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Abstract. In this paper we study proof translations between labelled
and label-free calculi for the logic of Bunched Implications (BI). We
first consider the bunched sequent calculus LBI and define a labelled
sequent calculus, called GBI, in which labels and constraints reflect the
properties of a specifically tailored Kripke resource semantics of BI with
two total resource composition operators and explicit internalization of
inconsistency. After showing the soundness of GBI w.r.t. our specific
Kripke frames, we show how to translate any LBI-proof into a GBI-proof.
Building on the properties of that translation we devise a tree property
that every LBI-translated GBI-proof enjoys. We finally show that any
GBI-proof enjoying this tree property (and not only LBI-translated ones)
can systematically be translated to an LBI-proof.

1 Introduction

The ubiquitous notion of resource is a basic one in many fields but has become
more and more central in the design and validation of modern computer systems
over the past twenty years. Resource management encompasses various kinds of
behaviours and interactions including consumption and production, sharing and
separation, spatial distribution and mobility, temporal evolution, sequentiality
or non-determinism, ownership and access control, etc.

Dealing with the various aspects of resource management is mostly in the
territory of substructural logics, and more precisely, resource-aware logics such
as Linear Logic (LL) [10] with its resource consumption interpretation, the logic
of Bunched Implications (BI) [17,18] with its resource sharing interpretation, or
order-aware non-commutative logic (NL) [1]. As specification logics, they model
features like resource distribution and mobility, non-determinism, sequentiality
or coordination of entities [4]. Separation Logic, of which BI is the logical kernel,
has proved itself very successful as an assertion language for verifying programs
that handle mutable data structures via pointers [12,19].

From a semantic point of view, resource interactions such as production and
consumption, or separation and sharing are handled in resource models at the
level of resource composition. For example, various semantics have been pro-
posed to capture the resource sharing interpretation of BI including categori-
cal, topological, relational and monoidal models [9]. From a proof-theoretic and
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purely syntactic point of view, the subtleties of a particular resource composi-
tion usually lead to the definition of distinct sets of connectives (e.g., additive
vs multiplicative, commutative vs non-commutative).

Capturing the interaction between various kinds of connectives often results
in label-free calculi that deal with structures more elaborated than sets or mul-
tisets of formulas. For example, the standard label-free sequent calculus for BI,
which is called LBI, admits sequents the left-hand part of which are structured
as binary trees called bunches [15,18]. Resource interaction is usually much sim-
pler to handle in labelled calculi since labels and label constraints are allowed to
reflect and mimic, inside the calculus, the fundamental properties of the resource
models they are drawn from. Several labelled tableaux or sequent-style systems
have been proposed for BI and its variants [9,11,14].

Categorical, relational, topological and monoidal resource models with a Beth
interpretation of the additive disjunction have all been proven sound and com-
plete w.r.t. both LBI and TBI in [9,17,18]. Unfortunately, although by far the
most widely used models of BI in the literature, monoidal resource models with
a more usual Kripke interpretation of the additive disjunction have only been
proven complete w.r.t. TBI. Their status w.r.t. LBI is not known and still a
difficult open problem as many attempts at solving it from a semantic point of
view have failed over the past fifteen years. Therefore, a better understanding of
how LBI relates to labelled calculi could be very helpful as a first step towards
solving the problem from the more syntactic standpoint of proof translations.

Our work takes place in the general context of studying the relationships
between labelled and label-free calculi. In this paper we more particularly fo-
cus on the relationships between GBI, a sequent-style reworking of the labelled
tableaux calculus TBI [8], and the label-free bunched sequent calculus LBI [18].

In Section 2 we recall the basic notions about BI and its label-free bunch
sequent calculus LBI. We also introduce a non-standard resource semantics for
BI based on two total monoidal operators with an explicit treatment of incon-
sistency from which we derive a new sequent-style labelled calculus called GBI
in Section 3. GBI can be seen as an intermediate calculus between TBI and LBI
as both calculi share the idea of sets of labels and constraints arranged as a
resource graph, but the resource graph in GBI is partially constructed on the
fly using explicit structural rules rather than being obtained as the result of a
closure operator [8].

Section 4 is devoted to our first contribution which is a translation of any
LBI-proof into a GBI-proof. This translation is not a one-to-one correspondence
sending each LBI-rule occurring in the original proof to its corresponding GBI
counterpart in the translated proof. Indeed, most of the translations patterns
require several additional structural steps to obtain an actual GBI-proof. How-
ever, these patterns are such that the rule-application strategy of the original
proof will be contained in the translated proof, making our translation structure
preserving in that particular sense.

Section 5 investigates how GBI-proofs relate to LBI-proofs. We first restrict
GBI to have a single formula on the right-hand side. This is justified by the fact
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that, contrary to related works on translating labelled or prefixed calculi to label-
free sequent calculi, mainly in modal and (bi-)intuitionistic logics [16,20], we can-
not rely on the existence of a multi-conclusioned variant of LBI. Such a variant
would require bunches on the right-hand side of sequents, and thus the definition
of an intuitionistic dual to multiplicative conjunction, which seems problematic,
although there exists a multi-conclusioned display calculus for Boolean BI [3].

We define a tree property for single-conclusioned GBI labelled sequents which
allows us to translate the left-hand side of a labelled sequent to a bunch according
to the label of the formula on its right-hand side. Refining our analysis of the LBI-
translation, we show that every sequent in a GBI-proof obtained by translation
of an LBI-proof satisfies our tree property.

