Intuitionistic Multi-Agent Subatomic Natural Deduction for Belief and Knowledge

Bartosz Więckowski

21st June 2018

1 Introduction

In proof theory, the study of intensional operators is mainly focused on the adaptation of proof systems for classical (intuitionistic, minimal) logic to some given modal logic. In a natural deduction setting, a basic element of such adaptations is a suitably chosen side condition on the introduction rule for formulae in which the intensional operator is principal. An early example of this component is the introduction rule for \Box in [3]. In labelled deductive proof systems (e.g., [2], [6], [8]), this component is combined with an enrichment of the modal language with labelled and relational formulae which serve to internalize the notions of truth at an index and of the accessibility between indices, both of which are explicit in the relational models of the Kripke-semantics for the modal logic in question.

Our aim in this paper is to outline a proof-theoretic approach to the semantics of intensional operators for intuitionistic belief and knowledge, which does neither intend to capture a given target modal logic, nor to import ideas from relational model-theoretic semantics into the language. On this approach, the meaning of intensional operators is explained exclusively by appeal to the structure of proofs which are unaided by labelled and relational formulae.

The proof-theoretic framework chosen for this purpose is subatomic natural deduction (cf. [9], [10], [11]). This framework refines natural deduction by extending it with subatomic systems. The main ingredients of subatomic systems are term assumptions for non-logical constants and rules for the introduction and elimination of atomic sentences. In contrast to natural deduction systems extended with atomic systems, used to represent the proof-theoretic meaning of atomic sentences (e.g., [4]), derivations in subatomic systems normalize.

Essentially, the idea is to use subatomic systems to represent an agent’s beliefs about basic facts. More generally, an agent’s beliefs about such facts, or about his beliefs about his beliefs, or his beliefs about other agent’s beliefs are represented by means of an intuitionistic subatomic natural deduction system for first-order logic which contains agent-labelled introduction and elimination rules. The meaning of an agent’s belief operator is explained in terms of an agent-labelled introduction rule which can be applied to any premise derivable in the agent’s belief system. By contrast, the meaning of an agent’s knowledge operator is explained in terms of an agent-labelled introduction rule which can be applied only to premises which have been derived in the agent’s belief system as theorems. In a multi-agent setting, derivations in distinct belief systems can be combined. Such systems can be used for the logical analysis of reasoning patterns which involve complex multi-agent belief constructions (e.g., reciprocating or universal beliefs; see Examples 3.1 below).

As main technical results, we obtain normalization and the subexpression property (a refinement of the subformula property) for the systems. The first result allows us to formulate a proof-theoretic semantics (see [3] for an overview) for belief and knowledge, the second guarantees full analyticity.

The full paper compares the present perspective on intuitionistic belief and knowledge with conceptions underlying other intuitionistic approaches to these notions (e.g., [1], [13]).

2 Language

The language \mathcal{L} is the standard language of first-order logic extended with constants, variables, and quantifiers for agents, and with two intensional operators.

*Goethe-Universität Frankfurt am Main, Institut für Philosophie, Norbert-Wollheim-Platz 1, D-60052 Frankfurt am Main. Email: wieckowski@em.uni-frankfurt.de.
Definition 2.1 Alphabet of \(\mathcal{L} \):

1. **Non-logical terms:**
 - (a) Predicate constants (\(n \)-ary): \(\varphi^n, \varphi^n_1, \ldots \)
 - (b) Individual (or nominal) constants: \(\alpha, \alpha_i, \ldots \)
 - (c) Nominal variables: \(x, x_i, y, \ldots \)
 - (d) Nominal terms: Any nominal constant and any nominal variable is a nominal term. We use the notation \(o, o_i, \ldots \) for nominal terms.
 - (e) Agent constants: \(\mathfrak{a}, \mathfrak{a}_i, \ldots \)
 - (f) Agent variables: \(\mathfrak{z}, \mathfrak{z}_i, \mathfrak{y}, \ldots \)
 - (g) Agent terms: Any agent constant and any agent variable is an agent term. We use the notation \(\mathfrak{o}, \mathfrak{o}_i, \ldots \) for agent terms.

