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Abstract

In constructive commutative algebra, we revive the Bar in-
ductive characterization of Noetherian rings. We contribute
the first constructive (axiom free) implementation of Hilbert’s
Basis Theorem, in the RocQ proof assistant. We show that
the polynomial ring R[X] is Noetherian when the ring R is
Noetherian, without assuming any additional condition on
R, like coherence or else strong discreteness. We also con-
tribute and implement a new result, that Noetherian rings
are closed under direct products, again without assuming
any supplementary condition on rings. We study induction
principles for Noetherian rings, and relate Bar Noetherianity
with some other constructive characterizations.

Keywords: Constructive algebra, Noetherian rings, bar in-
ductive predicates, Hilbert basis theorem, Rocq

1 Introduction

Bar inductive predicates, which are linked to but should not
be conflated with bar induction, are siblings to Acc(cessibility)
predicates, the de facto approach to well-foundedness in the
(constructive) Rocq standard library. Bar inductive predi-
cates have been used successfully to give constructive and
axiom free! accounts of the FAN theorem [3, 7], Ramsey’s the-
orem and Higman’s lemma [6], and more generally of well
quasi order (WQO) theory through the equivalent notion of
inductive almost full (AF) relation [11, 26]. The accessibility
predicate and more generally, bar and cover inductive predi-
cates, give a way to quantify over arbitrary sequences, includ-
ing “lawless” sequences which are (constructively) beyond
the reach of the type N — A of “lawlike” sequences, that are
used in ascending (or descending) chain conditions [3, 12].

lin particular, without assuming “Brouwer’s thesis” [25].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2025 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. .. $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Using those predicates, one can work constructively, avoid-
ing excluded middle (XM) and dependent choice (DC). Co-
quand&Persson [5] exploit bar inductive predicates beyond
WQO theory and apply them to constructive algebra, giving
a bar predicate characterization of Noetherian rings. This
allows them to prove Hilbert’s Basis theorem (HBT) con-
structively, moreover free of any further assumption on the
rings like coherence or else strong discreteness (or both) [4],
or variants of these notions [10, 14-16, 20]. The focus of [5]
is a certified algorithm for Grébner bases and the proof of
the HBT was only outlined on paper, and not implemented.
Despite this initial promising result — a nice and short con-
structive proof of the HBT, — the bar predicate approach to
Noetherianity apparently did not get much traction later
on. And, up to now, despite many constructive variants of
the HBT, it seems that none of them have actually been im-
plemented in constructive theorem provers, as opposed to
classical versions of the theorem, see e.g. [18] but the HBT
can also be found in the Mathlib Lean library?

In this work, we propose to follow those footsteps [5] and
revive the bar predicate approach to Noetherian rings with
a first constructive implementation of the HBT in Rocg, re-
visiting their pen&paper proof, and also explaining why, in
our opinion, that implementation work might have been out
of reach at the time [17]. As a second contribution, we adapt
the bar inductive proof of Ramsey’s theorem [6] and derive
a new result: Noetherian rings are closed under direct prod-
ucts, constructively, without assuming strong discreteness, as
opposed to e.g. [20]. With a RocQ implementation as well.

1.1 Noetherian rings in constructive algebra

We work with commutative rings of which we assume the
theory for now. Recall that ideals are subsets of rings closed
under linear combinations. An ideal is finitely generated if
there is a list of its members generating the whole ideal by
linear combinations. An ideal is principal if it is generated by
a singleton. We focus our work on those properties of ideals.

In classical algebra, a principal ring has only principal
ideals: typical examples include the ring of integers Z or the
ring ¥ [X] of univariate polynomials over a field . However
F[X,Y] or Z[X] are not principal rings. They are nonethe-
less Noetherian rings where every ideal is finitely generated.
The original statement of the HBT was:

Zhttps://leanprover-community.github.io/mathlib-overview.html
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F X1, ..., X,] is aNoetherian ring if F is a field

and its initial proof, given by David Hilbert [9], was allegedly
qualified as “theology” by Paul Gordan® because of its non-
constructive nature. Later on the HBT was given the form

if R is a Noetherian ring then so is R[X]

which is more general and is the usually accepted formu-
lation of the HBT in constructive algebra, however with a
mandatory update of the definition of “Noetherian ring”

Indeed, to convert the HBT to constructive algebra, one
has first to acknowledge that the notions of principal or
of Noetherian ring, as defined classically above, are useless
when interpreted in constructive contexts. In intuitionistic
logic (w/0 XM), there are too many propositions and hence,
too many subsets and ideals. And with such classical defini-
tions, if one can show that the ring Z (or even just Z/2Z) is
Noetherian (all the more principal), then this entails XM. This
observation is often recalled in papers about constructive
algebra, and can be made in Bishop’s constructive mathe-
matics [14] or in type theory, as we explain in Section 2.2.
So one cannot prove that those basic rings are principal or
even Noetherian unless one assumes XM. When working in
an anticlassical setting, where XM is actually refuted by the
assumption of other axioms, one can even show that Z and
Z/2Z are not Noetherian.