The second and main contribution finally follows the definition of a restricted
variant of GBI the proofs of which always satisfy the tree property and can more-
over systematically be translated into LBI-proofs. Let us remark that this result
does not depend on a GBI-proof being some translated image of an LBI-proof.
We thus observe that our tree property can serve as a criterion for defining a
notion of normal GBI-proofs for which normality also means LBI-translatability.

2 The Logic BI

In this section, we give a short introduction to BI (see [18] for more details).
We recall the bunched sequent calculus LBI and introduce a variant of the usual
Kripke resource semantics.

2.1 Syntax and Sequent Calculus LBI

Let Prop = { p, q, . . . } be a countable set of propositional letters. The formulas
of BI, the set of which is denoted Fm, are given by the grammar:

A ::= p | >m | A ∗ A | A−∗A | >a | ⊥ | A ∧A | A ∨A | A→A

Bunches are rooted trees given by the following grammar:

Γ ::= A | ∅a | Γ ; Γ | ∅m | Γ ,Γ

Equivalence of bunches ≡ is given by commutative monoid equations for “;” and
“,” with units ∅a and ∅m respectively, together with the substitution congruence
for subbunches.

The LBI sequent calculus is depicted in Fig. 1. LBI derives sequents of the
form Γ ` C, where Γ is a bunch and C is a formula. The notation Γ(∆) denotes
a bunch Γ that contains the bunch ∆ as a subtree.

A formula C is a theorem of LBI iff ∅m ` C is provable in LBI. Let us remark
that the cut rule is admissible in LBI [18]. In order to make LBI-proofs shorter,
we often skip explicit uses of the exchange rules. We thus consider bunches up
to commutativity of “,” and “;”. However, we do not consider associativity of
bunches as implicit (i.e., we do not consider “,” and “;” as n-ary functors) since
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id
A ` A

>mR
∅m ` >m

>aR
∅a ` >a

⊥L
Γ(⊥) ` A

Γ(∅m) ` A
>mL

Γ(>m) ` A
Γ(∅a) ` A

>aL
Γ(>a) ` A

Γ(B) ` A Γ(C) ` A
∨L

Γ(B ∨C) ` A

Γ ` Ai∈{ 1,2 }
∨i

RΓ ` A1 ∨A2

∆ ` B Γ(C) ` A
−∗L

Γ(B−∗C ,∆) ` A
Γ ,A ` B

−∗RΓ ` A−∗B
Γ(B ,C) ` A

∗L
Γ(B ∗ C) ` A

Γ ` A ∆ ` B ∗R
Γ ,∆ ` A ∗ B

∆ ` B Γ(C) ` A
→L

Γ(B→C ; ∆) ` A
Γ ; A ` B

→R
Γ ` A→B

Γ(B ; C) ` A
∧L

Γ(B ∧C) ` A
Γ ` A ∆ ` B ∧R
Γ ; ∆ ` A ∧B

Γ(∆1) ` A
W

Γ(∆1 ; ∆2) ` A
Γ(∆ ; ∆) ` A

C
Γ(∆) ` A

Γ ` A Γ≡∆
∆ ` A

∆ ` B Γ(B) ` A
Cut

Γ(∆) ` A

Rules replacing ≡:

Γ(∆1 ,∆2) ` A
Em

Γ(∆2 ,∆1) ` A

Γ((∆1 ,∆2) ,∆3) ` A
Am

Γ(∆1 ,(∆2 ,∆3)) ` A

Γ(∆) ` A
Um

Γ(∅m ,∆) ` A

Γ(∆1 ; ∆2) ` A
Ea

Γ(∆2 ; ∆1) ` A

Γ((∆1 ; ∆2) ; ∆3) ` A
Aa

Γ(∆1 ;(∆2 ; ∆3)) ` A

Γ(∆) ` A
Ua

Γ(∅a ; ∆) ` A

Fig. 1. The Sequent Calculus LBI.

it easily leads to unexpected difficulties when adapting results from unassocia-
tive systems, e.g. in [13] where the decidability of BI is erroneously concluded
from the decidability of the Lambek calculus using length and depth arguments
on the representation of bunches from [7] that actually fail in the presence of
associativity (and contraction).

The rule for equivalence of bunches can easily be replaced with the last six
rules given in Fig. 1, where double lines indicate rules that work both ways (i.e.,
rules for which the premiss and the conclusion can be swapped). We distinguish
bottom-up and top-down uses of such rules in LBI-proofs with up and down
arrows respectively. For technical reasons, the rules replacing ≡ will be prefered
in the proofs of the forthcoming translation theorems.

Fig. 2 gives an example of a proof in LBI, which also shows that the set of
derivable sequents in cut-free LBI gets strictly smaller if contraction is removed
or restricted to a single formula.

Lemma 1. The following semi-distributivity rule is derivable in LBI:
Γ((∆1 ,∆2) ;(∆1 ,∆3)) ` A

Sd
Γ(∆1 ,(∆2 ; ∆3)) ` A

Proof. Use contraction on (∆1 ,(∆2 ; ∆3)) followed by two weakenings.
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id
p ` p

id
p ` p

id
q ` q

id
r ; q ` r

→L
q→ r ; q ` r

−∗L
q→ r ;(p−∗ q , p) ` r

−∗L
(p−∗ (q→ r) , p) ;(p−∗ q , p) ` r

W
(p−∗ (q→ r) , p) ;((p−∗ (q→ r) ; p−∗ q) , p) ` r

W
((p−∗ (q→ r) ; p−∗ q) , p) ;((p−∗ (q→ r) ; p−∗ q) , p) ` r

C
(p−∗ (q→ r) ; p−∗ q) ,p ` r

Fig. 2. A Proof in LBI.