We take the supply of non-logical terms to be denumerable for each category.

2. **Logical symbols:**
 - (a) Sentential constant: \(\perp \) (absurdity).
 - (b) Sentential connectives: \(\& \) (‘and’), \(\lor \) (‘or’), \(\supset \) (‘implies’), \(\equiv \) (‘equivalent’), \(\neg \) (‘not’), \(\exists \) (‘there exists’), \(\forall \) (‘for all’), \(\exists ! \) (‘there exists unambiguously’), \(\forall ! \) (‘for all unambiguously’), \(\exists ! x \) (‘there exists exactly one’), \(\forall ! x \) (‘for all exactly one’).
 - (c) Quantifiers: \(\forall \) (‘for all’), \(\exists \) (‘for some’).
 - (d) Agent quantifiers: \(\forall! \) (‘for all agents’), \(\exists! \) (‘for some agent’).
 - (e) Intensional operators: \(B_{\mathfrak{a}} \) (‘\(\mathfrak{a} \) believes’), \(K_{\mathfrak{a}} \) (‘\(\mathfrak{a} \) knows’).

3. **Auxiliary symbols:** \((,) \) (parentheses).

\(\mathcal{P} \) is the set of predicate constants, \(\mathcal{C} \) is the set of nominal constants, \(\mathcal{L} \cup \mathcal{P} \) is the set of non-logical constants \(\tau, \tau_1, \ldots \). \(\mathcal{L} \) is the set of agent constants.

Definition 2.2 An atomic formula of \(\mathcal{L} \) is a string of the form \(\varphi^n\alpha_1\ldots\alpha_n \). An atomic sentence is an atomic formula of the form \(\varphi^n\alpha_1\ldots\alpha_n \). We distinguish two classes of atomic sentences:

1. For any \(\varphi^n \in \mathcal{P} \): \(\text{Atm}(\varphi^n) = \{ A \in \text{Atm}: A \text{ contains an occurrence of } \varphi^n \} \).
2. For any \(\alpha \in \mathcal{C} \): \(\text{Atm}(\alpha) = \{ A \in \text{Atm}: A \text{ contains at least one occurrence of } \alpha \} \).

We call the elements of \(\text{Atm}(\varphi^n) \) \(\varphi^n \)-atoms and the elements of \(\text{Atm}(\alpha) \) \(\alpha \)-atoms.

Definition 2.3 Formula of \(\mathcal{L} \): This notion is defined inductively by:

1. Any atomic formula is a formula (of \(\mathcal{L} \)).
2. If \(A \) is a formula, then \(B_{\mathfrak{a}}A, K_{\mathfrak{a}}A \) are formulae.
3. If \(A \) and \(B \) are formulae, then \(A \& B, A \lor B, A \supset B \) are formulae.
4. If \(A \) is a formula, \(o [a] \) is either a (free) nominal variable \(y [agent variable y] \) or a nominal constant \(\alpha [agent constant \alpha] \), and \(x [z] \) a (bound) nominal variable [agent variable] not occurring in \(A \), then \(\forall x A(o/x), \forall z A(a/z), \exists x A(o/x), \exists z A(a/z) \) are formulae, where \(A(o/x) \} A(a/z) \} \) is obtained from \(A \) by writing \(x [z] \) in place of \(o [a] \) at each occurrence of \(o [a] \) in \(A \).

Definition 2.4 Defined symbols of \(\mathcal{L} \): \(\neg \) (‘it is not the case that’), \(\leftrightarrow \) (‘if and only if’), and \(= \) (‘is identical with’), and \(\equiv \) (agent-identity).

1. \(\neg A = \text{def} \ A \supset \perp \)
2. \(A \leftrightarrow B = \text{def} \ (A \supset B) \& (B \supset A) \)
3. Let \(\varphi^n \) be an \(n \)-ary predicate constant.

