
Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Integrating Decision Procedures with
Boolean Solving

Pascal Fontaine, Silvio Ranise, Christophe Ringeissen

Lecture 6

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Topics

GOAL: lift decision procedures for the satisfiability problem
of conjunctions of (ground) atoms to handle arbitrary
Boolean combinations of (ground) atoms
Key technique: integrate

1 decision procedure for conjunctions of ground atoms with
2 a Boolean solver to handle the Boolean structure of the

formula via
3 an abstract-check-refine schema

Systems based on this idea are called
(Lazy) Satisfiability Modulo Theory (SMT) Solvers

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Pre-requisites

There is one key pre-requisite to this lecture
1 DPLL algorithm (or... how to build a Boolean model of a

propositional formula)

For ease of reference, the following slide contains the
essential concept which will be used in the rest of this
lecture...

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Pre-requisite: the DPLL algorithm

Let S be a set of clauses

Unit Resolution S ∪ {L,C ∨ L}
S ∪ {L,C} if ¬A := A

A := ¬A

Unit Subsumption
S ∪ {L,C ∨ L}

S ∪ {L}

Splitting
S

S ∪ {A} | S ∪ {¬A} if A is an atom occurring in S

Exercise (mandatory): explain how a Boolean model can be
extracted from the application of these rules
(Hint: think of the derivation trees and collect the various unit
clauses...)

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Index

1 Satisfiability Modulo Theory: introduction
Conflict sets and conflict clauses

2 SMT Solvers: an algorithmic view
basic algorithm
SMT solver: a refinement of the basic algorithm

3 Abstract DPLL

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

What about Arbitrary Boolean Combinations?

• Let φ be an arbitrary Boolean combinations of atoms in a
given theory T with decidable satisfiability problem
• How can we check the T -satisfiability of φ?

. convert φ into DNF
∨

i Φi and check each disjunct Φi for
T -satisfiability
• Main problem: conversion to DNF may result in a blow-up in
space of the resulting formula
• Unfortunately, the problem is very hard since it subsumes the
propositional satisfiability problem which is NP

. we are interested in developing efficient solutions (in
practice)

ü engineering rather than logic

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

Satisfiability Modulo Theory (SMT) Systems
http://combination.cs.uiowa.edu/smtlib

• Class of systems based on the following idea: integrate
. a Boolean solver (to handle the propositional structure of

the formula)
. a satisfiability procedure for the theory T

• All lazy SMT solvers the systems are based on an
abstract-check-refine process
• There also exist eager SMT solvers that reduce satisfiability
modulo theory to a pure Boolean satisfiability problem upfront
and then use a SAT solver

SAT+SMT

http://combination.cs.uiowa.edu/smtlib

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

Lazy SMT: Generic System Architecture

• Based on an abstract-check-refine process:
. the input formula φ is abstracted to a propositional formula

φp

. the Boolean solver enumerates the propositional
assignments βp

1 , ..., β
p
n of φp

. each conjunction βi of T -literals is checked for
T -satisfiability

. in case of T -unsatisfiability of βi , refine the abstract
propositional formula

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

Observations on SMT (I)

• Use an off-the-shelf Boolean solver to leverage its
advantages, e.g.

. SAT solvers can scale up

. they return just one propositional satisfying assignment

. they can accept incrementally new clauses...
Scenario: let βp be a propositional assignment of φp such that
β (βp = abs(β)) is T -unsatisfiable
How can we modify φp so that it return a new satisfying
assignment distinct from βp?

φp := φp ∧ ¬βp

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

Observations on SMT (II)

• Did we really get a practically efficient system?
. Well... no! Since we enumerate all possible satisfying

assignments of φp which may be exponentially many in the
number of propositional literals in φ or, equivalently, we have
still to check exponentially many the T -satisfiability of a
conjunction of literals

. So, even though the satisfiability procedure for T is very
fast, it is invoked an exponential number of times and this may
result in unacceptable degradation of the performances of the
system
• How can we improve this situation in practice? In theory, this
exponential blow-up is unavoidable!

