The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Inductive domain nm_pwc Logical contents IR scheme

The Braga method and the extraction of complex recursive algorithms

Dominique Larchey-Wendling* & J.-F. Monin[†]

@GH/DmxLarchey/The-Braga-Method

Université de Lorraine, CNRS, LORIA* (Nancy) CNRS & VERIMAG[†] Université Grenoble Alpes

GT Coq, Bordeaux, April 25, 2023

Standard Recursion in Coq

Structural recursion, rec. calls on sub-terms

$$fact 0 = S 0 \qquad fact (S n) = S n \times fact n$$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Standard Recursion in Coq

Structural recursion, rec. calls on sub-terms

fact
$$0 = S 0$$
 fact $(S n) = S n \times fact n$

▶ Well-founded recursion for $R : X \rightarrow X \rightarrow Prop$

Inductive Acc R x: Prop := $| \text{Acc_intro} : (\forall y, R \ y \ x \to \text{Acc} \ R \ y) \to \text{Acc} \ R \ x.$ Fixpoint $f \ x \ (T_x : \text{Acc} \ R \ x) \ \{ \text{struct} \ T_x \} :=$ $\dots f \ y \ T_y \ \dots$

Must define *R* before *f*, prove Acc *R* x and ensure $T_y <_{\text{struct}} T_x$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Fake Home 3

Conclusion

Paulson's normalisation

Standard Recursion in Coq

Structural recursion, rec. calls on sub-terms

fact
$$0 = S 0$$
 fact $(S n) = S n \times fact n$

▶ Well-founded recursion for $R : X \rightarrow X \rightarrow Prop$

Inductive Acc $R \times :$ Prop := | Acc_intro : $(\forall y, R \ y \ x \to Acc \ R \ y) \to Acc \ R \ x.$ Fixpoint $f \times (T_x : Acc \ R \ x) \{ \text{struct } T_x \} :=$... $f \ y \ T_y \ ...$

Must define R before f, prove Acc R x and ensure $T_y <_{\text{struct}} T_x$

Particular case, decreasing measure (using lt_wf):
 R x y is m x < m y for some m : X → nat
 Too strong constraints for general recursion?

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

No obvious structural recursion, nor termination:

min f x = if f x = 0 then x else min f (1 + x)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

No obvious structural recursion, nor termination:

min f x = if f x = 0 then x else min f (1 + x)iter₀ f n = if n = 0 then [] else $n :: \text{iter}_0 f (f n)$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion
- Paulson's normalisatior
- Inductive domain nm_pwc Logical contents IR scheme

No obvious structural recursion, nor termination:

min f x = if f x = 0 then x else min f (1 + x)iter₀ f n = if n = 0 then [] else $n :: iter_0 f (f n)$ th f x y = if x = y then 0 else 1 + th $f (f x) (f^2 y)$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

No obvious structural recursion, nor termination:

min f x = if f x = 0 then x else min f (1 + x)iter₀ f n = if n = 0 then [] else $n :: \text{iter}_0 f (f n)$ th f x y = if x = y then 0 else 1 + th $f (f x) (f^2 y)$

Complicated termination proof (succs : V → L V):

The Braga method

Dominique Larchey-Wendling

Introductior

Recursion in Coq

Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

- =91 abstracted
- Take Home 3

Conclusion

Paulson's normalisatior

More complicated recursive schemes

Nesting/mutual recursion:

McCarthy $f_{91} x = if x > 100$ then x - 10 else $f_{01}^2(x + 11)$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

More complicated recursive schemes

Nesting/mutual recursion:

McCarthy $f_{91} x = \text{if } x > 100 \text{ then } x - 10 \text{ else } f_{91}^2(x+11)$ Knuth 1991 $k_{91} x = \text{if } x > a \text{ then } x - b \text{ else } k_{91}^c(x+d)$ where $f^n x = \text{iter}_p f n x$ $\text{iter}_p f n x = \text{if } n = 0 \text{ then } x \text{ else iter}_p f (n-1) (f x)$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞-loops

Take Home 1

```
Depth-First Search
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

More complicated recursive schemes

Nesting/mutual recursion:

McCarthy $f_{91} x = \text{if } x > 100 \text{ then } x - 10 \text{ else } f_{91}^2(x+11)$ Knuth 1991 $k_{91} x = \text{if } x > a \text{ then } x - b \text{ else } k_{91}^c(x+d)$ where $f^n x = \text{iter}_p f n x$ $\text{iter}_p f n x = \text{if } n = 0 \text{ then } x \text{ else iter}_p f (n-1) (f x)$

▶ Nesting&hard termination: unif (m · n) (m' · n') is

 $\begin{cases} \emptyset & \text{ if unif } m \ m' = \emptyset \\ \emptyset & \text{ if unif } m \ m' = \lfloor \rho \rfloor \text{ and unif } (\rho \ n) \ (\rho \ n') = \emptyset \\ \lfloor \sigma \circ \rho \rfloor \text{ if unif } m \ m' = \lfloor \rho \rfloor \text{ and unif } (\rho \ n) \ (\rho \ n') = \lfloor \sigma \rfloor \end{cases}$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction The Braga method First example: F91

∞-loops

Take Home 1

```
Depth-First Search
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

Take Home 3

Conclusion

Paulson's normalisatior

- Extraction = Coq command
 - auto. maps a Coq term to a program (OCaml)
 - captures the Computational Contents (CC)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coo

Extraction

The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

- $\blacktriangleright \texttt{Extraction} = \textsf{Coq command}$
 - auto. maps a Coq term to a program (OCaml)
 - captures the Computational Contents (CC)
- Consider a fully specified term t:

$$\begin{array}{c|c} t : \forall x : X, \ \mathbb{D} \ x \to \{y : Y \mid \mathbb{G} \ x \ y\} \\ \mathbb{D} : X \to \Pr & \text{Domain} \\ \mathbb{G} : X \to Y \to \Pr & \text{Specification} \end{array} \begin{array}{c} \Pr \text{Pre-condition} \\ \text{Post-condition} \end{array}$$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Cod

Extraction

The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

 \mathbb{D}

- Extraction = Cog command
 - auto. maps a Cog term to a program (OCaml)
 - captures the Computational Contents (CC)
- Consider a fully specified term t:

$$t: \forall x: X, \mathbb{D} \ x \to \{y: Y \mid \mathbb{G} \ x \ y\}$$
$$\mathbb{D}: X \to \operatorname{Prop} \left| \begin{array}{c} \operatorname{Domain} \\ \operatorname{Specification} \end{array} \right| \operatorname{Pre-condition} \\ \operatorname{Post-condition} \\ \operatorname{Post-condition} \\ \end{array}$$

- \triangleright $\mathbb{D} x$ (domain) and $\mathbb{G} x y$ (spec)
 - are erased at extraction
 - $\blacktriangleright \text{ EXTR}(t) : \text{ EXTR}(X) \to \text{ EXTR}(Y)$

The Braga method

Dominique Larchey-Wendling

Extraction

nm_pwc IR scheme

- $\blacktriangleright \texttt{Extraction} = \textsf{Coq command}$
 - auto. maps a Coq term to a program (OCaml)
 - captures the Computational Contents (CC)
- Consider a fully specified term t:

$$t: \forall x: X, \mathbb{D} \ x \to \{y: Y \mid \mathbb{G} \ x \ y\}$$

 $\begin{array}{|c|c|c|c|c|} \mathbb{D}: X \to \mathsf{Prop} & \mathsf{Domain} & \mathsf{Pre-condition} \\ \mathbb{G}: X \to Y \to \mathsf{Prop} & \mathsf{Specification} & \mathsf{Post-condition} \\ \end{array}$

- D x (domain) and G x y (spec)
 are erased at extraction
 EXTR(t) : EXTR(X) → EXTR(Y)
 What do D and G become?
 it depends...
 - now: they are just erased
 - ideally (shortly ?): correctness of EXTR(t)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq

Extraction

The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Certification by Extraction

How to certify by extraction ?
From a given OCaml algo. φ : α → β
Get φ = EXTR(t_φ) : EXTR(X_α) → EXTR(X_β)

 $\begin{array}{l} \mathbb{D}_{\varphi} : X_{\alpha} \to \operatorname{Prop} & \text{Domain} \\ \mathbb{G}_{\varphi} : X_{\alpha} \to X_{\beta} \to \operatorname{Prop} & \text{Specification} \\ t_{\varphi} : \forall x : X_{\alpha}, \mathbb{D}_{\varphi} \ x \to \{y : X_{\beta} \mid \mathbb{G}_{\varphi} \ x \ y\} & \text{Implementation} \end{array}$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coo

Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Certification by Extraction

How to certify by extraction ?
From a given OCaml algo. φ : α → β
Get φ = EXTR(t_φ) : EXTR(X_α) → EXTR(X_β)
D_φ: X_α → Prop | Domain

 $\begin{array}{l} \mathbb{G}_{\varphi}: X_{\alpha} \to X_{\beta} \to \operatorname{Prop} \\ t_{\alpha}: \forall x: X_{\alpha}, \mathbb{D}_{\alpha} \ x \to \{y: X_{\beta} \mid \mathbb{G}_{\alpha} \ x \ y\} \end{array} \begin{array}{l} \text{Specification} \\ \text{Implementation} \end{array}$

• $\mathbb{D}_{\varphi} x$ (domain) and $\mathbb{G}_{\varphi} x y$ (spec)