 \(K^n_{\mathfrak{a}}(o_1, o_2) = \text{def} \)

 \(\forall z_1 \ldots \forall z_{n-1} \forall z_n \ (((\varphi^n o_1 z_2 \ldots z_n \leftrightarrow \varphi^n o_2 z_2 \ldots z_n)

 \& (\varphi^n z_1 o_1 \ldots z_n \leftrightarrow \varphi^n z_1 o_2 \ldots z_n)

 \& \ldots \& (\varphi^n z_1 \ldots z_{n-1} o_1 \leftrightarrow \varphi^n z_1 \ldots z_{n-1} o_2)) \).
Let $\varphi_1^{k_1}, \ldots, \varphi_m^{k_m}$ be all the atomic predicates in \mathcal{P}, where φ_i is k_i-ary.

$$o_1 \equiv o_2 =_{df} K_{\varphi_1}^{k_1}(o_1, o_2) \land \ldots \land K_{\varphi_m}^{k_m}(o_1, o_2).$$

4. Let A be an atomic formula of \mathcal{L}.

$$K_A^{\varphi}(o_1, o_2) =_{df} o_1 \equiv o_2 =_{df} K_{A_1}^{\varphi_1}(o_1, o_2) \land \ldots \land K_{A_m}^{\varphi_m}(o_1, o_2).$$

Remarks 2.1

1. It is apparent from the definition of \equiv that only a finite number of predicate constants may figure in the definens. We, therefore, have to make a finiteness stipulation, when we take the language to contain \equiv. For simplicity, in such a case, we assume that \mathcal{P} is finite.

2. Intuitively, \equiv is defined in terms of the indistinguishability of two agents with respect to their (possibly) finitely nested and/or finitely embedded beliefs concerning a finite list of atomic formulae.

Definition 2.5 Subformula:

1. A is a positive and strictly positive subformula of itself.
2. If $B \lor C$ or $K_\varphi B$ is a positive [negative, strictly positive] subformula of A, then so is B.
3. If $B \lor C$ or $K_\varphi B \lor C$ is a positive [negative, strictly positive] subformula of A, then so are B, C.
4. If $\forall x B$ or $\exists x B$ is a positive [negative, strictly positive] subformula of A, then so is $B(x/o)$ for any o free for x in B.
5. If $\forall x B$ or $\exists x B$ is a positive [negative, strictly positive] subformula of A, then so is $B(x/o)$ for any o free for x in B.
6. If $B \lor C$ is a positive [negative] subformula of A, then B is a positive [negative] subformula of A and then C is a positive [negative] subformula of A.
7. If $B \lor C$ is a strictly positive subformula of A, then so is C.
8. If $o_1 \equiv o_2$ is a positive [negative, strictly positive] subformula of A, then so is $K_{\varphi_i}^{k_i}(o_1, o_2)$ where $i \in \{1, \ldots, m\}$.
9. If $o_1 \equiv o_2$ is a positive [negative, strictly positive] subformula of A, then so is $K_{\varphi_i}^{k_i}(o_1, o_2)$ where $i \in \{1, \ldots, m\}$.

Definition 2.6 Subexpression:

1. Any formula A, nominal term \bar{o}, and agent term \bar{a} is a positive and strictly positive subexpression of itself.
2. If formula B is a subexpression of A, then so is any subformula of B.
3. Any nominal term \bar{o} [agent term \bar{a} occurring in formula A is a subexpression of A.

In clauses 2 and 3 the positivity, negativity, strict positivity of subexpressions is determined by the positivity, negativity, strict positivity of the subformulae in which they occur.
3 Systems

Subatomic natural deduction systems can be seen as alternatives to natural deduction systems extended with atomic systems containing simple rules (e.g., [4], [7]; sect. 6.4). Unlike the latter, subatomic natural deduction systems do not undermine the subformula property. Indeed, they enjoy the subexpression property. Moreover, whereas standard natural deduction systems allow only for a proof-theoretic semantics for the usual superatomic logical operators of first-order logic, subatomic natural deduction systems also admit a proof-theoretic account of the semantics of atomic sentences, their components (see, in particular, [11]), and subatomic operators which operate on non-logical terms [12].

Intuitionistic multi-agent subatomic natural deduction systems can be defined in a stepwise manner.