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

Observations on SMT (II)

• To overcome this problem in practice, all SMT systems are
based on the same technique which is a refinement of the
technique to modify φp so that the Boolean solver return a new
satisfying assignment distinct from βp, namely:

φp := φp ∧ ¬βp

• We assume that the satisfiability procedure for T has a more
complex interface: besides returning sat/unsat, it also returns a
subset π of the input set β of the literals which is still
T -unsatisfiable so that we can perform the following

φp := φp ∧ ¬πp

. Why should this be beneficial in practice?

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

Observations on SMT (II)

• Let us consider the following (unsatisfiable) conjunction of
literals in the theory of uninterpreted function symbols:

β := `1 ∧ · · · ∧ f (x) 6= f (y) ∧ x = y ∧ · · · ∧ `n
where each `i is an equality for i = 1, ...,n

. If we use the naïve approach of enumerating all possible
assignment, we will consider 2n−2 conjunctions of literals
(corresponding to 2n−2 Boolean assignments) whose
T -unsatisfiability is the responsibility of the same set
{x = y , f (x) 6= f (y)} of only two literals

. Instead, if we add the (propositional abstraction of the)
negation of {x = y , f (x) 6= f (y)} to φp, we will prune the search
space of the Boolean solver of all the 2n−2 propositional
assignments in one shot!

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

Observations on SMT (II)

• If n = 100 (which is a small/medium number for practical
applications), then
we avoid invoking 298, i.e. around 3.2 · 1029, prop. assignments!

• In practice, this situation is quite common: unsatisfiability of
large conjunction of literals usually depends on a small sub-set
of the input literals
• So, this technique gives spectacular results in practice and
makes SMT system capable of tackling very large Boolean
combinations of atoms in a given theory

. the T -unsatisfiable subset π of the input literals is called
conflict set and ¬π is called a conflict clause

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

How to obtain conflict sets from sat. proc?
• Naïve approach: by guessing

. after detecting the unsatisfiability of a set β of literals...

. pick a literal ` in β and check the unsatisfiability of β \ {`}:
if it is still unsatisfiable, then β := β \ {`}; otherwise pick
another literal

. stop when all literals have been considered and return β
as the conflict set
• Pros: very little effort in implementation
• Cons: not very efficient since each Boolean assignment,
there are n calls to the satisfiability procedure (this is a linear
blow-up but it may be significant for applications especially if
the satisfiability procedure is quadratic or cubic)

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

How to obtain conflict sets from sat. proc?

• Some properties of the theory T under-consideration may
improve a little bit the computation of a conflict set:

. if T is convex, an unsatisfiable set of literals admits a
conflict set with at most one disequality

. if T is the theory of equality, an unsatisfiable set of literals
admits a conflict set with exactly one disequality
• More efficient alternative: modify the satisfiability procedure
to return a conflict set while checking for satisfiability

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL
Conflict sets and conflict clauses

About the “quality” of conflict set?

• The smaller (in cardinality) the conflict set, the higher the
number of propositional assignments are eliminated

. This requires to consider all subsets of a given set: an
exponential number ü not practical!
• So, we focus on minimal conflict set: a conflict set is minimal
if all its (strict) subsets are satisfiable
• In practice, we are already happy with small conflict sets

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: main algorithm

function Bool + T (φ: quantifier-free formula)
φp ←− nf (fol2prop(φ))
while Bool-satisfiable(φp) do

βp ←− pick_assign(φp)
(ρ, π)←− T -satisfiable(prop2fol(βp))
if ρ = sat then return sat
φp ←− φp ∧ ¬fol2prop(π)

end while
return unsat

end

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: main algorithm (remarks)

• Propositional abstraction: fol2prop(φ) returns the
propositional abstraction φp of φ and prop2fol is its inverse

. fol2prop(φ) maps each atom in φ to a propositional letter,
then it is extended homomorphically over the Boolean structure
of φ

. nf computes a normal form (e.g. CNF) of the input formula
so that the Boolean solver is capable of handling it (SAT solvers
can handle only formulae in CNF)

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

Computation of CNF

Let Φ = (a1 ∧ · · · ∧ am) ∨ (b1 ∧ · · · ∧ bn)
Equivalent CNF:

m∧
i=1

n∧
j=1

(ai ∨ bj)

Equisatisfiable CNF:

(X ∨ Y) ∧ (X ⇔ a1 ∧ · · · ∧ am) ∧ (Y ⇔ b1 ∧ · · · ∧ bn)

where (X ⇔ a1 ∧ · · · ∧ am) ∧ (Y ⇔ b1 ∧ · · · ∧ bn) can be
represented as a conjunction of clauses (Exercise).