- erased at extraction
- but contain the statement of correctness

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coo

Extraction The Braga method First example: F91

 ∞ -loops

Take Home 1

```
Depth-First Search
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Certification by Extraction

How to certify by extraction ? From a given OCaml algo. $\varphi : \alpha \to \beta$ • Get $\varphi = \text{EXTR}(t_{\varphi}) : \text{EXTR}(X_{\alpha}) \to \text{EXTR}(X_{\beta})$

Domain $\mathbb{D}_{\varphi}: X_{\alpha} \to \operatorname{Prop}$ $\mathbb{G}_{\omega}: X_{\alpha} \to X_{\beta} \to \operatorname{Prop}$ Specification $t_{\alpha}: \forall x: X_{\alpha}, \mathbb{D}_{\alpha} x \to \{y: X_{\beta} \mid \mathbb{G}_{\alpha} x y\}$

- \blacktriangleright $\mathbb{D}_{\varphi} x$ (domain) and $\mathbb{G}_{\varphi} x y$ (spec)
 - erased at extraction
 - but contain the statement of correctness
- Problem: how to define such a t_o in Coq ?
 - no let rec, only restricted Fixpoints (struct)
 - How to control the CC ?

Implementation

The Braga method

Dominique Larchey-Wendling

Extraction

nm_pwc IR scheme

Some influencial references

- ► Non-constructive recursion:
 - Termination of Nested and Mutually Recursive Algorithms (Giesl 97)
 - Partial and Nested Recursive Function Definitions in Higher-Order Logic (Krauss 09)
 - Partiality and Recursion in Interactive Theorem Provers - An Overview (Bove&Krauss&Sozeau 15)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Co

Extraction

The Braga method

First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Some influencial references

- Non-constructive recursion:
 - Termination of Nested and Mutually Recursive Algorithms (Giesl 97)
 - Partial and Nested Recursive Function Definitions in Higher-Order Logic (Krauss 09)
 - Partiality and Recursion in Interactive Theorem Provers - An Overview (Bove&Krauss&Sozeau 15)
- Constructive recursion:
 - General recursion in TT (Bove&Capretta 05)
 - the Equations package (2010 & 2019)
 - The Braga method (Types 2018 & WS 2021)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Co

Extraction

The Braga method

First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Some influencial references

- Non-constructive recursion:
 - Termination of Nested and Mutually Recursive Algorithms (Giesl 97)
 - Partial and Nested Recursive Function Definitions in Higher-Order Logic (Krauss 09)
 - Partiality and Recursion in Interactive Theorem Provers - An Overview (Bove&Krauss&Sozeau 15)
- Constructive recursion:
 - General recursion in TT (Bove&Capretta 05)
 - the Equations package (2010 & 2019)
 - The Braga method (Types 2018 & WS 2021)
- Extraction related:
 - Extraction in Coq (P. Letousey's thesis 2004)
 - MetaCoq and Œuf (CPP'18)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Co

Extraction

The Braga method

First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

The Braga method, an overview

- Techniques in Coq with standard tools:
 - implement spec while controlling CC
 - separate defs. from correctness proofs
 - non-terminating algo.
 - nested&mutual non-terminating algo
 - but no co-recursion

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Co

Extraction

The Braga method

First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

The Braga method, an overview

- Techniques in Coq with standard tools:
 - implement spec while controlling CC
 - separate defs. from correctness proofs
 - non-terminating algo.
 - nested&mutual non-terminating algo
 - but no co-recursion
- We do not use Coq extensions:
 - Program Fixpoint for measure induction
 - Equations (great to define)
 - not so great to control CC
 - but compatible with Braga

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Co

Extraction

The Braga method

First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

The Braga method, an overview

- Techniques in Coq with standard tools:
 - implement spec while controlling CC
 - separate defs. from correctness proofs
 - non-terminating algo.
 - nested&mutual non-terminating algo
 - but no co-recursion
- We do not use Coq extensions:
 - Program Fixpoint for measure induction
 - Equations (great to define)
 - not so great to control CC
 - but compatible with Braga
- Illustrated on examples:
 - ∞ -loop, DFS, F91 (generalized)
 - control of CC and separation of LC from CC

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Co

Extraction

The Braga method

First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

F91 for the knowledgeable (10 loc)

One nested recursive call

f91 n = if n > 100 then n-10 else f91(f91(n+11))

Provide you know the spec: f91_pred n (f91 n)

$$extsf{f91_pred} \ n \ o := \left\{ egin{array}{c} n > 100 \ \land \ o = n - 10 \ \lor \ n \le 100 \ \land \ o = 91 \end{array}
ight.$$

And the termination measure: M := λ n, 101 − n
 One can define:

▶ By (strong) induction on the measure 101 - n
 ▶ f91_pred (n + 11) x needed for term. of f91 x

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

.....

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

F91 for the clueless

- ▶ The clueless has no intuition on 10, 11, 100...
- Sees the generalization for a : X → bool and b, c : X → X

$$f x = if ax$$
 then bx else $f(f(cx))$

- The spec is harder to guess...
- Might not terminate

eg if ax = false for any x

- How to proceed in this case?
 - we need a mechanic procedure
- The Braga method is agnostic:
 - to post-conditions (specs)
 - to pre-conditions (termination)

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction

The Braga method

First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

The empty proposition False:

Inductive False: Prop := .

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

The empty proposition False: Inductive False: Prop := .

▶ False_rect : $\forall X$: Type, False $\rightarrow X$

Definition False_rect X(f : False) : X :=match f return X with end.

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisatior

The empty proposition False: Inductive False: Prop := .

▶ False_rect : $\forall X$: Type, False $\rightarrow X$

Definition False_rect X (f : False) : X := match f return X with end.

extracts to

let false_rect _ = assert false

interpretation of partiality: exception/error

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

The empty proposition False: Inductive False: Prop := .

▶ False_rect : $\forall X$: Type, False $\rightarrow X$

Definition False_rect X (f : False) : X := match f return X with end.

extracts to

let false_rect $_$ = assert false

interpretation of partiality: exception/error
 is there another proof of False_rect?

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

- Looping on False with dummy unit argument:
- ▶ loop : $\forall X$: Type, unit \rightarrow False $\rightarrow X$
 - fix loop $\{X\}$ (-: unit) (\underline{f} : False) : X := loop tt (match f return False with end).

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfS algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

- Looping on False with dummy unit argument:
- ▶ loop : $\forall X$: Type, unit \rightarrow False $\rightarrow X$

fix loop $\{X\}$ (-: unit) (\underline{f} : False) : X := loop tt (match f return False with end).

• notice: fix loop $\{X\} _ \underline{f} := \text{loop tt } f \text{ fails}$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Looping on False with dummy unit argument:
 loop : ∀X : Type, unit → False → X

fix loop $\{X\}$ (-: unit) (\underline{f} : False) : X := loop tt (match f return False with end).

notice: fix loop {X} _ f := loop tt f fails
 Alt. elim.: False_loop : ∀X : Type, False → X

Definition False_loop X := @loop X tt

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Looping on False with dummy unit argument:
 loop : ∀X : Type, unit → False → X

fix loop $\{X\}$ (-: unit) (\underline{f} : False) : X := loop tt (match f return False with end).

▶ notice: fix loop $\{X\} _ \underline{f} := \text{loop tt } f \text{ fails}$ ▶ Alt. elim.: False_loop : $\forall X$: Type, False $\rightarrow X$

Definition False_loop X := @loop X tt

extracts to

let false_loop _ =
 let rec loop _ = loop ()
 in loop ()

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

First take home idea

Matching on False:

match f : False return X with end

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

First take home idea

Matching on False:

match f : False return X with end

▶ is a term of any type X

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

First take home idea

Matching on False:

match f : False return X with end

- is a term of any type X
- is structurally smaller than any term in X
 - when X is an inductive type

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion
- Paulson's normalisatior
- Inductive domain nm_pwc Logical contents IR scheme

First take home idea

Matching on False:

match f : False return X with end

is a term of any type X

is structurally smaller than any term in X

- when X is an inductive type
- used extensively to rule out absurd cases
 - the exfalso tactic
 - the discriminate tactic
 - the destruct tactic on $H : \ldots \rightarrow \ldots \rightarrow$ False
 - absurd cases for inversion

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Depth First Search

let rec
$$x \in_{\mathcal{V}}^{?} v =$$
match v with
 | [] \rightarrow false
 | y :: w \rightarrow y = x or x $\in_{\mathcal{V}}^{?}$ w
let rec dfs v / =
 match / with
 | [] \rightarrow v
 | x :: / \rightarrow if x $\in_{\mathcal{V}}^{?}$ v
 then dfs v /
 else dfs (x :: v) (succs x @ /)

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm

The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Depth First Search

let rec
$$x \in_{\mathcal{V}}^{?} v =$$

match v with
 $| [] \rightarrow false$
 $| y :: w \rightarrow y = x \text{ or } x \in_{\mathcal{V}}^{?} w$
let rec dfs $v | =$
match l with
 $| [] \rightarrow v$
 $| x :: l \rightarrow \text{ if } x \in_{\mathcal{V}}^{?} v$
then dfs $v |$
else dfs $(x :: v)$ (succs $x @ l$)

For =^f_V : ∀x y : V, {b | x = y ⇔ b = true}
 succs : V → list V (directed graph structure)

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm

The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Depth First Search

let rec
$$x \in_{\mathcal{V}}^{?} v =$$
match v with
 | [] \rightarrow false
 | $y :: w \rightarrow y = x \text{ or } x \in_{\mathcal{V}}^{?} w$
let rec dfs v / =
 match / with
 | [] $\rightarrow v$
 | $x :: l \rightarrow \text{ if } x \in_{\mathcal{V}}^{?} v$
 then dfs v /
 else dfs (x :: v) (succs x @ l)
For =[?]_{\mathcal{V}} : $\forall x y : \mathcal{V}, \{b \mid x = y \iff b = \text{true}\}$
succs : $\mathcal{V} \rightarrow \text{list } \mathcal{V}$ (directed graph structure)
Specification is not obvious
 When/why does it terminate?

What is the output?

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm

The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

From the algo. to its computational graph

From the dfs algorithm only

```
let rec dfs v l =
match / with
    | [] \rightarrow v
    | x :: l \rightarrow if x \in_{\mathcal{V}}^{?} v
        then dfs v l
        else dfs (x :: v) (succs x @ l)
```

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