Definition 3.1 An agent-relative subatomic base I_a is a pair $(\mathcal{C}, \mathcal{P}, v_a)$, where a is an agent and v_a is such that:

1. for any $\alpha \in \mathcal{C}$, $v_a: \mathcal{C} \to \varphi(\text{Atm})$, where $v_a(\alpha) \subseteq \text{Atm}(\alpha)$;
2. for any $\varphi^a \in \mathcal{P}$, $v_a: \mathcal{P} \to \varphi(\text{Atm})$, where $v_a(\varphi^a) \subseteq \text{Atm}(\varphi^a)$.

For any $\tau \in \mathcal{C} \cup \mathcal{P}$, we define: $\tau I^a =_{def} v_a(\tau)$. τI^a is the set of agent-relative term assumptions for τ.

Definition 3.2 An agent-relative subatomic system S_a is a pair (I_a, R_a), where: I_a is an agent-relative subatomic base and R_a is a set of agent-labelled I/E-rules for atomic sentences:

$$
D_0 \quad D_1 \quad D_n
\begin{array}{c}
\varphi_0^a \Gamma^a \\
\alpha_1 \Gamma^a \\
\vdots \\
\alpha_n \Gamma^a
\end{array}
\quad (as I)
$$

where $\varphi_0^a \alpha_1 \ldots \alpha_n \in \varphi_0^a \cap \alpha_1 \Gamma^a \cap \ldots \cap \alpha_n \Gamma^a$

$$
D'
\begin{array}{c}
a \varphi_0^a \alpha_1 \ldots \alpha_n
\end{array}
\quad (as E_i)
$$

where $i \in \{0, \ldots, n\}$ and $\tau_i \in \{\varphi_0^a, \alpha_1, \ldots, \alpha_n\}$

Definition 3.3 Derivations in S_a:

Basic step. Let $S_a = (I_a, R_a)$ be an agent-relative subatomic system. Every term assumption determined by I_a and every solitary occurrence of an atomic sentence $\varphi_0^a \alpha_1 \ldots \alpha_n$ enclosed in I_a (i.e., an agent-relative derivation of $\varphi_0^a \alpha_1 \ldots \alpha_n$ from the agent-relative open assumption of $\varphi_0^a \alpha_1 \ldots \alpha_n$), is a derivation (in S_a).

Induction step. When $D_0, D_1, \ldots, D_n, and D'$ are derivations, a derivation D can be constructed by means of the rules as I and as E_i contained in R_a (see Definition 3.2).

Definition 3.4 Let $\varphi(\alpha_1)$ and $\varphi(\alpha_2)$ be atomic sentences which are exactly alike except that the former contains occurrences of α_1 while the latter contains occurrences of α_2. If this is the case, $\varphi(\alpha_1)$ and $\varphi(\alpha_2)$ are mirror atomic sentences.

Definition 3.5 An agent-relative subatomic identity system S_a^\sim is a pair (I_a, R_a^\sim), where: I_a is an agent-relative subatomic base and R_a^\sim is R_a extended with agent-relative I/E-rules for \sim:

$$
\begin{array}{c}
\varphi_1(\alpha_2) \\
\varphi_1(\alpha_1)
\end{array}
\quad \alpha_1 \equiv \alpha_2
$$

$$
\begin{array}{c}
\varphi_2(\alpha_1) \\
\varphi_2(\alpha_2)
\end{array}
\quad (\equiv E_i 1)
$$

$$
\begin{array}{c}
\varphi_3(\alpha_1) \\
\varphi_3(\alpha_2)
\end{array}
\quad (\equiv E_i 2)
$$

where $i \in \{1, \ldots, k\}$
These rules do not exclude the case in which \(\alpha_1 \) and \(\alpha_2 \) are literally identical (i.e., \(\alpha_1 \equiv \alpha_2 \); cf. [7]: 2). (Recall that we take \(\mathcal{P} \) to be finite in case \(\equiv \) is in the language.)