Lemma 2. Adding semi-distributivity to LBI while restricting contraction to ∅m

(or >m) leads to the same set of derivable sequents.

Proof. Contraction is derivable from contraction on ∅m and semi-distributivity:

Γ(∆ ; ∆) ` A
Um↑

Γ((∆ ,∅m) ;(∆ ,∅m)) ` A
Em + Sd

Γ((∅m ;∅m) ,∆) ` A
C

Γ(∅m ,∆) ` A
Um↓

Γ(∆) ` A

2.2 Semantics of BI

BI admits various semantics: monoidal, relational, topological, categorical, with
or without explicit inconsistency [18]. We introduce a variant of the total (i.e.,
with an explicit treatment of inconsistency) monoidal semantics [9] that makes
use of two monoidal functors to better reflect the syntactic structure of bunches.
Although the labelled tableau calculus TBI is known to be complete w.r.t. this
semantics [9], whether it is also the case for LBI is still an open problem.

Definition 1 (Resource Monoid). A resource monoid (RM) is a structure
M = (M,⊗, 1,⊕, 0,∞,v) where (M,⊗, 1), (M,⊕, 0) are commutative monoids
and v is a preordering relation on M such that:

– for all m ∈M , m v ∞ and ∞ v∞⊗m,
– for all m,n ∈M , m v m⊕ n and m⊕m v m,
– if m v n and m′ v n′, then m⊗m′ v n⊗ n′ and m⊕m′ v n⊕ n′.

Let us remark that the conditions of Definition 1 imply that∞ and 0 respectively
are greatest and least elements and that ⊕ is idempotent.

Definition 2 (Resource Interpretation). Given a resource monoid M, a
resource interpretation (RI) forM, is a function [− ] : Fm −→ P(M) satisfying
∀p ∈ Prop, ∞ ∈ [ p ] and ∀m,n ∈M such that m v n, m ∈ [ p ] ⇒ n ∈ [ p ].
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Definition 3 (Kripke Resource Model). A Kripke resource model (KRM)
is a structure K = (M, |=, [− ]) whereM is a resource monoid, [− ] is a resource
interpretation and |= is a forcing relation such that:

– m |= p iff m ∈ [ p ],
– m |= ⊥ iff ∞ v m, m |= >a iff 0 v m, m |= >m iff 1 v m,
– m |= A ∗ B iff for some n, n′ in M such that n⊗n′ v m, n |= A and n′ |= B,
– m |= A ∧B iff for some n, n′ in M such that n⊕n′ v m, n |= A and n′ |= B,
– m |= A−∗B iff for all n, n′ in M such that n |= A and m⊗ n v n′, n′ |= B,
– m |= A→B iff for all n, n′ in M such that n |= A and m⊕ n v n′, n′ |= B,
– m |= A ∨B iff m |= A or m |= B.

The semantic clauses for the additive connectives are stated so as to be
perfectly symmetric with their multiplicative counterparts (as is the case of their
corresponding syntactic rules in LBI). Although such clauses might seem strange
at first sight, they are easily proven equivalent to their more usual definitions.

A formula A is valid in the Kripke resource semantics iff 1 |= A in all Kripke
resource models.

3 The Labelled Calculus GBI

In this section we define a new labelled calculus for BI in the spirit of [2,5,6] and
prove its soundness w.r.t. the resource semantics given in Section 2.

A countable set L of symbols is a set of label letters if it is disjoint from the
set U = {m, a, $ } of label units. L0

L = L ∪ U is the set of atomic labels over L.
The set LL of labels over L is defined as

⋃
n∈N Ln

L where

Ln+1
L = Ln

L ∪ { r(`, `′) | `, `′ ∈ Ln
L and r ∈ {m, a } }.

For readability, we often drop the subscript L when L is clear from the context.
A label constraint is an expression ` 6 `′, where ` and `′ are labels. A labelled
formula is an expression A : `, where A is a formula and ` is a label.

In full generality, the labelled sequent calculus GBI deals with sequents of
the form Γ ` ∆, where Γ is a multiset mixing both labelled formulas and label
constraints and ∆ is a multiset of labelled formulas. From now on, we only deal
with the single-conclusioned variant of GBI where ∆ is restricted to exactly one
labelled formula. This restriction is justified by the fact that this paper is a first
step at understanding how purely syntactic LBI-proofs relate to GBI-proofs and
LBI is a single-conclusioned calculus. Similarly to bunches, we use the notation
Γ(∆) for a multiset Γ which contains ∆ as a sub-multiset.

The structural rules of GBI are given in Fig. 3. They syntactically reflect
the semantic properties of the binary operators ⊗, ⊕ and the binary relation v
into the binary functors m, a and the binary relation 6. The units 1, 0 and ∞
are reflected into the labels units m, a and $. We generically write r (resp. r)
to denote either m or a (resp. m and a) in contexts where the multiplicative or
additive nature of the functor (resp. unit) is not important (e.g., for properties
that hold in both cases).
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` 6 `,Γ ` ∆
R