```
Depth-First Search
The algorithm
```

The computational graph Termination certificates The partial dfs algo.

Simulating Ind.-Recursio High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

From the algo. to its computational graph

From the dfs algorithm only

$$\begin{array}{cccc} | \text{let rec dfs } v \ l = & & \text{Introduction} \\ & \text{match } l \ \text{with} & & | \ \| & \rightarrow v \\ & & | \ \| & \gamma & \text{if } x \in_{\mathcal{V}}^{?} v \\ & & | \ x :: \ l \rightarrow \text{if } x \in_{\mathcal{V}}^{?} v \\ & & \text{then dfs } v \ l \\ & & \text{else dfs } (x :: v) \ (\text{succs } x \ @ \ l) \\ \end{array}$$

$$\begin{array}{c} \text{Graph } \mathbb{G}_{\text{dfs}} : \text{list } \mathcal{V} \rightarrow \text{list } \mathcal{V} \rightarrow \text{list } \mathcal{V} \rightarrow \text{Prop} \\ \hline \mathbb{G}_{\text{dfs}} v \ \| v \\ \hline \mathbb{G}_{\text{dfs}} v \ \| v \\ \hline \mathbb{G}_{\text{dfs}} v \ x :: \ l \ o \\ \hline \mathbb{G}_{\text{dfs}} v \ x :: \ l \ o \\ \hline \mathbb{G}_{\text{dfs}} v \ x :: \ l \ o \\ \hline \mathbb{G}_{\text{dfs}} v \ x :: \ l \ o \\ \hline \mathbb{G}_{\text{dfs}} v \ (x :: \ l \ o \\ \hline \mathbb{G}_{\text{dfs}} v \ (x :: \ l \ o \\ \hline \mathbb{G}_{\text{dfs}} v \ (x :: \ l \ o \\ \hline \mathbb{G}_{\text{dfs}} v \ (x :: \ l \ o \\ \hline \end{array}$$

The Braga method

Dominique Larchey-Wendling

From the algo. to its computational graph

From the dfs algorithm only

let rec dfs v l =
match / with
 | []
$$\rightarrow v$$
 | x :: l \rightarrow if x $\in^{?}_{\mathcal{V}} v$
 then dfs v l
 else dfs (x :: v) (succs x @ l)
 Take Hom
 The compute
 Take Hom
 The diff (x :: v) (succs x + l) o
 Take Hom
 Take Hom

functional: $\mathbb{G}_{dfs} \lor I \circ_1 \to \mathbb{G}_{dfs} \lor I \circ_2 \to o_1 = o_2$.

The Braga method

Dominique Larchey-Wendling

```
ional graph
```

IR scheme

$$\frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} \ v \ l \ o}{\mathbb{G}_{dfs} \ v \ (x :: l) \ o} \frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} \ v \ (x :: l) \ o}{\mathbb{G}_{dfs} \ v \ (x :: l) \ o}$$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

- Take Home 1
- Depth-First Search The algorithm

The computational graph

Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

$$\frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} \ v \ l \ o}{\mathbb{G}_{dfs} \ v \ (x :: l) \ o} \frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} \ v \ (x :: l) \ o}{\mathbb{G}_{dfs} \ v \ (x :: l) \ o}$$

We erase the output parameter!

i.e. we project on the first two parameters

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search The algorithm

The computational graph

Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

$$\frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} v \mid o}{\mathbb{G}_{dfs} v (x :: l) o} \frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} v \mid o}{\mathbb{G}_{dfs} v (x :: l) o}$$

$$\frac{x \notin_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} (x :: v) (\text{succs } x + l) o}{\mathbb{G}_{dfs} v (x :: l) o}$$

We erase the output parameter!
 i.e. we project on the first two parameters
 Domain D_{dfs} : list V → list V → Prop

$$\frac{1}{\mathbb{D}_{dfs} v []} \left\langle \mathbb{D}^{1}_{dfs} \right\rangle \qquad \frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{D}_{dfs} v \ l}{\mathbb{D}_{dfs} v (x :: l)} \left\langle \mathbb{D}^{2}_{dfs} \right\rangle \\
\frac{x \notin_{\mathcal{V}}^{?} v \quad \mathbb{D}_{dfs} (x :: v) (\operatorname{succs} x + l)}{\mathbb{D}_{dfs} v (x :: l)} \left\langle \mathbb{D}^{3}_{dfs} \right\rangle$$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search The algorithm

The computational graph

Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

$$\frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} v \mid o}{\mathbb{G}_{dfs} v (x :: l) o} \qquad \frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} v \mid o}{\mathbb{G}_{dfs} v (x :: l) o} \\ \frac{x \notin_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} (x :: v) (succs x + l) o}{\mathbb{G}_{dfs} v (x :: l) o}$$

We erase the output parameter!
 i.e. we project on the first two parameters
 Domain D_{dfs} : list V → list V → Prop

$$\frac{1}{\mathbb{D}_{dfs} \ v \ []} \quad \langle \mathbb{D}^{1}_{dfs} \rangle \qquad \frac{x \in_{\mathcal{V}}^{?} \ v \quad \mathbb{D}_{dfs} \ v \ I}{\mathbb{D}_{dfs} \ v \ (x :: I)} \quad \langle \mathbb{D}^{2}_{dfs} \rangle$$

$$\frac{x \notin_{\mathcal{V}}^{?} \ v \quad \mathbb{D}_{dfs} \ (x :: v) \ (\operatorname{succs} x + I)}{\mathbb{D}_{dfs} \ v \ (x :: I)} \quad \langle \mathbb{D}^{3}_{dfs} \rangle$$

▶ We will show: $\mathbb{D}_{dfs} \lor I \iff \exists o, \mathbb{G}_{dfs} \lor I o$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search The algorithm

The computational graph

Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

DFS packed with conformity to \mathbb{G}_{dfs}

• dfs_pwc: $\forall v I$, $\mathbb{D}_{dfs} v I \rightarrow \{o \mid \mathbb{G}_{dfs} v I o\}$

By structural induction on the domain predicate D

```
Fixpoint dfs_pwc v / (\underline{D} : \mathbb{D}_{dfs} v I) : \{o \mid \mathbb{G}_{dfs} v I o\}.
Proof. refine(
   match / with
        |[] \Rightarrow \lambda D, \text{exist}_v \mathcal{O}_1^?
         x \cdots I \Rightarrow \lambda D
       match x \in \mathcal{Y}, v as b return x \in \mathcal{Y}, v = b \rightarrow w with
           \exists true \Rightarrow \lambda E.
                       let (o, G_o) := dfs_pwc \ v \ I \ \mathcal{T}_2^?
                       in exist _{-} o \mathcal{O}_{2}^{?}
           | false \Rightarrow \lambda E,
                       let (o, G_o) := dfs_pwc(x :: v) (succs x + l) \mathcal{T}_o^?
                       in exist _{-} o \mathcal{O}_{2}^{?}
       end eq_refl
    end D).
    (* Proof obligations *)
Qed.
```

But not by pattern matching on D!

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

```
Depth-First Search
The algorithm
```

```
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

```
Take Home 3
```

Conclusion

Paulson's normalisatior

▶ Postcondition e.g. $\mathcal{O}_2^?$

$$[\mathcal{O}_2^?]:\ldots, E:x\in^?_\mathcal{V} v=\mathtt{true}, \mathit{G_o}:\mathbb{G}_{\mathtt{dfs}} \ v \ l \ o dash \mathbb{G}_{\mathtt{dfs}} \ v \ (x{::}l) \ o$$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search The algorithm

The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion

High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive domain nm_pwc Logical contents IR scheme

Extraction

▶ Postcondition e.g. $\mathcal{O}_2^?$

 $[\mathcal{O}_2^?]: \ldots, E: x \in_{\mathcal{V}}^? v = \texttt{true}, G_o: \mathbb{G}_{\texttt{dfs}} \lor l \mathrel{o} \vdash \mathbb{G}_{\texttt{dfs}} \lor (x :: l) \mathrel{o}$

- is trivial to handle
- second constructor of the graph G_{dfs}:

$$\frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} v \mid o}{\mathbb{G}_{dfs} v (x :: l) o}$$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loop

Take Home 1

Depth-First Search The algorithm

The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

▶ Postcondition e.g. $\mathcal{O}_2^?$

 $[\mathcal{O}_2^?]: \ldots, E: x \in_{\mathcal{V}}^? v = \texttt{true}, G_o: \mathbb{G}_{\texttt{dfs}} \lor l \mathrel{o} \vdash \mathbb{G}_{\texttt{dfs}} \lor (x :: l) \mathrel{o}$

- is trivial to handle
- second constructor of the graph G_{dfs}:

$$\frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} \ v \ l \ o}{\mathbb{G}_{dfs} \ v \ (x :: l) \ o}$$

► same holds for O[?]₁ and O[?]₃

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loop

Take Home 1

Depth-First Search The algorithm

The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

▶ Postcondition e.g. $\mathcal{O}_2^?$

 $[\mathcal{O}_2^?]: \ldots, E: x \in_{\mathcal{V}}^? v = \texttt{true}, G_o: \mathbb{G}_{\texttt{dfs}} \lor l \mathrel{o} \vdash \mathbb{G}_{\texttt{dfs}} \lor (x :: l) \mathrel{o}$

- is trivial to handle
- second constructor of the graph G_{dfs}:

$$\frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{G}_{dfs} v \mid c}{\mathbb{G}_{dfs} v (x :: l) o}$$

- ▶ same holds for $\mathcal{O}_1^?$ and $\mathcal{O}_3^?$
- Termination certificates T[?]₂ and T[?]₃:
 - much more complicated to handle

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search The algorithm

The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Proof obligations: termination certificates

• Termination certificates $\mathcal{T}_2^?$ and $\mathcal{T}_3^?$

$$[\mathcal{T}_2^?]:\,\ldots,D:\mathbb{D}_{\tt dfs}\; v\;(x::I), E:x\in^?_{\mathcal{V}}v={\tt true}\,\vdash\,\mathbb{D}_{\tt dfs}\; v\;I$$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates
- The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion
- Paulson's normalisation
- Inductive domain nm.pwc Logical contents IR scheme
- Extraction

Proof obligations: termination certificates

- ▶ Termination certificates $\mathcal{T}_2^?$ and $\mathcal{T}_3^?$ $[\mathcal{T}_2^?]: \ldots, D: \mathbb{D}_{dfs} \ v \ (x :: I), E: x \in_{\mathcal{V}}^? v = true \vdash \mathbb{D}_{dfs} \ v \ I$
- We need to provide a term of type:

 $\pi_{\mathbb{D}_{\mathtt{dfs}}} - 2 : \forall v \, x \, I, \, \mathbb{D}_{\mathtt{dfs}} \, v \, (x :: I) \to x \in_{\mathcal{V}}^? v = \mathtt{true} \to \mathbb{D}_{\mathtt{dfs}} \, v \, I$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Fake Home 1