Definition 3.6 Derivations in \(\mathcal{S}_n^\alpha \):

Basic step. Let \(\mathcal{S}_n^\alpha = (\mathcal{I}_n, \mathcal{R}_n^\alpha) \) be an agent-relative subatomic identity system based on \(\mathcal{S}_n = (\mathcal{I}_n, \mathcal{R}_n) \). Any derivation in \(\mathcal{S}_n^\alpha \) and any solitary occurrence of an identity sentence enclosed in \(\mathcal{I}_n^\alpha \) (i.e., an agent-relative derivation of \(\alpha \equiv \alpha \) from the agent-relative open assumption of itself), is a derivation (in \(\mathcal{S}_n^\alpha \)).

Induction step. When \(\mathcal{D}_1, \mathcal{D}_2 \) for any \(i \) with \(1 \leq i \leq k \) and \(j \in \{1,2\} \) are derivations in \(\mathcal{S}_n^\alpha \), a derivation \(\mathcal{D} \) can be generated by means of the rules \(\equiv I \) and \(\equiv E \) (see Definition 3.5).

Definition 3.7 Let \(\mathcal{A} = \{\alpha_1, ..., \alpha_n\} \) be a finite set of agents, let \(\mathcal{S}_\mathcal{A}^\alpha = (\mathcal{S}_{\alpha_1}^\alpha, ..., \mathcal{S}_{\alpha_n}^\alpha) \), and let \(\mathcal{C} = \{\alpha_1, ..., \alpha_n\} \). A multi-agent belief base \(\mathcal{I}_\mathcal{A} \) is a tuple \((\mathcal{A}, \mathcal{S}_\mathcal{A}^\alpha, \mathcal{C}, f, g) \), where for each \(i \in \{1, ..., n\} \):

\(f : \mathcal{A} \rightarrow \mathcal{S}_\mathcal{A}^\alpha \) such that \(f(\alpha_i) = \mathcal{S}_{\alpha_i}^\alpha \);

\(g : \mathcal{A} \rightarrow \mathcal{C} \) such that \(g(\alpha_i) = \alpha_i \).

Definition 3.8 An intuitionistic multi-agent natural deduction belief system \(\mathcal{B}^{\mathcal{I}_\mathcal{A}}(\mathcal{S}_\mathcal{A}^\alpha) \) is a pair \((\mathcal{I}_\mathcal{A}, \mathcal{R}_\mathcal{A}) \), where \(\mathcal{I}_\mathcal{A} \) is a multi-agent belief base and \(\mathcal{R}_\mathcal{A} \) a set which contains for each \(\alpha_i \in \mathcal{A} \):

1. Agent-relative I/E-rules for the standard logical operators:

\[
\begin{align*}
\frac{\mathcal{D}_1}{\mathcal{D}_1} & \quad \frac{\mathcal{D}_1}{\mathcal{D}_1} \\
\frac{\mathcal{D}_1}{\mathcal{D}_1} & \quad \frac{\mathcal{D}_1}{\mathcal{D}_1} \\
\frac{\mathcal{D}_1}{\mathcal{D}_1} & \quad \frac{\mathcal{D}_1}{\mathcal{D}_1} \\
\frac{\mathcal{D}_1}{\mathcal{D}_1} & \quad \frac{\mathcal{D}_1}{\mathcal{D}_1}
\end{align*}
\]

Side conditions:

(a) In \(\forall I \): (i) if \(o \) is a proper variable \(y \), then \(o \equiv x \) or \(o \) is not free in \(A \), and \(o \) is not free in any assumption of a formula which is open in the derivation of \(A(x/o) \); (ii) if \(o \) is a nominal constant, then \(o \) does neither occur in an undischarged assumption of a formula, nor in \(\forall x A \), nor in a term assumption leaf of \(\Gamma^\alpha \); (iii) \(o \) is a nominal constant and \(A(x/o) \) for all \(o \in \mathcal{C} \).

(b) In \(\forall E \): \(o \) is free for \(x \) in \(A \).