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: main algorithm (remarks)

• The Boolean solver is supposed to provide two interface
functionalities:

. Bool-satisfiable which checks whether the input formula is
propositionally satisfiable or not

. pick_assign returns a satisfying assignment of the input
formula
• It is usually also assumed that it is possible to incrementally
add a clause to those already in the solver

. Notice that this requirement is not crucial: SAT solvers are
so fast that even restarting them from scratch each time a
conflict clause is added is not dramatic in term of performances!

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: main algorithm (remarks)

• The satisfiability procedure for a theory T is supposed to
have the following interface: T -satisfiable(β) returns the pair
(ρ, π) where

. ρ is sat when β is T -satisfiable (π is left unspecified in this
case)

. ρ is unsat when β is T -unsatisfiable and π ⊆ β is
T -unsatisfiable

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: main algorithm (remarks)

• The main loop of the algorithm searches a propositional
assignment whose refinement is T -satisfiable

. If such an assignment is found, then the satisfiability of the
input formula is returned

. If all assignments have been found unsatisfiable, then the
unsatisfiability of the input formula is reported

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: correctness of the main algorithm

• Lemma [Return on sat] φ is T -satisfiable iff there exists an
assignment βp of φp such that

. βp (propositionally) satisfies φp

. β is T -satisfiable
• Lemma [Loop invariant] If βp is a set of literals satisfying φp

and β is T -unsatisfiable, then
. φ is T -satisfiable iff φ ∧ ¬β is

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: correctness of the main algorithm

• Lemma [Loop variant] If βp is a set of literals satisfying φp and
β is T -unsatisfiable, then

. the number of propositional assignments of φp ∧ ¬βp are
strictly less than those of φp

• Theorem [Correctness] The function Bool + T is a decision
procedure for checking the satisfiability of arbitrary Boolean
combination of ground atoms

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: refining the main algorithm

• Observation: SAT solvers are capable of incrementally
building a satisfying assignment...

. it would be interesting to incrementally check the
T -satisfiability of the corresponding literals while the
assignment is built

. in this way, we will discover unsatisfiability early and prune
the search space of the Boolean solver with a “better” conflict
set
• The idea is that before a split on a certain propositional letter
(a non-deterministic step), it is wise to check whether the
satisfying assignment built so far is satisfiable: if it is not, there
is no point to continue and create a branching point!

. the conflict set returned will contain literals higher-up in
the search tree and this prunes substantially the search space
of the SAT solver

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: refining the main algorithm

function Bool + T (φ: quantifier-free formula)
φp ←− nf (fol2prop(φ))
while Bool-satisfiable(φp) do

βp ←− ∅
repeat

βp ←− extend_partial_assign(φp, βp)
(ρ, π)←− T -satisfiable(prop2fol(βp))
if (ρ = sat ∧ |βp| = |Atoms(φ)|) then return sat

until ρ = unsat
φp ←− φp ∧ ¬fol2prop(π)

end while
return unsat

end

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

basic algorithm
SMT solver: a refinement of the basic algorithm

SMT System: refining the main algorithm

• The new function extend_partial_assign(φp, βp)
monotonically extends the input (partial) assignment

. a possible implementation of this is to eagerly perform all
the computations of the DPLL algorithm which do not create
branching point and then return the resulting assignment so
that its refinement can be checked for T -satisfiability
• Notice that we can only report the satisfiability of the input
formula when a total assignment is found T -satisfiable
• The inner loop of the new version of the algorithm must
terminate since |Atoms(φ)| − |βp| is monotonically decreasing
and |Atoms(φ)| − |βp| ≥ 0

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Abstract DPLL

See Nieuwenhuis-Oliveras-Tinelli, JACM 2006.