- Depth-First Search The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind-Recursion High-level correctness Take Home 2 F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

Proof obligations: termination certificates

• The projection $\pi_{\mathbb{D}_{dfs}}$ -2 inverts the constructor \mathbb{D}^2_{dfs} :

$$\frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{D}_{dfs} v \ l}{\mathbb{D}_{dfs} v \ (x :: l)} \quad \langle \mathbb{D}_{dfs}^{2} \rangle \qquad \frac{x \in_{\mathcal{V}}^{?} v \quad \mathbb{D}_{dfs} v \ (x :: l)}{\mathbb{D}_{dfs} v \ l} \quad \langle \pi_{\mathbb{D}_{dfs}} - 2 \rangle$$

Fixpoint guard cond.: $\pi_{\mathbb{D}_{dfs}}$ -2 v x / D E $<_{\mathrm{struct}}$ D

- inversion tactic works but unreadable
- Small inversions give a human checkable term

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

```
Depth-First Search
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
Take Home 2
F91 abstracted
Take Home 3
Conclusion
Paulson's
normalisation
```

nm_pwc Logical cor IR scheme

Small Inversions (J.F. Monin)

• Termination certificate $\mathcal{T}_2^?$ by dep. pattern matching Generic code which explicits structural decrease Let shape $(b: bool) \vee I :=$ match / with $| [] \Rightarrow False$ $x :: I \Rightarrow x \in \mathbf{N}, v = b$ end. Let $p_t \{ b \ v \ l \}$: shape $b \ v \ l \rightarrow list \ \mathcal{V} :=$ match / with $| [] \Rightarrow \lambda s$, match s : False with end $| :: I \Rightarrow \lambda_{-}, I$ end. Let $\pi_{\mathbb{D}_{dfs}}$ _2_gen {v /} (D_{vl} : \mathbb{D}_{dfs} v /) : $\forall s$: shape true v /, \mathbb{D}_{dfs} v (p-tl s) := match D_{vl} in $\mathbb{D}_{dfs} v' l'$ with return $\forall s$: shape true v' l', $\mathbb{D}_{dfs} v' (p_{tl} s)$ with $\begin{array}{l} |\mathbb{D}_{dfs}^1 v \quad \Rightarrow \lambda s, \, \texttt{match } s: \texttt{False with end} \\ |\mathbb{D}_{dfs}^2 v \times I_- D \Rightarrow \lambda_-, D \\ |\mathbb{D}_{dfs}^3 v \times I H_- \Rightarrow \lambda s, \, \texttt{match not_mem_true} \ H \ s: \texttt{False with end} \end{array}$ end nm_pwc

$$\texttt{Let } \pi_{\mathbb{D}_{\texttt{dfs}}} \text{-} 2 \text{ } v \times \textit{I} : \mathbb{D}_{\texttt{dfs}} \text{ } v \text{ } (x :: \textit{I}) \rightarrow x \in^?_{\mathcal{V}} \textit{v} = \texttt{true} \rightarrow \mathbb{D}_{\texttt{dfs}} \text{ } \textit{v} \text{ } \textit{I} := \pi_{\mathbb{D}_{\texttt{dfs}}} \text{-} 2 \text{-} \texttt{gen}$$

The Braga method

Dominique Larchey-Wendling

```
Termination certificates
```

IR scheme

▶ dfs_pwc: $\forall v \mid I, \mathbb{D}_{dfs} \mid v \mid J \rightarrow \{o \mid \mathbb{G}_{dfs} \mid v \mid o\}$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga methor First example: F93

 ∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates

The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

- ▶ dfs_pwc : $\forall v I$, $\mathbb{D}_{dfs} v I \rightarrow \{o \mid \mathbb{G}_{dfs} v I o\}$
- We define dfs v / $D := \pi_1(dfs_pwc v / D)$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

 ∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates

The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

- dfs_pwc : $\forall v \ I, \mathbb{D}_{dfs} \ v \ I \rightarrow \{o \mid \mathbb{G}_{dfs} \ v \ I \ o\}$
- We define dfs v / $D := \pi_1(dfs_pwc v / D)$

get conformity via π₂ (low-level):

 $dfs_spec: \forall v \, I \, D, \, \mathbb{G}_{dfs} \, v \, I \, (dfs \, v \, I \, D)$

Then fixpoint eqs and proof irrelevance

 $\begin{array}{l} \texttt{dfs_pirr} &: \texttt{dfs} \; \textit{v} \; \textit{I} \; \textit{D}_1 = \texttt{dfs} \; \textit{v} \; \textit{I} \; \textit{D}_2. \\ \texttt{dfs_fix_1} : \; \texttt{dfs} \; \textit{v} \; \mid (\mathbb{D}_{\texttt{dfs}}^1 \; \textit{v}) = \textit{v}. \\ \texttt{dfs_fix_2} : \; \texttt{dfs} \; \textit{v} \; (x :: \textit{I}) \; (\mathbb{D}_{\texttt{dfs}}^2 \; \textit{v} \; \textit{x} \; \textit{I} \; \textit{HD}) = \texttt{dfs} \; \textit{v} \; \textit{I} \; \textit{D}. \\ \texttt{dfs_fix_3} : \; \texttt{dfs} \; \textit{v} \; (x :: \textit{I}) \; (\mathbb{D}_{\texttt{dfs}}^3 \; \textit{v} \; \textit{x} \; \textit{I} \; \textit{HD}) = \texttt{dfs} \; \textit{v} \; \textit{I} \; \textit{D}. \\ \texttt{dfs_fix_3} : \; \texttt{dfs} \; \textit{v} \; (x :: \textit{I}) \; (\mathbb{D}_{\texttt{dfs}}^3 \; \textit{v} \; \textit{x} \; \textit{I} \; \textit{HD}) = \texttt{dfs} \; (x :: \textit{v}) \; (\texttt{succs} \; \textit{x} \; + \textit{I}) \; \textit{D}. \end{array}$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
```

```
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

```
Take Home 3
```

Conclusion

Paulson's normalisation

- dfs_pwc : $\forall v \ I, \mathbb{D}_{dfs} \ v \ I \rightarrow \{o \mid \mathbb{G}_{dfs} \ v \ I \ o\}$
- We define dfs v / $D := \pi_1(dfs_pwc v / D)$

get conformity via π₂ (low-level):

 $dfs_spec: \forall v \, / \, D, \, \mathbb{G}_{dfs} \, v \, / \, (dfs \, v \, / \, D)$

Then fixpoint eqs and proof irrelevance

 $\begin{array}{l} \texttt{dfs_pirr} &: \texttt{dfs} \; \textit{v} \; \textit{I} \; \textit{D}_1 = \texttt{dfs} \; \textit{v} \; \textit{I} \; \textit{D}_2. \\ \texttt{dfs_fix_1} : \; \texttt{dfs} \; \textit{v} \; \mid (\mathbb{D}_{\texttt{dfs}}^1 \; \textit{v}) = \textit{v}. \\ \texttt{dfs_fix_2} : \; \texttt{dfs} \; \textit{v} \; (x :: \textit{I}) \; (\mathbb{D}_{\texttt{dfs}}^2 \; \textit{v} \; \textit{x} \; \textit{I} \; \textit{HD}) = \texttt{dfs} \; \textit{v} \; \textit{I} \; \textit{D}. \\ \texttt{dfs_fix_3} : \; \texttt{dfs} \; \textit{v} \; (x :: \textit{I}) \; (\mathbb{D}_{\texttt{dfs}}^3 \; \textit{v} \; \textit{x} \; \textit{I} \; \textit{HD}) = \texttt{dfs} \; \textit{v} \; \textit{I} \; \textit{D}. \\ \texttt{dfs_fix_3} : \; \texttt{dfs} \; \textit{v} \; (x :: \textit{I}) \; (\mathbb{D}_{\texttt{dfs}}^3 \; \textit{v} \; \textit{x} \; \textit{I} \; \textit{HD}) = \texttt{dfs} \; (x :: \textit{v}) \; (\texttt{succs} \; x + \textit{I}) \; \textit{D}. \end{array}$

D_{dfs} has a dependent recursion principle

Theorem
$$\mathbb{D}_{dfs}$$
 rect $(P : \forall v \ I, \mathbb{D}_{dfs} \ v \ I \rightarrow \texttt{Type})$:
 $(\forall v \ I \ D_1 \ D_2, \ P \ v \ I \ D_1 \rightarrow P \ v \ I \ D_2)$
 $\rightarrow (\forall v, \ P_{--}(\mathbb{D}^1_{dfs} \ v))$
 $\rightarrow (\forall v \ x \ I \ HD, \ P_{--} \ D \rightarrow P_{--}(\mathbb{D}^2_{dfs} \ v \ x \ I \ HD)))$
 $\rightarrow (\forall v \ x \ I \ HD, \ P_{--} \ D \rightarrow P_{--}(\mathbb{D}^3_{dfs} \ v \ x \ I \ HD)))$
 $\rightarrow (\forall v \ I \ D, \ P \ v \ I \ D).$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
```

```
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

Take Home 3

Conclusion

Paulson's normalisatior

Simulated Inductive-Recursive Scheme

Thus we simulate the IR-scheme (Dybjer 2000)

 $\begin{array}{l} \mbox{Inductive } \mathbb{D}_{dfs}: \mbox{list } \mathcal{V} \to \mbox{list } \mathcal{V} \to \mbox{Prop} := \\ & \mid \mathbb{D}^1_{dfs}: \forall v, \qquad \mathbb{D}_{dfs} v \mid \\ & \mid \mathbb{D}^2_{dfs}: \forall v \times l, \, x \in_{\mathcal{V}}^? v \to \mathbb{D}_{dfs} v \mid \\ & \to \mathbb{D}_{dfs} v (x :: l) \\ & \mid \mathbb{D}^3_{dfs}: \forall v \times l, \, x \notin_{\mathcal{V}}^? v \to \mathbb{D}_{dfs} (x :: v) \mbox{(succs } x + l) \\ & \to \mathbb{D}_{dfs} v (x :: l) \end{array}$

with Fixpoint dfs v / $(D : \mathbb{D}_{dfs} v \ l) :$ list $\mathcal{V} :=$ match D with

$$\begin{array}{l} | \mathbb{D}^{1}_{dfs} v \Rightarrow v \\ | \mathbb{D}^{2}_{dfs} v \times I_{-} D \Rightarrow dfs v \mid D \\ | \mathbb{D}^{3}_{dfs} v \times I_{-} D \Rightarrow dfs (x :: v) (succs x + l) D \\ \end{array}$$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

```
Depth-First Search
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

Take Home 3

Conclusion

Paulson's normalisation

Simulated Inductive-Recursive Scheme

Thus we simulate the IR-scheme (Dybjer 2000)

with Fixpoint dfs v $I(D: \mathbb{D}_{dfs} v I)$: list $\mathcal{V} :=$ match D with

$$| \mathbb{D}_{dfs}^{1} v \Rightarrow v | \mathbb{D}_{dfs}^{2} v \times I_{-} D \Rightarrow dfs v / D | \mathbb{D}_{dfs}^{3} v \times I_{-} D \Rightarrow dfs (x :: v) (succs x ++ I) D end$$

Degenerate here because no nesting

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