Hence, constructively, the classical characterizations of
principal and Noetherian rings are usually considered flawed
and this has given rise to a large body of work with several
competing definitions. The notion of principal ring can be
replaced by the notion of Bezout domain: every finitely gen-
erated ideal is principal, see e.g. [4]. The constructive notion
of Noetherian ring has been given several variations:

RS-Noetherian: any infinite increasing sequence of fi-
nitely generated ideals pauses, by Richman [19] and
Seidenberg [21];

ML-Noetherian: strict reverse inclusion is (Martin-L6f)
well-founded on finitely generated ideals [10];*

Strongly Noetherian: finitely generated ideals ordered
by strict inclusion are (explicitly) embedded into an
well-ordered set [14];

Bar Noetherian: growing finite sequences of finitely
generated ideals unavoidably reach a pause, expressed
using a bar inductive predicate [5], the one we work
with herein;

not claiming exhaustivity for this list.

All these characterizations of Noetherian rings are equiv-
alent to the classical one in a classical context, e.g. assum-
ing XM and DC, but in constructive contexts, they are not
equivalent although they may be related modulo some extra
hypotheses on rings like coherence or strong discreteness
or both. Considering the HBT, [19, 21] show that “if R is

3b.t.w. Paul Gordan was also the later advisor of Emmy Noether.
“recall the Definition 3.4 of ML-Noetherian rings in [10] additionally as-
sumes that those rings are coherent with a membership algorithm.
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RS-Noetherian and coherent then so is R[X]” In [10], they
prove that “if R is ML-Noetherian, coherent and strongly
discrete then so is R[X]”

On the other hand, [5] gives a proof that “if R is Bar
Noetherian then so is R[X]” Moreover, they do not even
assume discreteness of the ring. We see that bar inductive
predicates allow an orthogonal treatment of Noetherianity
and coherence or strong discreteness, at least with respect to
the HBT. We confirm this observation with a original proof
that (Bar) Noetherian rings are closed under direct products,
again w/o assuming strong discreteness, contrary to the
Proposition 13 and Theorem 14 of [20] where a similar result
is obtained for strongly discrete RS-Noetherian rings. With
this work, we hope to revive the interest in bar inductive
predicates for constructive algebra and beyond.

1.2 Contents of the paper

In Section 2, we define rings using setoids, types equipped
with a pending quotient, so we can confirm by an implemen-
tation the most general form of the HBT stated in [5]. Indeed,
when we do not assume discreteness for rings; polynomials
cannot be given a normal form, so we work with rings up
to the equivalence relation given in the setoid. We define
ideals, and give two characterizations of finitely generated
ideals. We discuss the shortcomings of the classical charac-
terizations of Noetherian rings and of principal rings in con-
structive type theory. We introduce bar inductive predicates
and, based on the definition of pausing lists, following [5],
we characterize (Bar) Noetherian rings. Using Bezout, we
show that Z, the ring of integers, is Noetherian.

In Section 3, we present our original proof that the direct
product of two Noetherian rings is a Noetherian ring, that
we obtain by reworking and adapting a former proof of a
constructive interpretation of Ramsey’s theorem [6]. We
explain this adaptation and where the two proofs diverge.

In Section 4, we explain how we implement the polynomial
ring, discuss alternatives, and give the categorical charac-
terizations of polynomial rings. We formulate and show a
critical observation that allows updates on finitely generated
ideals of univariate polynomial rings, used in base case of
the short (but sophisticated) inductive proof of the HBT.

In Section 5, we detail the first implementation of a con-
structive proof of the HBT, revisiting the pen&paper outline
of [5]. We use the above updates and a tailored lexicographic
induction principle. From our experience, we elaborate on
why that implementation work might have been unsuccess-
ful (or avoided) at the time.

In Section 6, we derive well-founded induction principles
for (Bar) Noetherian rings and compare that notion with
the alternate constructive characterizations of RS- and ML-
Noetherian rings, when assuming strongly discrete rings.

Si.e. the ability to distinguish zero from nonzero elements in a ring.
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Remarks for reviewers: the results in this submission
are backed by an axiom free Rocq artifact readily available.
Consult the README file for compile and review instructions.
Later on, should the submission be accepted, it would be
updated and linked to a publicly available repository, and
distributed under the same MPL v2.0 free software license.