(c) In \(\exists E \): (i) if \(o \) is a proper variable \(y \), then \(o \equiv x \) or \(o \) is not free in \(A \), and \(o \) is not free in \(C \) nor in any assumption of a formula which is open in the derivation of the upper occurrence of \(C \) other than \([(A(x/o))_{\alpha_i}]^{(u)} \); (ii) if \(o \) is a nominal constant, then \(o \) does neither occur in an undischarged assumption of a formula, nor in \(\exists x A \), nor in \(C \), nor in a term assumption leaf of \(\Gamma^\alpha \).
(d) In $\exists i : o$ is free for x in A.
(e) In $\exists i : A \in \text{Atm}$.

We write $\forall I.i$, $\forall L.i$, $\forall I.ii$ and $\exists E.ii$ when we use the rules $\forall I$ and $\exists E$ according to the conditions given in (i), (ii), and (iii).

In the remaining rules, $i, j \in \{1, \ldots, n\}$ and possibly $i = j$.

2. I/E-rules for the belief operator:

$$D_1 \quad a_i, A \frac{B_{a_i}(A)}{(B_{a_i}, I)} \quad a_i, B_{a_i}(A) \frac{A}{(B_{a_i}, E)}$$

3. I/E-rules for the knowledge operator:

$$D_1 \quad a_i, A \frac{K_{a_i}(A)}{(K_{a_i}, I)} \quad a_i, K_{a_i}(A) \frac{A}{(K_{a_i}, E)}$$

Side condition on K_{a_i}, I: A does not depend on any open assumption.

4. I/E-rules for the universal agent quantifier:

$$D_1 \quad a_i, B_{a_i}(A) \frac{\forall \varepsilon B_{a_i}(A)}{\forall I} \quad a_i, \forall \varepsilon B_{a_i}(A) \frac{A}{\forall E}$$

Side condition on $\forall I$: B_{a_i}, A in D_1 for each $a_i \in \mathbb{C}$.

5. I/E-rules for the existential agent quantifier:

$$D_1 \quad a_i, B_{a_i}(A) \frac{\exists \varepsilon B_{a_i}(A)}{(\exists I)} \quad a_i, \exists \varepsilon B_{a_i}(A) \frac{A}{C} \frac{C}{(\exists E), u}$$

Side condition on $\exists E$: ε does neither occur in an undischarged assumption, nor in C.

Definition 3.9 Derivations in $B^{[\Sigma_A]}$-systems:

Basic step. Let $B^{[\Sigma_A]}$ be an intuitionistic multi-agent belief system based on S^*_A. Any derivation in any agent-relative identity system in S^*_A and any single occurrence of a logically compound formula A enclosed in $\{a_i\}$, for any $a_i \in A$ (i.e., an agent-relative derivation of A from the agent-relative open assumption of A), is a derivation (in $B^{[\Sigma_A]}$).

Induction step. When D_1, D_2, and D_3 are derivations, a derivation D can be generated by means of the rules listed in Definition 3.8.

Remarks 3.1

1. A single-agent natural deduction belief system is a special case of a $B^{[\Sigma_A]}$-system in which the sets in I_A are singletons.

2. We take the I-rules of the system to be meaning determining. Note that the I-rule for the belief operator can be applied to any premise. By contrast, the I-rule for the knowledge operator can be applied only to theorems. So, intuitively, knowledge is a special case of belief, and only theorems can be known.

3. The present systems aim at simplicity and liberty. Of course, they can be modified in various ways. For instance, conditions on the embedding of subderivations can be imposed.
Examples 3.1