```
Depth-First Search
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
```

High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

- ▶ Partial correctness by induction on $\mathbb{D}_{dfs} v l$
 - when dfs terminates
 - it computes a minimal invariant for succs

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion

High-level correctness

- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

- Inductive domain nm_pwc Logical contents IR scheme
- Extraction

- ▶ Partial correctness by induction on $\mathbb{D}_{dfs} v l$
 - when dfs terminates
 - it computes a minimal invariant for succs

Definition dfs_invariant_t (v / i : list \mathcal{V}) := $v \subseteq i \land I \subseteq i \land (\forall x, x \in_{\mathcal{V}}^? i \to x \in_{\mathcal{V}}^? v \lor \operatorname{succs} x \subseteq i).$

Theorem dfs_invariant $v \mid (D : \mathbb{D}_{dfs} v \mid i)$: $\land \begin{cases} dfs_invariant_t v \mid (dfs v \mid D) \\ \forall i, dfs_invariant_t v \mid i \rightarrow dfs v \mid D \subseteq i. \end{cases}$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Pepth-First Search

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

- ▶ Partial correctness by induction on $\mathbb{D}_{dfs} v l$
 - when dfs terminates
 - it computes a minimal invariant for succs

 $\begin{array}{ll} \text{Definition } \text{dfs_invariant}_t \ (v \ I \ i : \text{list} \ \mathcal{V}) := \\ v \subseteq i \land I \subseteq i \land (\forall x, \ x \in_{\mathcal{V}}^? \ i \to x \in_{\mathcal{V}}^? \ v \lor \text{succs} \ x \subseteq i). \end{array}$

- Theorem dfs_invariant $v \mid (D : \mathbb{D}_{dfs} v \mid i)$: $\land \begin{cases} dfs_invariant_t v \mid (dfs v \mid D) \\ \forall i, dfs_invariant_t v \mid i \rightarrow dfs v \mid D \subseteq i. \end{cases}$
- We can characterize termination (harder)
 - when there is an invariant
 - then dfs terminates

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

```
epth-First Search
```

```
The augorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
```

High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

- ▶ Partial correctness by induction on $\mathbb{D}_{dfs} v l$
 - when dfs terminates
 - it computes a minimal invariant for succs

 $\begin{array}{ll} \text{Definition } \text{dfs_invariant}_t \ (v \ I \ i : \text{list} \ \mathcal{V}) := \\ v \subseteq i \land I \subseteq i \land (\forall x, \ x \in_{\mathcal{V}}^? \ i \to x \in_{\mathcal{V}}^? \ v \lor \text{succs} \ x \subseteq i). \end{array}$

- Theorem dfs_invariant $v \mid (D : \mathbb{D}_{dfs} v \mid i)$: $\land \begin{cases} dfs_invariant_t v \mid (dfs v \mid D) \\ \forall i, dfs_invariant_t v \mid i \rightarrow dfs v \mid D \subseteq i. \end{cases}$
- We can characterize termination (harder)
 - when there is an invariant
 - then dfs terminates

Theorem \mathbb{D}_{dfs} -domain $v \mid :$

 $\mathbb{D}_{dfs} v / \iff \exists i, dfs_{invariant_t} v / i.$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

```
epth-First Search
```

```
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
```

```
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

```
Take Home 3
```

Conclusion

Paulson's normalisation

From the computational graph G_φ

• We derive the inductive domain \mathbb{D}_{φ}

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F93

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

► From the computational graph G_φ

- We derive the inductive domain \mathbb{D}_{φ}
 - by projecting on the input values
 - in every rule defining \mathbb{G}_{φ}

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

• From the computational graph \mathbb{G}_{φ}

- We derive the inductive domain \mathbb{D}_{φ}
 - by projecting on the input values
 in every rule defining G_∞
- ▶ No high-level knowledge of φ needed
 - Termination is not needed for partial correctness
 - Partial correctness could be use for termination

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga methor First example: F9:

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

=91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

• From the computational graph \mathbb{G}_{φ}

- We derive the inductive domain \mathbb{D}_{φ}
 - by projecting on the input values
 in every rule defining G_∞
- ▶ No high-level knowledge of φ needed
 - Termination is not needed for partial correctness
 - Partial correctness could be use for termination
- Beware with nested algos. (see later)
 - Projecting the graph a bit more complicated

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion digh-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

^Daulson's Normalisatior

The Braga method Back to F91 (generalized) Dominique Larchey-Wendling ▶ $a: X \rightarrow bool and b, c: X \rightarrow X$ f x = if ax then bx else f(f(cx))▶ The graph $\mathbb{G}_f : X \to X \to \text{Prop of } f$ ax = trueax = false $\mathbb{G}_f(cx)y$ $\mathbb{G}_f \vee O$ $\mathbb{G}_{f} \times o$ $\mathbb{G}_f x (bx)$ ▶ The domain $\mathbb{D}_f : X \to \text{Prop of } f$ F91 abstracted ax = false $\mathbb{D}_f(c x)$ $\forall y, \mathbb{G}_f(cx) y \to \mathbb{D}_f y$ ax = true $\mathbb{D}_f X$ $\mathbb{D}_f X$ nm_pwc Logical contents IR scheme

Simulated IR Scheme for F91 (gen.)

We simulate the following IR-scheme

 $\begin{array}{l} \text{Inductive } \mathbb{D}_f : X \to \text{Prop} := \\ \mid \mathbb{D}_f^0 : \forall x, \, ax = \texttt{true} \to \mathbb{D}_f \, x \\ \mid \mathbb{D}_f^1 : \forall x, \, ax = \texttt{false} \\ \to \forall dc : \mathbb{D}_f(c \, x), \, \mathbb{D}_f(f(c \, x) \, dc) \to \mathbb{D}_f \, x \end{array}$ $\begin{array}{l} \text{with Fixpoint } f \, x \, (d : \mathbb{D}_f \, x) : X := \\ \text{match } d \, \text{with} \\ \mid \mathbb{D}_f^0 \, x \, e \Rightarrow b \, x \\ \mid \mathbb{D}_f^1 \, x \, e \, (dc : \mathbb{D}_f(c \, x)) \, (df : \mathbb{D}_f(f(c \, x) \, dc)) \\ & \Rightarrow f(f(c \, x) \, dc) \, df \end{array}$

end

But restricted to proof-irrelevant predicates (PIRR)
 f itself is PIRR: f x d₁ = f x d₂

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's formalisation

Third take home ideas

Domain D for nested schemes

- use G to characterize (nested) output values
- ▶ and define D after&using G

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

nm_pwc Logical contents IR scheme

Third take home ideas

Domain D for nested schemes

- use G to characterize (nested) output values
- and define D after&using G
- Correctness of nested schemes
 - can be studied independently of termination
 - hence, can be used to establish termination

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

^oaulson's ormalisatior

nm_pwc Logical contents IR scheme

- The Braga method separates tasks
 - definition of the function in Coq
 - prove its partial correctness (IR or graph ind.)
 - prove (partial) termination (from correctness)

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3

Conclusion

Paulson's normalisation

- The Braga method separates tasks
 - definition of the function in Coq
 - prove its partial correctness (IR or graph ind.)
 - prove (partial) termination (from correctness)
- The algorithm is enough
 - to define the function
 - no need to know why it terminates
 - no need to know what it computes

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3

Conclusion

Paulson's normalisation

- The Braga method separates tasks
 - definition of the function in Coq
 - prove its partial correctness (IR or graph ind.)
 - prove (partial) termination (from correctness)
- The algorithm is enough
 - to define the function
 - no need to know why it terminates
 - no need to know what it computes
- Extraction
 - erases the Logical Contents (LC)
 - keeps the Computational Contents (CC)
 - give access to partial algorithms
 - incl. nested and mutual

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3

Conclusion

Paulson's normalisatior

- The Braga method separates tasks
 - definition of the function in Coq
 - prove its partial correctness (IR or graph ind.)
 - prove (partial) termination (from correctness)
- The algorithm is enough
 - to define the function
 - no need to know why it terminates
 - no need to know what it computes
- Extraction
 - erases the Logical Contents (LC)
 - keeps the Computational Contents (CC)
 - give access to partial algorithms
 - incl. nested and mutual
- Perspectives
 - better integrate with existing tools
 - more examples, e.g. Knuth k_{91} , μ -rec. algos.
 - partial functions as guarded total functions

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3

Conclusion

Paulson's 10rmalisatior

Larry Paulson's normalization (1985)

$$\begin{array}{l} \texttt{let rec nm } e = \texttt{match } e \texttt{ with} \\ \mid \alpha & \to \alpha \\ \mid \omega(\alpha, y, z) & \to \omega(\alpha, \texttt{nm } y, \texttt{nm } z) \\ \mid \omega(\omega(a, b, c), y, z) \to \texttt{nm}(\omega(a, \texttt{nm}(\omega(b, y, z)), \\ \qquad \texttt{nm}(\omega(c, y, z)))) \end{array}$$

• Expressions in Ω : b, x, y ::= $\alpha \mid \omega \mid b \mid x \mid y$

• α is atomic expression

•
$$\omega \ b \ x \ y$$
 denotes "if b then x else y "

