Building Decision Procedures for Data Structures

Silvio Ranise and Christophe Ringeissen

LORIA

Lecture 4
1. Use of Superposition
 - Equality
 - Extensions of Equality

2. Superposition: Unit Clauses
 - Orderings
 - Unification
 - Saturation

3. Superposition: Arbitrary Clauses

4. References
Satisfiability Procedures for Equality

- Aka theory of uninterpreted function (UF) symbols
- Useful in virtually any verification problem
 - uninterpreted function symbols provide a natural means for abstracting data and data operations
 - hardware, software, safety checking, ...
Axiom schemas for the theory of UF

- **Equality** can be defined as a binary predicate \(= \) written infix satisfying the following axioms:

\[
\forall x. (x = x) \quad \text{reflexivity}
\]

\[
\forall x, y. (x = y \Rightarrow y = x) \quad \text{symmetry}
\]

\[
\forall x, y, z. (x = y \wedge y = z \Rightarrow x = z) \quad \text{transitivity}
\]

\[
\forall x_1, y_1, \ldots, x_n, y_n. \left(\bigwedge_{i=1}^{n} x_i = y_i \Rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n) \right) \quad \text{congruence}
\]

- **Note**: congruence is an axiom schema since it must be instantiated for each function symbol \(f \) in the formula
Decision Procedure for the full theory of UF

Superpos_1
\[
\frac{c = c'}{c' = d} \quad \frac{c = d}{\text{if } c \succ c', c \succ d}
\]

Superpos_2
\[
\frac{c_j = c'_j}{f(c_1, \ldots, c_j, \ldots, c_n) = c_{n+1}} \quad \frac{f(c_1, \ldots, c_j, \ldots, c_n) = c_{n+1}}{\text{if } c_j \succ c'_j}
\]

Superpos_3
\[
\frac{f(c_1, \ldots, c_n) = c'_{n+1}}{c_{n+1} = c'_{n+1}} \quad \frac{f(c_1, \ldots, c_n) = c_{n+1}}{c_{n+1} = c'_{n+1}}
\]

Paramodul
\[
\frac{c = c'}{c' \neq d} \quad \frac{c \neq d}{\text{if } c \succ c', c \succ d}
\]

Eq. Res.
\[
\frac{c \neq c}{\bot}
\]

Notice that we only need to compare constants!
Decision Procedure for the full theory of UF: Summary

- Flatten literals
- Exhaustive application of the rules in the previous slide
 - if ⊥ is derived, then unsatisfiability is reported
 - if ⊥ is not derived and no more rule can be applied, then satisfiability is reported
Can we extend the approach to other theories?

- Yes, but using more general concepts:
 - rewriting on arbitrary terms (not only constants)
 - considering arbitrary clauses since many interesting theories are axiomatized by formulae which are more complex than simple equalities or disequalities, e.g. the theory of lists:

\[
\text{car}(\text{cons}(X, Y)) = X \\
\text{cdr}(\text{cons}(X, Y)) = Y
\]

where \(X, Y\) are implicitly universally quantified variables
Our goal

- **Given**
 - a presentation of a theory T extending UF
 (Notice that T is **not restricted** to equations!)
- **We want to derive**
 - a satisfiability decision procedure capable of establishing whether S is T-satisfiable, i.e. $S \cup T$ is satisfiable (where S is a set of ground literals)
Our approach to the problem

- Based on the **rewriting approach**
 - uniform and simple
 - efficient alternative to the congruence closure approach
- **Tune** a general (off-the-shelf) **refutation complete superposition inference system** (from, e.g. [Rus91,BacGan94]) in order to obtain **termination**

on some interesting theories
First step: flatten

- The first step is to flatten all the input literals by extending the signature introducing “fresh” constants
- **Example:** \(\{ f(c, c') = h(h(a)), h(h(h(a))) \neq a \} \) is flattened to

\[
\{ f(c, c') = h(c_1), c_3 \neq a \} \cup \{ c_1 = h(a), c_3 = h(c_2), c_2 = h(c_1) \}
\]