\[a_1 \frac{[\langle A \rangle a_1]_1^{(1)} (B \rightarrow_2 I)}{B \rightarrow_2 (A)} (\rightarrow I), 1 \]
\[a_1 \frac{[\langle B \rightarrow_2 (A) \rangle a_1]_1^{(2)} (B \rightarrow_2 E)}{A \rightarrow B \rightarrow_2 (A)} (\rightarrow I), 2 \]
\[a_1 \frac{A \rightarrow B \rightarrow_2 (A)}{K \rightarrow_2 (A \rightarrow B \rightarrow_2 (A))} (K \rightarrow_2 I) \]
\[a_1 \frac{(A) a_1]_1^{(1)} (\rightarrow I), 1}{A \rightarrow A \rightarrow_2 I} (K \rightarrow_2 I) \]
\[a_1 \frac{A \rightarrow B \rightarrow_2 (A) \rightarrow_2 A}{B \rightarrow_2 (A \rightarrow B \rightarrow_2 (A))} (B \rightarrow_2 I) \]
\[a_1 \frac{[\langle B \rightarrow_2 (A) \rangle a_1]_1^{(2)}}{B \rightarrow_2 (A)} (B \rightarrow_2 E) \quad \text{illegal!} \]
\[a_1 \frac{A \rightarrow B \rightarrow_2 (A) \rightarrow_2 A}{K \rightarrow_2 (A \rightarrow B \rightarrow_2 (A))} (K \rightarrow_2 I), 2 \]
\[a_1 \frac{B \rightarrow_2 I \rightarrow_2 A}{K \rightarrow_2 (A \rightarrow B \rightarrow_2 (A))} (B \rightarrow_2 I) \]

\[a_1 \frac{[\langle B \rightarrow_2 (\rightarrow) \rangle a_1]_1^{(1)}}{B \rightarrow_2 E} (B \rightarrow_2 E) \quad \text{illegal!} \]
\[a_1 \frac{[\langle B \rightarrow_2 (\rightarrow) \rangle a_1]_1^{(2)}}{B \rightarrow_2 E} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{B \rightarrow_2 I} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{B \rightarrow_2 I} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{B \rightarrow_2 I} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{B \rightarrow_2 I} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{B \rightarrow_2 I} \]

\[D, \text{ with } i \neq 0, \text{ is:} \]

\[a_1 \frac{[\varphi \alpha \beta (\alpha \rightarrow \beta)] a_1^{(1)}}{\varphi \alpha \beta (\alpha \rightarrow \beta)} (\rightarrow E_2) \]
\[a_1 \frac{[\varphi \alpha \beta (\alpha \rightarrow \beta)] a_1^{(2)}}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{[\varphi \alpha \beta (\alpha \rightarrow \beta)] a_1^{(3)}}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{[\varphi \alpha \beta (\alpha \rightarrow \beta)] a_1^{(4)}}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{[\varphi \alpha \beta (\alpha \rightarrow \beta)] a_1^{(5)}}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]

\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} (\rightarrow E_2) \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]

\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} (\rightarrow E_2) \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[a_1 \frac{\varphi \alpha \beta (\alpha \rightarrow \beta)}{\varphi \alpha \beta (\alpha \rightarrow \beta)} \]
\[
\begin{align*}
&\frac{a_1 \left(\forall x K_a(-A)\right) a_1^{(1)}}{a_1 \left(\forall x K_a(-A)\right) a_1} \quad (\forall E) \\
&\frac{a_2 \left(\forall x K_a(-A)\right) a_1^{(2)}}{a_2 \left(\forall x K_a(-A)\right) a_2} \quad (\exists E) \\
&\frac{\neg A}{a_1} \quad (\neg I), 2 \\
&\frac{a_2}{a_2} \quad (\neg I), 1 \\
&\frac{a_1 \left(\forall x K_a(-A)\right) \neg A}{\neg B_{\exists a_1}(A)} \quad (\neg I), 1
\end{align*}
\]

(3) is not a derivation in the system. (4) contains a detour and is, therefore, not a normal \(B_{\forall(S^2)}\)-derivation. All conclusions of the derivations are theorems, except for the conclusion of (5).

4 Results

Theorem 4.1 Any derivation \(D\) in a \(B_{\forall(S^2)}\)-system can be transformed into a normal derivation.

Theorem 4.2 If \(D\) is a normal \(B_{\forall(S^2)}\)-derivation of a unit \(U\) (i.e., a term assumption or a formula) from a set of units \(\Gamma\), then each expression in a unit in \(D\) is a subexpression of an expression in \(\Gamma \cup \{U\}\).

The proofs build on definitions and methods due to Prawitz (see [3], [7]). They are not part of this extended abstract.

References