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

Larry Paulson's normalization (1985)

$$\begin{array}{l} \texttt{let rec nm } e = \texttt{match } e \texttt{ with} \\ \mid \alpha & \rightarrow \alpha \\ \mid \omega(\alpha, y, z) & \rightarrow \omega(\alpha, \texttt{nm } y, \texttt{nm } z) \\ \mid \omega(\omega(a, b, c), y, z) \rightarrow \texttt{nm}(\omega(a, \texttt{nm}(\omega(b, y, z)), \\ \qquad \qquad \texttt{nm}(\omega(c, y, z)))) \end{array}$$

• Expressions in Ω : b, x, y ::= $\alpha \mid \omega \mid b \mid x \mid y$

 $\blacktriangleright \alpha$ is atomic expression

- Interest of this algorithm:
 - recurring example (Giesl 97, B&C 05...)
 - has nested recursion but still compact
 - idealized but meaningful

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive capture of $\mathbb{D}_{nm}: \Omega \to \mathsf{Prop}$

▶ Using the computational graph \mathbb{G}_{nm} : $\Omega \rightarrow \Omega \rightarrow Prop$

$$\frac{\Box_{nm} \ y \ n_y}{\Box_{nm} \ \alpha \ \alpha} = \frac{\Box_{nm} \ y \ n_y}{\Box_{nm} \ (\omega \ \alpha \ y \ z) \ (\omega \ \alpha \ n_y \ n_z)}$$
$$\frac{\Box_{nm} \ (\omega \ b \ y \ z) \ n_b}{\Box_{nm} \ (\omega \ c \ y \ z) \ n_c} = \Box_{nm} \ (\omega \ a \ n_b \ n_c) \ n_a}$$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

Inductive domain

nm_pwc Logical contents IR scheme Inductive capture of $\mathbb{D}_{nm}: \Omega \to \operatorname{Prop}$ ▶ Using the computational graph \mathbb{G}_{nm} : $\Omega \rightarrow \Omega \rightarrow Prop$ $\mathbb{G}_{nm} \ y \ n_y \qquad \mathbb{G}_{nm} \ z \ n_z$ $\mathbb{G}_{nm} \alpha \alpha \qquad \mathbb{G}_{nm} (\omega \alpha y z) (\omega \alpha n_v n_z)$ $\mathbb{G}_{nm}(\omega b y z) n_b = \mathbb{G}_{nm}(\omega c y z) n_c = \mathbb{G}_{nm}(\omega a n_b n_c) n_a$ $\mathbb{G}_{nm} (\omega (\omega a b c) y z) n_a$ ▶ Define $\mathbb{D}_{nm} \simeq \lambda e$, $\exists n, \mathbb{G}_{nm} e n$ inductively by: $\mathbb{D}_{nm} y = \mathbb{D}_{nm} z$ $\mathbb{D}_{nm} \alpha \qquad \mathbb{D}_{nm} (\omega \alpha y z)$ $\mathbb{D}_{nm} (\omega b y z) \qquad \mathbb{D}_{nm} (\omega c y z)$ $\forall n_b n_c, \mathbb{G}_{nm} (\omega \ b \ y \ z) \ n_b \to \mathbb{G}_{nm} (\omega \ c \ y \ z) \ n_c \to \mathbb{D}_{nm} (\omega \ a \ n_b \ n_c)$ $\mathbb{D}_{nm} (\omega (\omega a b c) \vee z)$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive domain

nm_pwc Logical contents IR scheme Inductive capture of $\mathbb{D}_{nm}: \Omega \to \operatorname{Prop}$ ▶ Using the computational graph \mathbb{G}_{nm} : $\Omega \rightarrow \Omega \rightarrow \text{Prop}$ $\mathbb{G}_{nm} \ y \ n_y \qquad \mathbb{G}_{nm} \ z \ n_z$ $\mathbb{G}_{nm} \alpha \alpha \qquad \mathbb{G}_{nm} (\omega \alpha y z) (\omega \alpha n_y n_z)$ $\mathbb{G}_{nm}(\omega b y z) n_b = \mathbb{G}_{nm}(\omega c y z) n_c = \mathbb{G}_{nm}(\omega a n_b n_c) n_a$ $\mathbb{G}_{nm} (\omega (\omega a b c) y z) n_a$ ▶ Define $\mathbb{D}_{nm} \simeq \lambda e$, $\exists n, \mathbb{G}_{nm} e n$ inductively by: $\mathbb{D}_{nm} y = \mathbb{D}_{nm} z$ $\mathbb{D}_{nm} \alpha \qquad \mathbb{D}_{nm} (\omega \alpha y z)$ $\mathbb{D}_{nm}(\omega b \vee z) = \mathbb{D}_{nm}(\omega c \vee z)$ $\forall n_b n_c, \mathbb{G}_{nm} (\omega \ b \ y \ z) \ n_b \to \mathbb{G}_{nm} (\omega \ c \ y \ z) \ n_c \to \mathbb{D}_{nm} (\omega \ a \ n_b \ n_c)$ $\mathbb{D}_{nm} (\omega (\omega a b c) \vee z)$ • The rules for \mathbb{D}_{nm} use \mathbb{G}_{nm} for nested calls

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive domain

nm_pwc Logical contents IR scheme Extraction

Def. nm_pwc : $\forall e, \mathbb{D}_{nm} e \rightarrow \{n \mid \mathbb{G}_{nm} e n\}$

Fixpoint nm_pwc
$$e(\underline{D}: \mathbb{D}_{nm} e): \{n \mid \mathbb{G}_{nm} e n\}.$$

refine(
match e as e' return $\mathbb{D}_{nm} e' \rightarrow \{n \mid \mathbb{G}_{nm} e' n\}$ with
 $\mid \alpha \qquad \Rightarrow \lambda D$, exist $_{-} \alpha \mathcal{O}_{0}^{2}$
 $\mid \omega \alpha y z \qquad \Rightarrow \lambda D$, let $(n_{y}, C_{y}) :=$ nm_pwc $y \mathcal{T}_{y}^{?}$ in
let $(n_{z}, C_{z}) :=$ nm_pwc $z \mathcal{T}_{z}^{?}$
in exist $_{-} (\omega \alpha n_{y} n_{z}) \mathcal{O}_{1}^{2}$
 $\mid \omega (\omega a b c) y z \Rightarrow \lambda D$, let $(n_{b}, C_{b}) :=$ nm_pwc $(\omega b y z) \mathcal{T}_{b}^{?}$ in
let $(n_{c}, C_{c}) :=$ nm_pwc $(\omega c y z) \mathcal{T}_{c}^{?}$ in
let $(n_{a}, C_{a}) :=$ nm_pwc $(\omega a n_{b} n_{c}) \mathcal{T}_{a}^{?}$
in exist $_{-} n_{a} \mathcal{O}_{2}^{?}$

end D; simpl in *.

Proof. of certificates $\mathcal{T}_{v}^{?}, \mathcal{T}_{z}^{?}, \mathcal{T}_{b}^{?}, \mathcal{T}_{c}^{?}, \mathcal{T}_{a}^{?}$ and post-conditions $\mathcal{O}_{0}^{?}, \mathcal{O}_{1}^{?}, \mathcal{O}_{2}^{?}$ Qed.

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive domain

nm_pwc

$\mathsf{Def. nm_pwc}: \forall e, \ \mathbb{D}_{\texttt{nm}} \ e \to \{n \mid \mathbb{G}_{\texttt{nm}} \ e \ n\}$

Fixpoint nm_pwc
$$e(\underline{D}: \mathbb{D}_{nm} e): \{n \mid \mathbb{G}_{nm} e n\}.$$

refine(
match e as e' return $\mathbb{D}_{nm} e' \rightarrow \{n \mid \mathbb{G}_{nm} e' n\}$ with
 $\mid \alpha \qquad \Rightarrow \lambda D$, exist $_{-} \alpha \mathcal{O}_{0}^{2}$
 $\mid \omega \alpha y z \qquad \Rightarrow \lambda D$, let $(n_{y}, C_{y}) :=$ nm_pwc $y \mathcal{T}_{y}^{?}$ in
let $(n_{z}, C_{z}) :=$ nm_pwc $z \mathcal{T}_{z}^{?}$
in exist $_{-} (\omega \alpha n_{y} n_{z}) \mathcal{O}_{1}^{2}$
 $\mid \omega (\omega a b c) y z \Rightarrow \lambda D$, let $(n_{b}, C_{b}) :=$ nm_pwc $(\omega b y z) \mathcal{T}_{b}^{?}$ in
let $(n_{z}, C_{z}) :=$ nm_pwc $(\omega c y z) \mathcal{T}_{c}^{?}$ in
let $(n_{a}, C_{a}) :=$ nm_pwc $(\omega a n_{b} n_{c}) \mathcal{T}_{a}^{?}$
in exist $_{-} n_{a} \mathcal{O}_{2}^{?}$

end D; simpl in *.

Proof. of certificates $\mathcal{T}_{v}^{?}, \mathcal{T}_{z}^{?}, \mathcal{T}_{b}^{?}, \mathcal{T}_{c}^{?}, \mathcal{T}_{a}^{?}$ and post-conditions $\mathcal{O}_{0}^{?}, \mathcal{O}_{1}^{?}, \mathcal{O}_{2}^{?}$ Qed.

use of dependent pattern matching

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

nm_pwc

$\mathsf{Def. nm_pwc}: \forall e, \ \mathbb{D}_{\texttt{nm}} \ e \to \{n \mid \mathbb{G}_{\texttt{nm}} \ e \ n\}$

Fixpoint nm_pwc
$$e(\underline{D}: \mathbb{D}_{nm} e): \{n \mid \mathbb{G}_{nm} e n\}.$$

refine(
match e as e' return $\mathbb{D}_{nm} e' \rightarrow \{n \mid \mathbb{G}_{nm} e' n\}$ with
 $\mid \alpha \qquad \Rightarrow \lambda D$, exist $_{-} \alpha \mathcal{O}_{0}^{2}$
 $\mid \omega \alpha y z \qquad \Rightarrow \lambda D$, let $(n_{y}, C_{y}) :=$ nm_pwc $y \mathcal{T}_{y}^{?}$ in
let $(n_{z}, C_{z}) :=$ nm_pwc $z \mathcal{T}_{z}^{?}$
in exist $_{-} (\omega \alpha n_{y} n_{z}) \mathcal{O}_{1}^{2}$
 $\mid \omega (\omega a b c) y z \Rightarrow \lambda D$, let $(n_{b}, C_{b}) :=$ nm_pwc $(\omega b y z) \mathcal{T}_{b}^{?}$ in
let $(n_{c}, C_{c}) :=$ nm_pwc $(\omega c y z) \mathcal{T}_{c}^{?}$ in
let $(n_{a}, C_{a}) :=$ nm_pwc $(\omega a n_{b} n_{c}) \mathcal{T}_{a}^{?}$
in exist $_{-} n_{a} \mathcal{O}_{2}^{?}$

end D; simpl in *.