Γ ` ∆
`0 6 `, `0 6 `1, `1 6 `,Γ ` ∆

T
`0 6 `1, `1 6 `,Γ ` ∆

r(`, r) 6 `,Γ ` ∆
U1

rΓ ` ∆
r(r, `) 6 `,Γ ` ∆

U2
rΓ ` ∆

r(`2, `1) 6 `,Γ ` ∆
Er

r(`1, `2) 6 `,Γ ` ∆

r(`3, `2) 6 `0, r(`4, `0) 6 `,Γ ` ∆
A1

r
r(`4, `3) 6 `1, r(`1, `2) 6 `,Γ ` ∆

r(`1, `4) 6 `0, r(`0, `3) 6 `,Γ ` ∆
A2

r
r(`4, `3) 6 `2, r(`1, `2) 6 `,Γ ` ∆

a(`, `) 6 `,Γ ` ∆
Ia

Γ ` ∆
`i 6 `, a(`1, `2) 6 `,Γ ` ∆

Pi
a

a(`1, `2) 6 `,Γ ` ∆
`i 6 `,m(`1, `2) 6 `,Γ ` ∆

Pi
m

m(`1, `2) 6 `,Γ ` ∆

r(`0, `2) 6 `, `0 6 `1, r(`1, `2) 6 `,Γ ` ∆
C1

r
`0 6 `1, r(`1, `2) 6 `,Γ ` ∆

` 6 `1,Γ,A : `1 ` ∆
KL

` 6 `1,Γ,A : ` ` ∆

r(`1, `0) 6 `, `0 6 `2, r(`1, `2) 6 `,Γ ` ∆
C2

r
`0 6 `2, r(`1, `2) 6 `,Γ ` ∆

`1 6 `,Γ ` A : `1,∆ KR
`1 6 `,Γ ` A : `,∆

Γ0 ` ∆
WL

Γ0,Γ1 ` ∆
Γ ` ∆0 WR

Γ ` ∆0,∆1

Γ0,Γ1,Γ1 ` ∆
CL

Γ0,Γ1 ` ∆
Γ ` ∆0,∆1,∆1 CR

Γ ` ∆0,∆1

Side conditions:
i ∈ { 1, 2 } and r ∈ {m, a }.
`0 is a fresh label letter in Ai

r. `i in Pi
m must be in {m, $ }.

` in R and Ia, `1, `2 in Pi
a and `3−i in Pi

m must occur in Γ, ∆ or {m, a, $ }.

Fig. 3. Structural Rules of GBI.

We begin with rules R and T to capture the reflexivity and transitivity of the
accessibility relation. Then we continue with rules Ui

r that capture the identity
of the functors m and a w.r.t. m and a. The superscript i ∈ { 1, 2 } in GBI-rule
names denotes which argument of an underlying r-functor is treated by the rule.
We then proceed with rules Ai

r and Er for associativity and commutativity of
the r-functors. In the presence of explicit exchange rules Er, or if we implic-
itly consider the r-functors as commutative (which we do not), the superscript
variants of the rules are not needed. We nevertheless keep them as they help
drastically reduce explicit uses of Er. The rule Ia reflects the idempotency of
⊕ into the a-functor. The projection rules Pi

a reflect into the a-functor the fact
that ⊕ is increasing, i.e., m v m⊕ n. The projection rules Pi

m capture the fact
that m v m⊗ n generally only holds if n is ∞ or 1. The compatibility rules Ci

r

reflect that ⊕ and ⊗ are both order preserving. Finally the last six rules simply
express Kripke monotonicity, weakening and contraction.

The logical rules of GBI are given in Fig. 4. and are direct translations of
their semantic clauses. Fig. 7 gives an example of a proof in GBI, where the
notation “−” subsumes all the elements we omit to keep proofs more compact.

Definition 4. A formula A is a theorem of GBI if the sequent m 6 ` ` A : ` is
provable in GBI for some label letter `.
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⊥R
Γ, $ 6 ` ` A : `,∆

id
Γ,A : ` ` A : `,∆

>mR
Γ,m 6 ` ` >m : `,∆

Γ, $ 6 ` ` ∆
⊥L

Γ,⊥ : ` ` ∆
Γ,m 6 ` ` ∆

>mL
Γ,>m : ` ` ∆

Γ, a 6 ` ` ∆
>aL

Γ,>a : ` ` ∆
>aR

Γ, a 6 ` ` >a : `,∆

a(`, `1) 6 `2,Γ ` A : `1,∆ a(`, `1) 6 `2,Γ,B : `2 ` ∆
→L

a(`, `1) 6 `2,Γ,A→B : ` ` ∆

m(`, `1) 6 `2,Γ ` A : `1,∆ m(`, `1) 6 `2,Γ,B : `2 ` ∆
−∗L

m(`, `1) 6 `2,Γ,A−∗B : ` ` ∆

a(`, `1) 6 `2,Γ,A : `1 ` B : `2,∆
→R

Γ ` A→B : `,∆
m(`, `1) 6 `2,Γ,A : `1 ` B : `2,∆

−∗RΓ ` A−∗B : `,∆

a(`1, `2) 6 `,Γ,A : `1,B : `2 ` ∆
∧L

Γ,A ∧B : ` ` ∆
m(`1, `2) 6 `,Γ,A : `1,B : `2 ` ∆

∗L
Γ,A ∗ B : ` ` ∆

a(`1, `2) 6 `,Γ ` A : `1,∆ a(`1, `2) 6 `,Γ ` B : `2,∆
∧R

a(`1, `2) 6 `,Γ ` A ∧B : `,∆

m(`1, `2) 6 `,Γ ` A : `1,∆ m(`1, `2) 6 `,Γ ` B : `2,∆
∗R

m(`1, `2) 6 `,Γ ` A ∗ B : `,∆

Γ,A : ` ` ∆ Γ,B : ` ` ∆
∨L

Γ,A ∨B : ` ` ∆

Γ ` Ai∈{ 1,2 } : `,∆
∨i

RΓ ` A1 ∨A2 : `,∆

Side conditions: `1 and `2 must be fresh label letters in ∗L, ∧L, −∗R, and →R.