Fact

Let S be a finite set of \(\Sigma \)-literals. Then there exists a finite set of flat \(\Sigma' \)-literals \(S' \) (where \(\Sigma' \) is obtained from \(\Sigma \) by adding a finite number of constants) such that \(S' \) is \(T \)-satisfiable iff \(S \) is.
Second step: apply superposition calculus SP

A calculus manipulating clauses (disjunctions of literals):

$$(s_1 \neq t_1 \lor \cdots \lor s_k \neq t_k) \lor (s_{k+1} = t_{k+1} \lor \cdots \lor s_m = t_m)$$

also written $s_1 = t_1, \ldots, s_k = t_k \rightarrow s_{k+1} = t_{k+1}, \ldots, s_m = t_m$

- **Inference rules:** Superposition, Paramodulation, Reflection, Factoring
- **Simplification rules:** Subsumption, Simplification, Deletion
- **Reduction ordering** \succ (total on ground terms)
- **Refutation complete:** any fair application of the rules to an unsatisfiable set of clauses will derive the empty clause
- **Saturation** of a set of clauses is the final set of clauses generated by a fair derivation
- A derivation is **fair** when all possible inferences are performed

See below for formal definitions of all these concepts!
Superposition Calc. (Unit Clauses, Expansion Rules)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Premise</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Superposition</td>
<td>$l[u'] = r, u = t$ [\sigma(l[t] = r)] (i), (ii)</td>
<td>$\sigma(l[t] = r)$</td>
</tr>
<tr>
<td>Paramodulation</td>
<td>$l[u'] \neq r, u = t$ [\sigma(l[t] \neq r)] (i), (ii)</td>
<td>$\sigma(l[t] \neq r)$</td>
</tr>
<tr>
<td>Reflection</td>
<td>$u' \neq u$</td>
<td>\square</td>
</tr>
</tbody>
</table>

where the substitution σ is the most general unifier of u and u' (i.e., $\sigma(u') = \sigma(u)$), u' is not a variable and the following conditions hold:

(i) $\sigma(u) \not\preceq \sigma(t)$

(ii) $\sigma(l[u']) \not\preceq \sigma(r)$

Figure: Expansion Rules of $\mathcal{S}\mathcal{P}$

Replacement of equal by equal performed up to **unification**

Rules controlled by a **simplification ordering on terms**
<table>
<thead>
<tr>
<th>Name</th>
<th>Rule</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsumption</td>
<td>$S \cup {L, L'}$</td>
<td>for some θ, $\theta(L) = L'$</td>
</tr>
<tr>
<td>Simplification</td>
<td>$S \cup {L[\theta(l)], l = r}$</td>
<td>$\theta(l) \succ \theta(r)$, $L[\theta(l)] \succ (\theta(l) = \theta(r))$</td>
</tr>
<tr>
<td>Deletion</td>
<td>$S \cup {t = t}$</td>
<td>S</td>
</tr>
</tbody>
</table>
Orderings

- Requirement: $f(c_1, \ldots, c_n) \succ c_0$
 for each non-constant symbol f and constant c_i ($i = 0, 1, \ldots, n$)
Definition (Well-founded Ordering)

\(> \) is **well-founded** if there is no infinite decreasing chain
\[t_1 > t_2 > \ldots \]

Definition (Reduction Ordering)

\(> \) is a **reduction ordering** if

- \(> \) is **well-founded**,
- For any terms \(s, t \) and context \(u \), \(s > t \) implies \(u[s] > u[t] \),
- For any terms \(s, t \) and substitution \(\sigma \), \(s > t \) implies \(\sigma(s) > \sigma(t) \),
Reduction Ordering: Example

Example (Lexicographic Path Ordering)

\[s = f(s_1, \ldots, s_n) >_{lpo} g(t_1, \ldots, t_m) = t \text{ if} \]

1. \(f = g \) and \((s_1, \ldots, s_n) >_{lpo}^{lex} (t_1, \ldots, t_m) \) and \(\forall j \in \{1, \ldots, m\} \ s >_{lpo} t_j \)
2. \(f >_F g \) and \(\forall j \in \{1, \ldots, m\} \ s >_{lpo} t_j \)
3. \(\exists i \in \{1, \ldots, n\} \) such that either \(s_i >_{lpo} t \) or \(s_i = t \)