Proof. of certificates $\mathcal{T}_{v}^{?}, \mathcal{T}_{z}^{?}, \mathcal{T}_{b}^{?}, \mathcal{T}_{c}^{?}, \mathcal{T}_{a}^{?}$ and post-conditions $\mathcal{O}_{0}^{?}, \mathcal{O}_{1}^{?}, \mathcal{O}_{2}^{?}$ Qed.

use of dependent pattern matching
 LC (i.e. proof obligations) separated from CC

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive domain

nm_pwc

$\mathsf{Def. nm_pwc}: \forall e, \ \mathbb{D}_{\texttt{nm}} \ e \to \{n \mid \mathbb{G}_{\texttt{nm}} \ e \ n\}$

Fixpoint nm_pwc
$$e(\underline{D}: \mathbb{D}_{nm} e): \{n \mid \mathbb{G}_{nm} e n\}.$$

refine(
match e as e' return $\mathbb{D}_{nm} e' \rightarrow \{n \mid \mathbb{G}_{nm} e' n\}$ with
 $\mid \alpha \qquad \Rightarrow \lambda D$, exist $_{-} \alpha \mathcal{O}_{0}^{2}$
 $\mid \omega \alpha y z \qquad \Rightarrow \lambda D$, let $(n_{y}, C_{y}) :=$ nm_pwc $y \mathcal{T}_{y}^{?}$ in
let $(n_{z}, C_{z}) :=$ nm_pwc $z \mathcal{T}_{z}^{?}$
in exist $_{-} (\omega \alpha n_{y} n_{z}) \mathcal{O}_{1}^{2}$
 $\mid \omega (\omega a b c) y z \Rightarrow \lambda D$, let $(n_{b}, C_{b}) :=$ nm_pwc $(\omega b y z) \mathcal{T}_{b}^{?}$ in
let $(n_{c}, C_{c}) :=$ nm_pwc $(\omega c y z) \mathcal{T}_{c}^{?}$ in
let $(n_{a}, C_{a}) :=$ nm_pwc $(\omega a n_{b} n_{c}) \mathcal{T}_{a}^{?}$
in exist $_{-} n_{a} \mathcal{O}_{2}^{?}$

end D; simpl in *.

Proof. of certificates $\mathcal{T}_{v}^{?}, \mathcal{T}_{z}^{?}, \mathcal{T}_{b}^{?}, \mathcal{T}_{c}^{?}, \mathcal{T}_{a}^{?}$ and post-conditions $\mathcal{O}_{0}^{?}, \mathcal{O}_{1}^{?}, \mathcal{O}_{2}^{?}$ Qed.

- use of dependent pattern matching
- LC (i.e. proof obligations) separated from CC
- LC divided: termination certificates, post-conditions

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive domain

nm_pwc

Proof obligations (Logical Contents)

 \blacktriangleright Post-conditions by the constructors of \mathbb{G}_{nm}

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive domain

nm_pwc

Logical contents

IR scheme

Proof obligations (Logical Contents)

▶ Post-conditions by the constructors of 𝔅_{nm}

$$\begin{array}{c} \mathcal{O}_{0}^{2} \ \# \ \dots \vdash \mathbb{G}_{\mathrm{nm}} \ \alpha \ \alpha \\ \mathcal{O}_{1}^{2} \ \# \ \dots, C_{y} : \mathbb{G}_{\mathrm{nm}} \ y \ n_{y}, C_{z} : \mathbb{G}_{\mathrm{nm}} \ z \ n_{z} \vdash \mathbb{G}_{\mathrm{nm}} \ (\omega \ \alpha \ y \ z) \ (\omega \ \alpha \ n_{y} \ n_{z}) \\ \mathcal{O}_{2}^{2} \ \# \ \dots, C_{b} : \mathbb{G}_{\mathrm{nm}} \ (\omega \ b \ y \ z) \ n_{b}, C_{c} : \mathbb{G}_{\mathrm{nm}} \ (\omega \ c \ y \ z) \ n_{c}, \dots \\ \dots \ C_{a} : \mathbb{G}_{\mathrm{nm}} \ (\omega \ a \ n_{b} \ n_{c}) \ n_{a} \vdash \mathbb{G}_{\mathrm{nm}} \ (\omega \ a \ b \ c) \ y \ z) \ n_{a} \end{array}$$

Termination certificates

$$\begin{array}{cccc} \mathcal{T}_{y}^{\ell} & \parallel & \dots, D: \mathbb{D}_{nm} \ (\omega \ \alpha \ y \ z) \vdash \mathbb{D}_{nm} \ y \\ \mathcal{T}_{b}^{\ell} & \parallel & \dots, D: \mathbb{D}_{nm} \ (\omega \ (\omega \ a \ b \ c) \ y \ z) \vdash \mathbb{D}_{nm} \ (\omega \ b \ y \ z) \\ \mathcal{T}_{a}^{\ell} & \parallel & \dots, D: \mathbb{D}_{nm} \ (\omega \ (\omega \ a \ b \ c) \ y \ z), H_{b}: \mathbb{G}_{nm} \ (\omega \ b \ y \ z) \ n_{b}, \dots \\ & \dots \ H_{c}: \mathbb{G}_{nm} \ (\omega \ c \ y \ z) \ n_{c} \vdash \mathbb{D}_{nm} \ (\omega \ a \ n_{c}) \end{array}$$

beware of structural decrease in term. certificates

- by the inversion tactic
- or "small inversion" (human readable)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

nductive domain

nm_pwc

Logical contents

▶ nm $e D := \pi_1(\text{nm_pwc } e D)$ and $\pi_2 : \mathbb{G}_{nm} e (\text{nm } e D)$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Inductive domain

nm_pwc

Logical contents

IR scheme

▶ nm $e D := \pi_1(\text{nm}_pwc \ e \ D)$ and $\pi_2 : \mathbb{G}_{nm} \ e \ (\text{nm} \ e \ D)$ Inductive $\mathbb{D}_{nm} : \Omega \rightarrow \boxed{\text{Prop}} :=$ $\mid \mathbb{D}_{nm}^1 \\ \mid \mathbb{D}_{nm}^2 \ y \ z$: D_{nm} α $\begin{array}{ll} \mathbb{D}_{nm}^{1} & : & \mathbb{D}_{nm} \ \alpha \\ \mathbb{D}_{nm}^{2} \ y \ z & : & \mathbb{D}_{nm} \ y \rightarrow \mathbb{D}_{nm} \ z \rightarrow \mathbb{D}_{nm}(\omega \ \alpha \ y \ z) \\ \mathbb{D}_{nm}^{3} \ a \ b \ c \ y \ z \ D_{b} \ D_{c} & : & \mathbb{D}_{nm}(\omega \ a \ (nm \ (\omega \ b \ y \ z) \ D_{b}) \ (nm \ (\omega \ c \ y \ z) \ D_{c})) \end{array}$ $\rightarrow \mathbb{D}_{nm}(\omega (\omega a b c) v z)$ with Fixpoint nm $e(D_e: \mathbb{D}_{nm} e): \Omega :=$ match D_e with $| \mathbb{D}_{nm}^1$ $\begin{array}{ll} |\mathbb{D}_{nm}^1 & \Rightarrow \alpha \\ |\mathbb{D}_{nm}^2 y \ z \ D_y \ D_z & \Rightarrow \omega \ \alpha \ (nm \ y \ D_y) \ (nm \ z \ D_z) \\ |\mathbb{D}_{nm}^3 \ a \ b \ c \ y \ z \ D_b \ D_c \ D_a \Rightarrow nm \ (\omega \ a \ (nm \ (\omega \ b \ y \ z) \ D_b) \end{array}$ $(nm (\omega c y z) D_c)) D_a$ end.

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

nductive domain

nm_pwc

Logical contents

IR scheme

• The domain $\mathbb{D}_{nm} : \Omega \to Prop$ is **non-informative**

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Fake Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

nductive domain

nm_pwc

ogical contents

IR scheme

 The domain D_{nm} : Ω → Prop is non-informative
 nm : ∀e, D_{nm} e → Ω is proof-irrelevant, i.e. nm x D₁ = nm x D₂

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

nductive domain

nm_pwc

Logical contents

IR scheme

end.