Fig. 4. Logical Rules of GBI.

; :δ

, :δ0

∅m : δ00 p : δ01

q : δ1
a(δ0,δ1)6δ

m(δ00,δ01)6δ0

((∅m , p) ; q) : δ ` r : δ

a(δ0, δ1) 6 δ, (∅m , p) : δ0, q : δ1 ` r : δ

m(δ00, δ01) 6 δ0, a(δ0, δ1) 6 δ,p : δ01, q : δ1 ` r : δ

Fig. 5. Translation of the LBI-sequent (∅m , p) ; q ` r

Γ(a(δs0, δs1) 6 δs,Θ : δs0,Θ : δs1) : δ ` A : δ
CT

Γ(Θ : δs) : δ ` A : δ

Γ(r(δs0, δs1) 6 δs, r 6 δsx̄,Θ : δsx) : δ ` A : δ
Zx+1
r

Γ(Θ : δs) : δ ` A : δ

Fig. 6. Tree-like Structural Rules of GBI.
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id
−, p : `4 ` p : `4

id
−, q : `1 ` q : `1 KR

`1 6 `2,−, q : `1, p : `4 ` q : `2 P2
m

−,m(`0, `1) 6 `2,−, q : `1, p : `4 ` q : `2
−∗L

m(`3, `4) 6 `1,−, p−∗ q : `3, p : `4 ` q : `2
∗L

m(`0, `1) 6 `2,−, (p−∗ q) ∗ p : `1 ` q : `2
−∗R

m 6 `0 ` ((p−∗ q) ∗ p)−∗ q : `0

Fig. 7. A Proof in GBI.

3.1 Soundness of GBI
Definition 5 (Realization). Let K = (M, |=, [− ]) be a Kripke resource model
with M = (M,⊗, 1,⊕, 0,∞,v). Let s = Γ ` ∆ be a labelled sequent. A realiza-
tion of s in K is a total function ρ from the labels of s to M such that:
– ρ(m) = 1, ρ(m(`1, `2)) = ρ(`1)⊗ ρ(`2),
– ρ(a) = 0, ρ($) =∞, ρ(a(`1, `2)) = ρ(`1)⊕ ρ(`2),
– for all `1 6 `2 in Γ, ρ(`1) v ρ(`2) inM,
– for all A : ` in Γ, ρ(`) |= A and for all A : ` in ∆, ρ(`) 6|= A.

We say that s is realizable in K if there exists a realization of s in K and that s
is realizable if it is realizable in some Kripke resource model K.

Lemma 3. If in a GBI-proof the sequent s = Γ ` ∆ is an initial sequent, i.e., a
leaf sequent that is the conclusion of a zero-premiss rule, then s is not realizable.

Proof. Suppose that s is realizable, then we have a realization ρ of s in some
Kripke resource model K = (M, |=, [− ]). We proceed by case analysis on the
zero-premiss rule r of which s is the conclusion. If r is id then s has the form
Γ,A : ` ` A : `,∆, which implies the contradiction ρ(`) |= A and ρ(`) 6|= A. If
r is >mL then s has the form m 6 `,Γ ` >m : `,∆ so that both ρ(`) 6|= >m and
1 v ρ(`), which is a contradiction since 1 v ρ(`) implies ρ(`) |= >m. Similarly for
the case when r is >aL. Finally, if r is ⊥R then s has the form Γ, $ 6 ` ` A : `,∆
so that ∞ v ρ(`) and ρ(`) 6|= A, which is a contradiction because by Kripke
monotonicity, ρ(`) |= A.

Lemma 4. Every proof-rule in GBI preserves realizability.

Proof. By case analysis of the proof rules of GBI.

Theorem 1 (Soundness). If a formula A is provable in GBI, then it is valid
in the Kripke resource semantics of BI.

Proof. Suppose that A is provable in GBI but not valid in the Kripke resource
semantics of BI. Then, the sequent ` A : m is trivially realizable and we have
a GBI-proof P of A. It follows from Lemma 4 that P contains a branch the
sequents of which are all realizable. Since P is a proof, the branch ends with
an initial (axiom) sequent and Lemma 3 implies that this initial sequent is not
realizable, which is a contradiction. Therefore, A is valid.
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4 From LBI-Proofs to GBI-Proofs

In this section, we introduce the concepts for translating sequents of LBI to
sequents of GBI. In order to highlight the relationships between the labels and
the tree structure of bunches more easily we use label letters of the form xs
where x is a non-greek letter and s ∈ { 0, 1 }∗ is a binary string that encodes the
path of the node xs in a tree structure the root of which is x. We thus call x the
root of a label letter xs. We use greek letters to range over label letters with the
convention that distinct greek letters denote label letters with distinct roots.

Definition 6. Given a bunch Γ and a label letter δ, we define L(Γ, δ), the trans-
lation of Γ according to δ, by induction on the structure of Γ as follows:

– L(A, δ) = {A : δ }, L(∅a, δ) = { a 6 δ }, L(∅m, δ) = {m 6 δ },
– L((∆0 ,∆1), δ) = L(∆0, δ0) ∪ L(∆1, δ1) ∪ {m(δ0, δ1) 6 δ },
– L((∆0 ; ∆1), δ) = L(∆0, δ0) ∪ L(∆1, δ1) ∪ { a(δ0, δ1) 6 δ }.