Remarks:

- The lexicographic extension \(>_{lex} \) is defined as follows:
 \((s_1, \ldots, s_n) >_{lex} (t_1, \ldots, t_n) \) if there exists some \(i \in \{1, n\} \) such that \(s_i > t_i \) and for any \(j \) smaller than \(i \), \(s_j = t_j \). The ordering \(>_{lex} \) is well-founded if \(> \) is well-founded.
- LPO is a simplification ordering: for any term \(s \) and any context \(u \), \(u[s] > s \)
- LPO is total on ground terms
Termination of Ackermann Function

\[\text{Ack}(0, y) \rightarrow s(y) \]
\[\text{Ack}(s(x), 0) \rightarrow \text{Ack}(x, s(0)) \]
\[\text{Ack}(s(x), s(y)) \rightarrow \text{Ack}(x, \text{Ack}(s(x), y)) \]

with LPO?
which precedence to choose?
Rules for syntactic unification (computation of mgu)

<table>
<thead>
<tr>
<th>Rule</th>
<th>Equation</th>
<th>Reduces To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delete</td>
<td>$P \land s =? s$</td>
<td>$\implies P$</td>
</tr>
<tr>
<td>Decompose</td>
<td>$P \land f(s_1, \ldots, s_n) =? f(t_1, \ldots, t_n)$</td>
<td>$\implies P \land s_1 =? t_1 \land \ldots \land s_n =? t_n$</td>
</tr>
<tr>
<td>Conflict</td>
<td>$P \land f(s_1, \ldots, s_n) =? g(t_1, \ldots, t_p)$</td>
<td>$\implies \bot$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if $f \neq g$</td>
</tr>
<tr>
<td>Coalesce</td>
<td>$P \land x =? y$</td>
<td>$\implies {x \mapsto y}(P) \land x =? y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if $x, y \in \text{Var}(P)$ and $x \neq y$</td>
</tr>
<tr>
<td>Check</td>
<td>$P \land x_1 =? s_1[x_2] \ldots \land x_n =? s_n[x_1]$</td>
<td>$\implies \bot$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if $s_i \notin \text{Var}$ for some $i \in [1..n]$</td>
</tr>
<tr>
<td>Merge</td>
<td>$P \land x =? s \land x =? t$</td>
<td>$\implies P \land x =? s \land s =? t$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if $0 <</td>
</tr>
<tr>
<td>Check</td>
<td>$P \land x =? s$</td>
<td>$\implies \bot$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if $x \in \text{Var}(s)$ and $s \notin \text{Var}$</td>
</tr>
<tr>
<td>Eliminate</td>
<td>$P \land x =? s$</td>
<td>$\implies {x \mapsto s}(P) \land x =? s$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>if $x \notin \text{Var}(s)$, $s \notin \text{Var}$, $x \in \text{Var}(P)$</td>
</tr>
</tbody>
</table>
Examples

\[
\begin{align*}
x &= \text{? } a \\
x &= \text{? } a \land y &= \text{? } f(x, a) \\
f(x, f(x, a)) &= \text{? } f(f(a, b), f(u, v)) \\
x &= \text{? } a \land x &= \text{? } b
\end{align*}
\]
A tree solved form for P is any conjunction of equations

\[x_1 = ? t_1 \land \cdots \land x_n = ? t_n \]

equivalent to P such that $\forall i, x_i$ is a variable and

(i) $\forall 1 \leq i \leq n, x_i \in \text{Var}(P)$,
(ii) $\forall 1 \leq i, j \leq n, i \neq j \Rightarrow x_i \neq x_j$,
(iii) $\forall 1 \leq i, j \leq n, x_i \notin \text{Var}(t_j)$.