1.3 RocQ preliminaries

We briefly recall the basics of Rocq’s inductive type theory
which distinguishes (logical) propositions in the type Prop
(denoted PP for short) and computational contents in the type
hierarchy Type. We assume arithmetic using the type of
Peano natural numbers N and lists in 1ist A, polymorphic
over a carrier type A. Using a, b for values of type A and [, m
for values in 1ist A, we write [] for the empty list, a::1 (resp.
I4m) for the consing of a head element (resp. appending lists)
as defined in the List module. We write [ao;...;an_1] for
enumerated lists, and [a] for singletons® Recall the identity
a :: 1 = [a] # [ that holds by definition. We write || for the
length of the list [, and a € [ for the membership predicate,
with which we define the carrier of a list [[| : A — P as
[{] := Aa,a € I, and which collects its elements in a subset.

We denote P, Q for subsets viewed as predicates in A — P,
and R, T for binary relations in A — B — P. We use the
standard C notation for either unary or binary predicate
inclusion, and write = for extensional equivalence, hence
for instance, |[| C P means that all the members of [ satisfy
property P, and |I| = | m] means that the two lists have the
same members. We use the same notations in the Rocg code,
there possibly subscripted by arities like in C; or =;.

We manipulate finite sets as predicates P : A — P s.t.
P = |1] holds for some list [, i.e. listable predicates. In the
prose, when we define inductive predicates, we use visual
rules, as premises above a conclusion, instead of RocQ’s
Inductive statements, hoping they are easier to grasp in
this form. Free named parameters (or indices) should then
to be understood as universally quantified over.

2 Rings and Ideals in Constructive Algebra

We work in commutative algebra and do not consider the non-
commutative case herein. We recall the definition of rings
and ideals, and discuss the shortcomings of the classical
characterizations of principal and Noetherian rings in con-
structive type theory. We introduce bar inductive predicates
and define (Bar) Noetherian rings with them.

To avoid foundational issues related to quotients in Rocg,
or else avoid assuming rings to be discrete, we use the Setoid
framework [22] for generalized rewriting and hence use a
congruence in place of the identity relation to represent ring
equations. We will discuss this choice in more details in
Section 4 when dealing with polynomial rings.

%Enumerated lists are mostly used in the prose for reader friendliness.
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A ring is a structure R = (R, +, —, X, 0,1, ~) where R is
a type, (R, + —,0,~) is a commutative group forming the
additive part of the ring (- is the additive inverse opera-
tor), while (R, X, 1, ~) is a commutative monoid forming the
multiplicative part of the ring. Last, X distributes over +. A
(discrete) field is a ring where every value is either equivalent
to 0 or has a multiplicative inverse/ Notice the equivalence
relation ~ that is required to be a congruence for +, — and X,
and moreover, the monoids laws and the distributivity law
should be understood up to this equivalence. So for instance
the distributivity law becomes z X (x+y) ~ zXx+z Xy, with
the usual precedence of X over + for these infix notations.

Rocg allows to define such a dependent type ring as
Record structure and overload the notation R which can be
interpreted both as a ring structure or as the carrier type for
the elements of the ring R and we make use of the facility in
the file ring.v. In our implementation, we decorate the ring
operators and the equivalence with a suffix “r” as in e.g. +; to
avoid ambiguity with operations on natural numbers. We do
not do this in the paper and hope ambiguities can easily be
avoided. Rocg however might need to infer which ring do
the operators refer to. Often this is solved by the context and
unification: if x : R then Rocg infers that + and 0 refer to
the ring R in the expression x + 0. However, the expression
0+ 1 ~ 1 is ambiguous for RocQ and we sometimes have to
hint it to the proper ring through type annotations like e.g.
(0:R)+1~ 1, provided R : ring belongs to the context.

Additionally, we exploit the instruments of the Ring and
Setoid modules (which where designed to work together),
so that solving ring equations e; ~ e, and rewriting expres-
sions up to ~ becomes effortless. One simply declares ring
operators as Morphisms and subscribes rings to the Ring
module to exploit these instruments in the local context.

A ring homomorphism is a map between two rings pre-
serving congruences, addition and multiplication operators,
and the multiplicative unit 1. As a consequence, they also
preserve — and 0. ring sub-homomorphisms have a relaxed
definition and do not have to preserve the unit 1, but in-
stead they preserve the unit 0 (hence also —). Forming a
quotient ring in the context of setoids is straightforward:
for the ring (R, +, —, X%,0,1,~), one simply picks up a new
congruence ~" which over approximates ~ (i.e. ~ € ~’), and
then one updates ~ with ~" in the structure. The identity
map (R, +, —,%,0,1,~) = (R, + —,X,0,1,~") automatically
becomes a surjective ring homomorphism on the quotient.