The definition extends to LBI-sequents as follows: L(Γ ` A, δ) = L(Γ, δ) ` A : δ.

We write Γ : δ as a shorthand for L(Γ, δ) so that L(Γ ` A, δ) = Γ : δ ` A : δ. An
illustration of Definition 6 is given in Fig. 5. Let ∆ be a sub-bunch of Γ, then
for any label letter δ, Γ : δ will contain the multiset ∆ : δs for some (possibly
empty) binary suffix s, in which case we write Γ(∆ : δs) : δ.

Before translating LBI-proofs into GBI-proofs we introduce the notion of
label substitution, which is a mapping from label letters to atomic labels, written
[α1 7→ `1, . . . , αn 7→ `n ]. Since label letters have the form xs where s is a binary
string, we write α ↪→ ` as a shorthand for ∀s. αs 7→ `s.

Theorem 2. If a sequent Γ ` A is provable in LBI, then for any label letter δ,
the labelled sequent Γ : δ ` A : δ is provable in GBI.

Proof. The proof is by induction on the height of LBI-proofs, using a case dis-
tinction on the last rule R applied. We show that for an arbitrary label letter δ,
we can build a GBI-proof of the translation of the conclusion of R from transla-
tions of its premises. Several LBI-rules that operate on a bunch ∆ that can be
nested inside a bunch Γ(∆) require a careful distinction between their shallow
(no actual Γ around ∆) and deep variants. We only consider a few cases, the
others being similar.

– Axiom id:
id

A ` A is translated to
id

A : α ` A : α

– Axiom >mR:
>mR

∅m ` >m is translated to
>mR

m 6 α ` >m : α

– Axiom >aR: This case is similar to >mR

– Case −∗R: Consider the LBI-proof depicted below on the left-hand side
where D is a proof of Γ ; A ` B, the premiss of −∗R

D
Γ ,A ` B

−∗RΓ ` A−∗B

P
m(α0, α1) 6 α,Γ : α0,A : α1 ` B : α

Γ ` A−∗B

10



Given an arbitrary label letter δ, we are required to build a GBI-proof of
Γ : δ ` A−∗B : δ. By I.H. on D for some label letter α, we have a proof P of
(Γ ,A) : α ` B : α depicted above on the right-hand side from which we get

P[α0 ↪→ δ ]
m(δ, α1) 6 α,Γ : δ,A : α1 ` B : α

−∗RΓ : δ ` A−∗B : δ

Let us note that α1 and α are indeed fresh labels in the premiss of −∗R since
by convention α and δ have distinct roots.

– Case W (Shallow): By I.H. suppose we have for some α
D

∆0 ` A
W

∆0 ; ∆1 ` A

P
∆0 : α ` A : α

Γ ` A−∗B

We then construct the following proof
P[α ↪→ δ0 ]

∆0 : δ0 ` A : δ0
WL

δ0 6 δ, a(δ0, δ1) 6 δ,∆0 : δ0,∆1 : δ1 ` A : δ0
KR

δ0 6 δ, a(δ0, δ1) 6 δ,∆0 : δ0,∆1 : δ1 ` A : δ
P1

a
a(δ0, δ1) 6 δ,∆0 : δ0,∆1 : δ1 ` A : δ

Let us note that we used WL to make the premiss of KR exactly match
P[α ↪→ δ0 ]. We can get rid of WL in all translation patterns by pasting the
missing material to every sequent in the proofs obtained by I.H.

– Case Um↓ (Deep): Suppose we have a proof
D

Γ(∅m ,∆) ` A
Um↓

Γ(∆) ` A

By I.H., for some α, s ∈ {0, 1}∗ and x ∈ {0, 1}, we have a proof
P

Γ(m(αsx0, αsx1) 6 αsx,m 6 αsx0,∆ : αsx1) : α ` A : α

We then construct the following proof
P[αsx0 7→m ][αsx1 ↪→ δsx ][α ↪→ δ ]

Γ(m(m, δsx) 6 δsx,m 6 m,∆ : δsx) : δ ` A : δ
U1

m
Γ(δsx 6 δsx,m 6 m,∆ : δsx) : δ ` A : δ

R
Γ(∆ : δsx) : δ ` A : δ

Using tree-like identity we get an alternative proof
P[α ↪→ δ ]

Γ(m(δsx0, δsx1) 6 δsx,m 6 δs0,∆ : δsx1) : δ ` A : δ
Z1
m

Γ(∆ : δsx) : δ ` A : δ

11



LBI GBI

id id
>mR >mR
>aR >aR
⊥L(S) ⊥L ⊥R
⊥L(D) ⊥L (Ci

t Pi
t )+ ⊥R

>mL >mL
>aL >aL

LBI GBI

−∗R −∗R
→R →R
−∗L −∗L WL
→L →L WL
∨L ∨L
∨i

R ∨i
R

∗L ∗L

LBI GBI

∧L ∧L
∗R ∗R WL
∧R ∧R WL
Er Er

Ar↑ A1
r WL

Ar↓ A2
r WL

LBI GBI

W(S) P1
a KR WL

W(D) P1
a Ci

t WL
C (CL Ia) or CT
Ur↑(S) C1

r P2
r KR WL

Ur↑(D) C1
r P2

r Ci
t WL

Ur↓ (R U1
r ) or Z1

m

Fig. 8. Translation Patterns with t, r ∈ {m, a }, i ∈ { 1, 2 }, S=Shallow, D=Deep.