Example: $x = ? f(f(y)) \land z = ? g(a)$
Computation of mgu

Theorem

Starting with a unification problem P and using the above rules repeatedly until none is applicable
— results in \bot iff P has no solution, or else it
— results in a tree solved form $x_1 = t_1 \land \cdots \land x_n = t_n$ with the same set of solutions than P.

Moreover

$$\sigma = \{ x_1 \mapsto t_1, \ldots, x_n \mapsto t_n \}$$

is a most general unifier of P, denoted by $\text{mgu}(P)$.
Redundancy and Saturation

Definition

- A clause C is *redundant* with respect to a set S of clauses if S can be obtained from $S \cup \{C\}$ by a sequence of applications of contraction rules in SP.
- An inference in SP is *redundant* with respect to a set S of clauses if its conclusion is redundant with respect to S.
- A set S of clauses is *saturated* if every inference in SP with premises in S is redundant with respect to S.
Fair derivation

Definition

- A *derivation* is a sequence $S_0, S_1, \ldots, S_i, \ldots$ of sets of clauses where $S_i \Rightarrow_{SP} S_{i+1}$ via the application of expansion rules or contraction rules in SP.
- The *limit* of a derivation is defined as the set of persistent clauses $S_\infty = \bigcup_{j \geq 0} \bigcap_{i > j} S_i$.
- A derivation $S_0, S_1, \ldots, S_i, \ldots$ with limit S_∞ is *fair* if every inference in SP with premises in S_∞ is redundant with respect to some S_j.
Fair derivations compute saturated sets and generate the empty clause iff the initial set is unsatisfiable.

Theorem (Nieuwenhuis-Rubio)

If \(S_0, S_1, \ldots \) is a fair derivation of \(\mathcal{SP} \), then (i) its limit \(S_\infty \) is saturated with respect to \(\mathcal{SP} \), (ii) \(S_0 \) is unsatisfiable iff the empty clause is in \(S_j \) for some \(j \), and (iii) if such a fair derivation is finite, i.e. it is of the form \(S_0, \ldots, S_n \), then \(S_n \) is saturated and logically equivalent to \(S_0 \).

Problem: For which theories do we have finite fair derivations?
Example: SP for lists (I)

- Consider the following (simplified) theory of lists
 \[Ax(\mathcal{L}) := \{ \text{car}(\text{cons}(X, Y)) = X, \text{cdr}(\text{cons}(X, Y)) = Y \} \]

- Recall that a literal in \(S \) has one of the four possible forms:
 - (i) \(\text{car}(c) = d \),
 - (ii) \(\text{cdr}(c) = d \),
 - (iii) \(\text{cons}(c_1, c_2) = d \),
 - (iv) \(c \neq d \).

- There are three cases to consider:
 1. inferences between two clauses in \(S \)
 2. inferences between two clauses in \(Ax(\mathcal{L}) \)
 3. inferences between a clause in \(Ax(\mathcal{L}) \) and a clause in \(S \)
Example: SP for lists (II)

- Case 1: inferences between two clauses in S
 It has already been considered when considering equality only (please, keep in mind this point)
- Case 2: inferences between two clauses in $Ax(\mathcal{L})$
 This is not very interesting since there are no possible inferences between the two axioms in $Ax(\mathcal{L})$
- Case 3: inferences between a clause in $Ax(\mathcal{L})$ and a clause in S
 - a superposition between $\text{car}(\text{cons}(X, Y)) = X$ and $\text{cons}(c_1, c_2) = d$ yielding $\text{car}(d) = c_1$ and
 - a superposition between $\text{cdr}(\text{cons}(X, Y)) = Y$ and $\text{cons}(c_1, c_2) = d$ yielding $\text{cdr}(d) = c_2$
Example: SP for lists (III)

- We are almost done, it is sufficient to notice that
 - only finitely many equalities of the form (i) and (ii) can be generated this way out of a set of clauses built on a finite signature
 - so, we are entitled to conclude that SP can only generate finitely many clauses on set of clauses of the form $Ax(\mathcal{L}) \cup S$
- A decision procedure for the satisfiability problem of \mathcal{L} can be built by simply using SP after flattening the input set of literals
Ax(\mathcal{A}) := \left\{ \begin{array}{l}
\text{rd}(\text{wr}(A, I, E), I) = E \\
I = J \lor \text{rd}(\text{wr}(A, I, E), J) = \text{rd}(A, J)
\end{array} \right\}

