst_step</td>
<td>75</td>
<td>17</td>
<td>20.3 kB</td>
<td>2 MB</td>
<td>9%</td>
</tr>
<tr>
<td>aux.unification</td>
<td>140</td>
<td>52</td>
<td>44.9 kB</td>
<td>6.9 MB</td>
<td>30%</td>
</tr>
<tr>
<td>Diophantine</td>
<td>77</td>
<td>44</td>
<td>23.5 kB</td>
<td>1 MB</td>
<td>4%</td>
</tr>
<tr>
<td>unification</td>
<td>119</td>
<td>13</td>
<td>28.0 kB</td>
<td>1.7 MB</td>
<td>8%</td>
</tr>
<tr>
<td>fresh_subs</td>
<td>37</td>
<td>5</td>
<td>10.9 kB</td>
<td>0.6 MB</td>
<td>3%</td>
</tr>
<tr>
<td>substitution</td>
<td>166</td>
<td>34</td>
<td>30.1 kB</td>
<td>2.5 MB</td>
<td>11%</td>
</tr>
<tr>
<td>equality</td>
<td>83</td>
<td>20</td>
<td>15.1 kB</td>
<td>1.6 MB</td>
<td>7%</td>
</tr>
<tr>
<td>freshness</td>
<td>15</td>
<td>10</td>
<td>4.5 kB</td>
<td>0.1 MB</td>
<td>< 1%</td>
</tr>
<tr>
<td>terms</td>
<td>147</td>
<td>53</td>
<td>29.1 kB</td>
<td>1.1 MB</td>
<td>5 %</td>
</tr>
<tr>
<td>atoms</td>
<td>14</td>
<td>3</td>
<td>3.7 kB</td>
<td>0.03 MB</td>
<td>< 1 %</td>
</tr>
<tr>
<td>list</td>
<td>265</td>
<td>113</td>
<td>54.9 kB</td>
<td>1.4 MB</td>
<td>6 %</td>
</tr>
<tr>
<td>Total</td>
<td>1200</td>
<td>398</td>
<td>290.5 kB</td>
<td>22.6 MB</td>
<td>100%</td>
</tr>
</tbody>
</table>

The approach in progress is similar to the one applied for removing variables to the first-order AC-unification algorithm formalization in [FSCD2022].
Future Work

Study how to avoid the circularity in nominal AC-unification.

- How circularity enriches the set of computed solutions?
- Under which conditions can circularity be avoided?

Consider the alternative approach to AC-unification proposed by Boudet, Contejean and Devie [BCD90, Bou93], which was used to define AC higher-order pattern unification.

Explore the connection between nominal and higher-order patterns to obtain a nominal AC-unification algorithm.
Thank you!