Fig. 8 summarizes the translation patterns from LBI to GBI, where left-to-
right reading of the rules means bottom-up application in a proof. We write
WL to indicate the patterns for which explicit uses of weakening in GBI can
be discarded as explained in the proof of Theorem 2. In LBI, the rules −∗L,
→L, ∗R and ∧R require context splitting, which is problematic for bottom-up
proof-search. Removing weakening from GBI is desirable as context splitting
is no longer needed, which also makes the labelled calculus more interesting
as its sequents become more than just an isomorphic term-like transcription of
bunches. Besides, removing WL allows the translation to send all logical rules in
LBI directly to their counterpart in GBI. Finally, we also learn from the patterns
that KR instead of Ci

r is what distinguishes the shallow cases from the deep ones,
that Ia identifies contraction in LBI while R identifies upward identity Ur↑ and
that T and KL are never used and can thus be removed from GBI without
harming its ability to prove any LBI-provable formula.

5 Back from GBI-Proofs to LBI-Proofs

In this section we define the notion of normal GBI-proofs and show how to trans-
late them into LBI-proofs. The main problem is that bunches are binary trees,
while label constraints describe graphs that capture the accessibility relations
between the worlds of a resource model. We observe that translating a bunch as
of Definition 6 results in label constraints encoding a binary tree, which might
only be destroyed by the rules WL, Ia and Ui

r. Using label letters of the form xs,
we can formulate (without requiring explicit substitutions) two tree preserving
rules CT and Zi

r described in Fig. 6. CT duplicates the whole subtree Θ rooted at
δs into two subtrees rooted at δs0 and δs1 (thus renaming all labels in the new
subtrees) and inserts a new node δs as the parent of the duplicated subtrees. Zi

r

behaves similarly except that one of the new subtrees is linked with the unit r.
From now on, without harming completeness w.r.t. LBI, we restrict GBI to

the rules that are actually used in the patterns of Fig. 8 (discarding WL) and
replace CL and Ui

r with CT and Zi
r of Fig. 6. We also slightly modify LBI: we

discard the surrounding Γ(−) in the axiom ⊥L and extend the weakening rule
to “,” whenever the bunch to weaken is ⊥.
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Let Γ ` A be labelled sequent with label letters in a set of label letters L. For
r ∈ { a,m }, Γ induces a subterm relation �= (�a ∪�m) defined as follows:

`0�r `1 iff `1 ∈ L and ∃ `2(r(`1, `2) 6 `0 ∈ Γ or r(`2, `1) 6 `0 ∈ Γ).

Intuitively, the subterm relation is intended to characterize the links from parent
to children nodes when the relation represents a tree.

Γ also induces a reduction relation ; defined as follows:

`0 ; `1 iff `1 6 `0 ∈ Γ, `1 ∈ L0
L, `0 ∈ L and `1 6= `0.

Intuitively, the reduction relation will help us track steps that trigger weakenings
in LBI. A label `0 is irreducible in Γ if Γ has no redex `0 ; `1. A redex `0 ; `1 is
minimal if `1 is irreducible. A reduction of `0 to `n in Γ is a path `0 ; `1 . . .; `n

such that for all 0 6 i < n, `i;`i+1 in Γ. A reduction of `0 to `n is minimal if `n

is irreducible. If all minimal reductions of `0 terminate with the same irreducible
label `n, then `n is called the normal form of `0 (in Γ).

A label `′ is reachable from a label ` in Γ, written `� `′, if ` = `′ or there
is a path P from ` to `′ with no redex pointing outside P , more formally, P is
a sequence `0� `1 . . .� `n such that `0 = `, `n = `′ and for all 0 6 i < n and
all `′′ such that `i ; `′′, `′′ ∈ P . If A : ` ∈ Γ then A is an `-leaf in Γ. A label
constraint `2 6 `1 is reachable from `0 in Γ if `1 is reachable from `0 and there
is no formula A and no irreducible `′ on the path from `0 to `1 such A : `′ ∈ Γ.

Definition 7 (Tree Property). A labelled sequent Γ ` ∆ has the tree property
if it satisfies all of the following conditions:

(T1) ∆ = {A : ` } and A : ` is called the root formula with root label `,
(T2) for all C : `0 ∈ Γ ∪∆, `0 is a label letter,
(T3) for all `1 6 `0 ∈ Γ, `0 is a label letter and if so is `1 then `0� `1,
(T4) for all r(`1, `2) 6 `0 ∈ Γ, `1 and `2 are atomic,
(T5) if `�`0 and `0 is reducible then `0 has a normal form and Γ has no `0-leaf,
(T6) if `� `0 and `0 is irreducible, Γ has exactly one `0-leaf,
(T7) the set { `1� `0 | `� `0 } is a tree with root ` in which all internal nodes
have exactly two children linked with �r arrows of the same r type.

A GBI-proof has the tree property iff all of its sequents have the tree property.

A careful analysis of the translation patterns shows that all LBI-translated
GBI-proofs satisfy conditions (T1) to (T6). (T7) might seem very restrictive as it
implies that for all sequents s in a GBI-proof and all labels ` in s, s contains at
most one corresponding label constraint of the form r(`1, `2) 6 `. Actually, we
can allow sequents in a proof to have more than one label constraint with the
same label on its right-hand side as long as we can decide which one has to be
used for the subterm relation to represent a tree structure. This can be achieved
either by managing label constraints with a stack strategy, always picking the
one which has been introduced into the sequent the most recently, or by using
a notion of rank corresponding to the depth at which the label constraint has
been introduced in (a bottom up reading of) the proof.
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A sequent Γ ` A : ` is terminal if it admits a proof of height 0. For any GBI
proof-rule R, the principal label and principal label constraints of R are the labels
and label constraints explicitly mentionned in the conclusion of R as written in
Fig. 3, Fig. 4 or Fig. 6.