Apply the methodology previously described using a superposition calculus handling arbitrary clauses.
SP (Arbitrary Clauses, Expansion Rules)

\[
\begin{align*}
\text{Sup.} & \quad \frac{C \lor l[u'] = r \quad D \lor u = t}{\sigma(C \lor D \lor l[t] = r)} \quad (i), (ii), (iii), (iv) \\
\text{Par.} & \quad \frac{C \lor l[u'] \neq r \quad D \lor u = t}{\sigma(C \lor D \lor l[t] \neq r)} \quad (i), (ii), (iii), (iv) \\
\text{Ref.} & \quad \frac{C \lor u' \neq u}{\sigma(C)} \quad \forall L \in C. \sigma(u' = u) \not\preceq \sigma(L) \\
\text{Fac.} & \quad \frac{C \lor u = t \lor u' = t'}{\sigma(C \lor t \neq t' \lor u = t')} \quad (i), \forall L \in \{u' = t\} \cup C. \sigma(u = t) \not\preceq \sigma(L)
\end{align*}
\]

where the substitution \(\sigma = mgv(u = ? u') \), \(u' \) is not a variable, and the following conditions hold:

(i) \(\sigma(u) \not\preceq \sigma(t) \)
(ii) \(\forall L \in D. \sigma(u = t) \not\preceq \sigma(L) \)
(iii) \(\sigma(l[u']) \not\preceq \sigma(r) \)
(iv) \(\forall L \in C. \sigma(l[u'] \bowtie r) \not\preceq \sigma(L) \)

Figure: Expansion Rules of \(SP \)
SP (Arbitrary Clauses, Contraction Rules)

<table>
<thead>
<tr>
<th>Name</th>
<th>Rule</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsumption</td>
<td>$S \cup {C, C'}$</td>
<td>for some θ, $\theta(C) \subseteq C'$, and there is no ρ s.t. $\rho(C') = C$</td>
</tr>
<tr>
<td>Simplification</td>
<td>$S \cup {C[\theta(l)], l = r}$</td>
<td>$\theta(l) \succ \theta(r)$, $C[\theta(l)] \succ (\theta(l) = \theta(r))$</td>
</tr>
<tr>
<td>Deletion</td>
<td>$S \cup {C \lor t = t}$</td>
<td>S</td>
</tr>
</tbody>
</table>
Let S be a finite set of flat literals. The clauses occurring in the saturations of $S \cup \text{Ax}(A)$ by SP can only be:

i) the empty clause;
ii) axioms
iii) ground flat literals
iv) clauses of type $t \bowtie t' \lor c_1 = c'_1 \lor \cdots \lor c_n = c'_n$
with $t \bowtie t' \in \{ c \neq c', \text{rd}(c, i) = c', \text{rd}(c, i) = \text{rd}(c', i') \}$

v) clauses of type $\text{rd}(c, x) = \text{rd}(c', x) \lor c_1 = k_1 \lor \cdots \lor c_n = k_n$,
where k_i is either x or a constant among c, c_1, \ldots, c_n
where $i, c, c', c_1, c'_1, \ldots, c_n, c'_n$ are constants, and x is a variable.

The saturations of $S \cup \text{Ax}(A)$ are finite
Rewriting approach: drawbacks

- Unfortunately not all theories are finitely axiomatized
 - Example: the usual theory of arithmetic does not admit a finite axiomatization
- Because of this and the ubiquity of arithmetic in practically any verification problem jointly with equational theories, we need to combine the satisfiability procedure provided by SP with a satisfiability procedure for the theory of arithmetic
References on a rewriting approach to sat proc

- Armando, Bonacina, Ranise, Schulz. “On a rewriting approach to satisfiability procedures: extension, combination of theories, and an experimental appraisal,” presented at FroCos’05, Vienna. (Experimental evaluation.)