- The domain $\mathbb{D}_{nm} : \Omega \to Prop$ is non-informative
- ▶ nm : $\forall e, \mathbb{D}_{nm} e \rightarrow \Omega$ is proof-irrelevant, i.e. nm x $D_1 = nm \times D_2$
- Constructors, dep. elim. scheme and fixpoint equations retrieved

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

ductive domain

nm_pwc

ogical contents

IR scheme

Extraction unaltered by \mathbb{D}_{nm} in Prop

▶ In nm e $(D : \mathbb{D}_{nm} e)$ extract. erases $D : \mathbb{D}_{nm} e$: Prop

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion
- Paulson's normalisation
- Inductive domain
- nm_pwc
- Logical contents
- IR scheme
- Extraction

Extraction unaltered by \mathbb{D}_{nm} in Prop

▶ In nm e $(D : \mathbb{D}_{nm} e)$ extract. erases $D : \mathbb{D}_{nm} e$: Prop

Hence Extraction nm gives the intended term:

$$\begin{array}{ccc} \text{let rec nm } e = \text{match } e \text{ with} \\ & \mid \alpha & \to \alpha \\ & \mid \omega(x,y,z) & \to \text{match } x \text{ with} \\ & \mid \alpha & \to \omega(\alpha, \text{nm } y, \text{nm } z) \\ & \mid \omega(a,b,c) \to \text{nm}(\omega(a, \text{nm}(\omega(b,y,z)), \text{nm}(\omega(c,y,z)))) \end{array}$$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

```
Depth-First Search
```

```
The algorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

```
Take Home 3
```

Conclusion

Paulson's normalisation

nductive domain

nm_pwc

Logical contents

IR scheme

Extraction unaltered by \mathbb{D}_{nm} in Prop

▶ In nm $e(D : \mathbb{D}_{nm} e)$ extract. erases $D : \mathbb{D}_{nm} e$: Prop

Hence Extraction nm gives the intended term:

$$\begin{array}{ccc} \texttt{let rec nm } e = \texttt{match } e \texttt{ with} \\ & \mid \alpha & \to \alpha \\ & \mid \omega(x,y,z) & \to \texttt{match } x \texttt{ with} \\ & \mid \alpha & \to \omega(\alpha,\texttt{nm } y,\texttt{nm } z) \\ & \mid \omega(a,b,c) \to \texttt{nm}(\omega(a,\texttt{nm}(\omega(b,y,z)),\texttt{nm}(\omega(c,y,z)))) \end{array}$$

▶ The proof term $D : \mathbb{D}_{nm} e$

has no impact on extracted algorithm

The Braga method

Dominique Larchey-Wendling

nm_pwc

IR scheme Extraction

Extraction unaltered by $\mathbb{D}_{\mathtt{nm}}$ in Prop

▶ In nm e $(D : \mathbb{D}_{nm} e)$ extract. erases $D : \mathbb{D}_{nm} e$: Prop

Hence Extraction nm gives the intended term:

Let rec nm
$$e = \text{match } e$$
 with
 $| \alpha \rightarrow \alpha$
 $| \omega(x, y, z) \rightarrow \text{match } x$ with
 $| \alpha \rightarrow \omega(\alpha, \text{nm } y, \text{nm } z)$
 $| \omega(a, b, c) \rightarrow \text{nm}(\omega(a, \text{nm}(\omega(b, y, z)), \text{nm}(\omega(c, y, z)))))$

• The proof term $D : \mathbb{D}_{nm} e$

- has no impact on extracted algorithm
- great complexity does not matter

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

```
Depth-First Search
```

```
The augorithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

```
Take Home 3
```

Conclusion

Paulson's normalisation

nductive domain

nm_pwc

Logical contents

IR scheme

Extraction unaltered by $\mathbb{D}_{\mathtt{nm}}$ in Prop

▶ In nm e $(D : \mathbb{D}_{nm} e)$ extract. erases $D : \mathbb{D}_{nm} e$: Prop

Hence Extraction nm gives the intended term:

Let rec nm
$$e = \text{match } e$$
 with
 $| \alpha \rightarrow \alpha$
 $| \omega(x, y, z) \rightarrow \text{match } x$ with
 $| \alpha \rightarrow \omega(\alpha, \text{nm } y, \text{nm } z)$
 $| \omega(a, b, c) \rightarrow \text{nm}(\omega(a, \text{nm}(\omega(b, y, z)), \text{nm}(\omega(c, y, z)))))$

• The proof term $D : \mathbb{D}_{nm} e$

- has no impact on extracted algorithm
- great complexity does not matter
- use high-level tool (lex. prod, WQOs)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

```
Depth-First Search
```

```
The argonithm
The computational graph
Termination certificates
The partial dfs algo.
Simulating Ind.-Recursion
High-level correctness
```

```
Take Home 2
```

```
F91 abstracted
```

```
Take Home 3
```

Conclusion

Paulson's normalisatior

nductive domain

nm_pwc

Logical content IR scheme

Termination postponed after definition

▶ Proving termination of nm at e is a term $D : \mathbb{D}_{nm} e$

- ▶ a "meaningful" characterization of \mathbb{D}_{nm} e
- ▶ for partial fun.: $P: \Omega \rightarrow \texttt{Prop}$ and $P \subseteq \mathbb{D}_{\texttt{nm}}$
- for total functions: a proof of $\forall e, \mathbb{D}_{nm} e$

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

Termination postponed after definition

- ▶ Proving termination of nm at e is a term $D : \mathbb{D}_{nm} e$
 - ▶ a "meaningful" characterization of \mathbb{D}_{nm} e
 - ▶ for partial fun.: $P: \Omega \rightarrow \texttt{Prop}$ and $P \subseteq \mathbb{D}_{\texttt{nm}}$
 - ▶ for total functions: a proof of ∀e, D_{nm} e
- The proof of $P \subseteq \mathbb{D}_{nm}$ can be provided:
 - ► after $\mathbb{D}_{nm} : \Omega \to \text{Prop and } nm : \forall e, \mathbb{D}_{nm} \ e \to \Omega$ are def'd
 - w/o consequences on extracted code
 - including by adding axioms (if necessary)

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

Termination postponed after definition

- ▶ Proving termination of nm at e is a term $D : \mathbb{D}_{nm} e$
 - ▶ a "meaningful" characterization of \mathbb{D}_{nm} e
 - ▶ for partial fun.: $P: \Omega \rightarrow \texttt{Prop}$ and $P \subseteq \mathbb{D}_{\texttt{nm}}$
 - ▶ for total functions: a proof of ∀e, D_{nm} e
- The proof of $P \subseteq \mathbb{D}_{nm}$ can be provided:
 - ► after $\mathbb{D}_{nm} : \Omega \to \text{Prop and } nm : \forall e, \mathbb{D}_{nm} \ e \to \Omega$ are def'd
 - w/o consequences on extracted code
 - including by adding axioms (if necessary)

Tools from IR:

- constructors
- fixpoint equations

The Braga method

Dominique Larchey-Wendling

ntroduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

▶ Partial correction = higher-level charac. of $nm \ e \ D$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

▶ Partial correction = higher-level charac. of $nm \ e \ D$

- another spec/post-condition
- by induction on $\mathbb{G}_{nm} e (nm \ e \ D)$
- or using dependent elimination on (e, D) (IR)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Partial correction = higher-level charac. of nm e D

- another spec/post-condition
- by induction on $\mathbb{G}_{nm} e (nm \ e \ D)$
- or using dependent elimination on (e, D) (IR)
- Partial correction: for meaningful S
 - $\blacktriangleright \forall e \ (D : \mathbb{D}_{nm} \ e), \ \mathbb{S} \ e \ (nm \ e \ D)$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisatior

Partial correction = higher-level charac. of nm e D

- another spec/post-condition
- by induction on $\mathbb{G}_{nm} e (nm \ e \ D)$
- or using dependent elimination on (e, D) (IR)
- Partial correction: for meaningful S
 - $\blacktriangleright \forall e \ (D: \mathbb{D}_{nm} \ e), \ \mathbb{S} \ e \ (nm \ e \ D)$
- Tools from IR:
 - dependent elimination
 - fixpoint equations

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion

Paulson's normalisation

• dep. elim. \mathbb{D}_{nm} -rect for partial correction (IR)

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

- The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness
- Take Home 2
- F91 abstracted
- Take Home 3
- Conclusion
- Paulson's normalisatior
- Inductive domain nm"pwc Logical contents IR scheme
- Extraction

• dep. elim. \mathbb{D}_{nm} -rect for partial correction (IR)

▶ nm_normal : $\forall e (D : \mathbb{D}_{nm} e)$, normal (nm e D)

• the shape ω (ω _ _ _) _ _ is forbidden

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

• dep. elim. \mathbb{D}_{nm} -rect for partial correction (IR)

- nm_normal : ∀ e (D : D_{nm} e), normal (nm e D)
 the shape ω (ω _ _ _) _ _ is forbidden
- nm_equiv : ∀ e (D : D_{nm} e), e ≃_Ω nm e D
 the normal form is computationaly equiv.

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

▶ dep. elim. D_{nm}_rect for partial correction (IR)

- nm_normal : ∀ e (D : D_{nm} e), normal (nm e D)
 the shape ω (ω _ _ _) _ _ is forbidden
- nm_equiv : ∀ e (D : D_{nm} e), e ≃_Ω nm e D
 the normal form is computationaly equiv.

▶ nm_dec :
$$\forall e (D : \mathbb{D}_{nm} e)$$
, $|nm e D| \leq |e|$
▶ some "size" $|\cdot| : \Omega \rightarrow nat$ is preserved (Giesl 97)

$$|\alpha| = 1$$
 $|\omega x y z| = |x| \cdot (1 + |y| + |z|)$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

91 abstracted

Take Home 3

Conclusion

Paulson's normalisation

Totality of \mathbb{D}_{nm} / Termination of nm

 $\mathbb{D}_{\texttt{nm-total}}: \forall e, \ \mathbb{D}_{\texttt{nm}} \ e$

▶ By induction on the size |*e*|

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Totality of \mathbb{D}_{nm} / Termination of nm

 $\mathbb{D}_{\texttt{nm-total}}: \forall e, \ \mathbb{D}_{\texttt{nm}} \ e$

By induction on the size |e|

• we use nm_dec : $\forall e (D : \mathbb{D}_{nm} e)$, $|nm e D| \leq |e|$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞-loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's normalisatior

Totality of \mathbb{D}_{nm} / Termination of nm

$$\mathbb{D}_{\texttt{nm-total}}: \forall e, \mathbb{D}_{\texttt{nm}} e$$

By induction on the size |e|

we use nm_dec : ∀e (D : Dnm e), nm e D ≤ |e|
and |ω x y z| ≤ |ω x' y' z'| (monotonic)
i.e. when |x| ≤ |x'|, |y| ≤ |y'|, |z| ≤ |z'|
and |ω u y z| < |ω v y z| when |u| < |v|
and |y| < |ω x y z| and |z| < |ω x y z|
& |ω a (ω b y z) (ω c y z)| < |ω (ω a b c) y z|

▶ Partial correction / termination indep. of definition paulson_nm : $\forall e : \Omega, \{n_e : \Omega \mid e \simeq_{\Omega} n_e \land \text{normal } e\}$

The Braga method

Dominique Larchey-Wendling

Introduction

Recursion in Coq Extraction The Braga method First example: F91

∞ -loops

Take Home 1

Depth-First Search

The algorithm The computational graph Termination certificates The partial dfs algo. Simulating Ind.-Recursion High-level correctness

Take Home 2

F91 abstracted

Take Home 3

Conclusion

Paulson's formalisation