Definition 8. A GBI-proof is normal if it satisfies the tree property, all of its
terminal sequents are initial sequents and in all sequents s that are the conclusion
of an instance of a proof-rule R, the principal label and principal label constraints
of R in s can be reached from the root label of s.

Given a finite set B of bunches we define (up to associativity and commu-
tativity of bunches) Ba(B) as ∅a if B is empty and B1 ; . . . ;Bn with Bi ∈ B
otherwise. Similarly for Bm(B) w.r.t. ∅m and “,”.

Definition 9. Given a labelled sequent Γ ` A : ` in a normal GBI-proof, its
translation to an LBI-sequent is defined as B(Γ ` A : `) = Γ@` ` A where Γ@`
is defined by induction as follows:

– Γ@m = ∅m, Γ@a = ∅a, Γ@$ = ⊥,
– Γ@` = Γ@`′ if for some `′, `; `′ in Γ,
– let L = {Ai | Ai : ` ∈ Γ } and Sr = { `i | `�r `i in Γ },

Γ@` =

Ba(L) if L 6= ∅.
Ba(Sa) if L = ∅,Sm = ∅,Sa 6= ∅.
Bm(Sm) if L = ∅,Sm 6= ∅,Sa = ∅.

Theorem 3. Any normal GBI-proof of a formula A can be translated into an
LBI-proof of ∅m ` A.

Proof. The proof is by induction on the height of normal GBI-proofs. We only
give a few illustrative cases, the others being similar.

– Base Case id: We show that the normal GBI-proof
id

Γ(A : `) ` A : ` translates to
id

∆ ; A ` A

Since A is a `-leaf in Γ, Γ has no redex for `. Therefore, Γ@` is by definition
a bunch of the form A1 ; . . . ; An where A = Ai for some 1 ≤ i ≤ n and
Ai : ` ∈ Γ for all 1 ≤ i ≤ n. Up to associativity and commutativity, Γ@` can
therefore be rewritten as a bunch ∆ ; A.

– Base Case >mR: We show that the normal GBI-proof
>mR

Γ(m 6 `) ` >m : ` translates to
>mR

∅m ` >m

Since ` is a label letter, Γ has a redex `; m. Therefore, Γ cannot have any
`-leaf, so that Γ(m 6 `)@` = Γ(m 6 `)@m = ∅m.

– Case >mL: We show that the normal GBI-proof (below)
D

s1 = Γ(m 6 `) ` A : `0
>mL

s0 = Γ(>m : `) ` A : `0 translates to

P
∆(∅m) ` A

>mL
∆(>m) ` A
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By I.H., we have an LBI-proof P of the sequent Γ(m 6 `)@`0 ` A. Since D
is normal, we have `0� ` in the last two sequents s0, s1 so that ` is actually
treated by the translation of s1. Then Γ(m 6 `)@`0 is of the form ∆(∅m).
Since >m is the only `-leaf in s0, Γ(>m : `)@`0 is ∆(>m).

– Case KR: Suppose we have a normal GBI-proof

D
s1 = Γ(`1 6 `) ` A : `1

KR
s0 = Γ(`1 6 `) ` A : `

Since ` is a label letter, Γ has a redex ` ; `1. Therefore, Γ has no `-leaf
so that Γ@` = Γ@`1 by definition. By I.H. we have an LBI-proof of s1@`1,
which is also an LBI-proof of s0@`.

– Case −∗L: Suppose we have a normal GBI-proof

D1

s1 = Γ(m(`1, `2) 6 `) ` B : `2

D2

s2 = Γ(m(`1, `2) 6 `,C : `) ` A : `0
−∗L

s0 = Γ(m(`1, `2) 6 `,B−∗C : `1) ` A : `0

Since m(`1, `2) 6 ` is reachable from `0 in s0, s0 contains no `-leaf. s0@`0
then has the form ∆(B−∗C,Γ@`2) ` A and s2@`0 has the form ∆(C) ` A
since s2 has a `-leaf C making m(`1, `2) 6 ` unreachable from `0. By I.H.,
we have LBI-proofs P1, P2 of s1, s2 respectively, leading to the LBI-proof

P1

Γ@`2 ` B
P2

∆(C) ` A
−∗L

∆(B−∗C,Γ@`2) ` A

6 Conclusion and Future Work

In this paper we have shown how to translate any LBI-proof into a GBI-proof.
We also showed how to translate (normal) GBI-proofs satisfying the tree prop-
erty back into an LBI-proof. A first perspective is to investigate whether any
GBI-proof can be normalized so as to satisfy the tree property. We conjecture
that it is indeed the case. A second interesting perspective would be to find an
effective (algorithmic) procedure translating TBI-proofs into GBI-proofs since
TBI is known to be sound and complete w.r.t. total KRMs. Finally, a third per-
spective relies on the construction of counter-models in the KRM semantics of BI
directly from failed GBI-proof attempts. This direction requires building coun-
termodels from a single-conclusioned calculus in which backtracking is allowed.
Those perspectives would help us to show that total Kripke monoidal models
with explicit inconsistency are complete w.r.t. the label-free sequent calculus
LBI, thus solving a long-lasting open problem.
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