A rule-based framework to specify DPLL
Rules handle a data-structure M || F where M is a partial
assignment of Boolean variables, and F is a set of clauses
Case-split on Boolean variables implemented via a
backtrack/backjump mechanism
Easy extension from DPLL to DPLL(T)
Study of different efficient strategies

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Classical DPLL (à la Nieuwenhuis-Oliveras-Tinelli)

Propagate M || F ,C ∨ l ` M l || F ,C ∨ l
if M |= ¬C, l undefined in M

Decide M || F ` M ld || F
if l or ¬l in F , l undefined in M

Fail M || F ,C ` ⊥
if M |= ¬C,no decision literals in M

Backtrack M ld N || F ,C ` M ¬l || F ,C

if
{

M ld N |= ¬C
no decision literals in N

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Conflict Driven Clause Learning: SAT level

Learn M || F ` M || F ,C

if
{

each atom of C in F or in M
F |= C

Forget M || F ,C ` M || F
if F |= C

Backjump M ld N || F ,C ` M l ′ || F ,C

if

M ld N |= ¬C
∃C′, l ′ : F ,C |= C′ ∨ l ′

M |= ¬C′

l ′ undefined in M
l ′ or ¬l ′ in F or in M ld N

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Conflict Driven Clause Learning: SMT level

T−Learn M || F ` M || F ,C

if
{

each atom of C in F or in M
F |=T C

T−Forget M || F ,C ` M || F
if F |=T C

T−Backjump M ld N || F ,C ` M l ′ || F ,C

if

M ld N |= ¬C
∃C′, l ′ : F ,C |=T C′ ∨ l ′

M |= ¬C′

l ′ undefined in M
l ′ or ¬l ′ in F or in M ld N

SAT+SMT

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

SMT Solving: suggested reading

• Introduction to DPLL(T)
Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT Modulo
Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).
Journal of the ACM, 53(6):937-977, November 2006. Cf.
http://www.cs.uiowa.edu/~tinelli/html/publications.html
• Overview on SMT solvers (both eager and lazy approaches)
S. Ranise and C. Tinelli. “Satisfiability Modulo Theories.” In TRENDS and
CONTROVERSIES–IEEE Magazine on Intelligent Systems, Volume 21, Number 6,
pages 71–81, November/December 2006. (Pre-print available at
http://www.loria.fr/~ranise/pubs/IEEE-pp.pdf)
• In-depth discussion about lazy SMT solvers
R. Sebastiani. “Lazy Satisfiability Modulo Theories.” In Journal on Satisfiability,
Boolean Modeling and Computation, JSAT. Vol. 3, 2007. Pag 141–224, c© IOS Press.
(Available at http:
//jsat.ewi.tudelft.nl/content/volume3/JSAT3_9_Sebastiani.pdf)
C. Barrett, R. Sebastiani, S. Seshia and C. Tinelli. Chapter on “Satisfiability Modulo
Theories.” In A. Biere, H. van Maaren and T. Walsh editors, Handbook on Satisfiability.
IOS Press, February 2009. (Pre-print available at
http://www.cs.uiowa.edu/~tinelli/html/publications.html)

SAT+SMT

http://www.cs.uiowa.edu/~tinelli/html/publications.html
http://www.loria.fr/~ranise/pubs/IEEE-pp.pdf
http://jsat.ewi.tudelft.nl/content/volume3/JSAT3_9_Sebastiani.pdf
http://jsat.ewi.tudelft.nl/content/volume3/JSAT3_9_Sebastiani.pdf
http://www.cs.uiowa.edu/~tinelli/html/publications.html

Satisfiability Modulo Theory: introduction
SMT Solvers: an algorithmic view

Abstract DPLL

Further complications with conflict sets

• Consider the case when T = T1 ∪ T2 and you have used the
Nelson-Oppen combination schema to build a sat proc for T by
modularly combining those for T1 and T2
• Assume also that each satisfiability procedure is capable of
building a conflict set: how can you build a conflict set for T?

. notice that because of purification, the conflict sets
computed by each sat proc are not on the original signature...
So, it cannot be a subset of the input (non-purified) set of
literals!

. we need to track the equalities exchanged between the
two procedures in order to map the conflict set on the extended
signature to a subset of the original set of literals

SAT+SMT

	Satisfiability Modulo Theory: introduction
	Conflict sets and conflict clauses

	SMT Solvers: an algorithmic view
	basic algorithm
	SMT solver: a refinement of the basic algorithm

	Abstract DPLL