2.1 Ring ideals

Ring ideals are a fundamental notion of algebra. They are
the kernels of ring homomorphisms. An ideal of a ring R is
a subset 7 : R — P of R containing 0 (i.e. 7 0) and closed
under ~ (i.e.Vxy : R, x ~y — I x — I y), addition/+
(ie.Vxy:R, I x > Iy — I (x+y))and scalar products

"The assumption Vx, x ~ 0 V 3i, i X x ~ 1 entails discreteness.
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(ie.Vax: R, I x — I (aXx)). We skip the obvious Rocg
definition here but we denote ideal I for the proposition
stating that 7 is an ideal of the ring R.* That definition and
the constructions and results we describe and claim below
are implemented in the file ideal.v.

We are especially interested in ideals that are generated
by some elements, in particular finitely many of them, and
how to handle these. Given a subset P : R — P of R, we
define id1 P : R — P inductively using the following rules:

X~y idl Px Px
idlPy idlPx idlPo
idlPx idlPy idlPx
idlP (x+y) idlP (a X x)

and we (obviously) obtain the smallest ideal containing P, i.e.
the ideal generated by P. Notice that the definition of id1 P x
proceeds by induction on the algebraic structure of x.
Alternatively, for alist [ : 1ist R, we define lc[: R — P
(1c stands for linear combination) inductively with the rules:

0~ x axx+z~y lcliz
lc[] x le(x=Dy

following the structure of the list I (rather than that of x)
and then 1c/ is the smallest ideal containing the members
of I. Indeed, we show the (extensional) identity

idl |Il] =1cl forany [ :listR (1)

i.e. the subsets idl || and 1c ! of R contain the same mem-
bers. They are finitely generated ideals, as they are generated
by the members of a (finite) list of values. As a side remark,
we can generalize the correspondence between idl and lc
to a subset P : R — P with the following equivalence

idlPx & 3L [I] CPAlcix for any x : R

but we will not use it herein. We generally favor writing
idl [I] over the equivalent 1c/ because it is more evocative.

Definition 2.1. Let 7 : R — P be an ideal of the ring R.
I is a finitely generated ideal when there exists [ : 1ist R
such that 7 = idl |I].Itis a principal ideal when there exists
g : Rsuchthat 7 = idl | [g]].

A ring is Bezout if all finitely generated ideals are principal.
A ring is strongly discrete if finitely generated ideals are
(logically) decidable sets, i.e. VIx, idl |I] x Vv —idl |I] x.

Notice that the definition we give for strong discreteness is
weaker than the generally understood one, which interprets
“decidable” in a computational way (see Section 6).

8The first argument R of ideal {R : ring} (I : R — P) is implicit.
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2.2 Shortcomings of classical definitions

In classical contexts (e.g. under XM and DC), all the ideals
of Z and F[X] (for a field ) are principal. But, (Z/mZ)[X]
(with m composite), Z[ X ] and [ X, Y] all have non-principal
ideals. They are however classically Noetherian in the sense
that all their ideals are finitely generated. In this section,
we explain why the classical characterizations of principal
and Noetherian rings are inappropriate in constructive type
theory, see file noetherian_nc.v.

Consider any ring R which is discrete (i.e. Vx : R, x ~ 0 V
x + 0), and non trivial (i.e. 0 + 1). Typically, the ring Z (or
even just Z/2Z) fits these two requirements. Let us fix an
arbitrary proposition P : P and form the ideal 7p : R — P
defined by Ip x := x ~ 0 V P.If Ip is finitely generated (a
fortiori principal), then one can show P vV —P. Indeed, let
us assume a list [ s.t. 7p = idl |I]|. We discriminate between
Vx,x €l = x ~0and 3x, x €l A x + 0, which is possible
because R is discrete and [ is a (finite) list. In the former
case, we have Ipx < idl |l|x < x ~ 0, hence —Zp 1. As
a consequence, =P holds. In the later case, there is x € [ s.t.
x »+ 0, hence 7p x holds, so x ~ 0 V P and this entails P.

So if the ring R is classically Noetherian (a fortiori princi-
pal), then the ideal Zp is finitely generated and thus P vV —P
holds. And this for any proposition P : P. If we can prove
that e.g. the ring of integers Z is Noetherian or principal
in the classical understanding, then XM must hold and we
are out of constructive logic. This renders these classical
understandings inappropriate in constructive algebra.

2.3 Bar Noetherian rings

The above observation led to a wide range of alternative
characterizations of Noetherian rings to fit constructive con-
texts, see e.g. [14]. We do not discuss them in detail here, see
Section 6 for some comparisons. We rather directly introduce
the bar predicate characterization used in [5].

2.3.1 Bar inductive predicates. Given a type A and a
predicate P : 1list A — P, we define bar P : 1istA — P
with the two inductive rules/constructors:
Pl Va, bar P (a::1)
bar Pl bar Pl

bar predicates are linked to bar induction but do not require
extra axioms by themselves, unlike Brouwer’s bar theorem
(see below). We recall the induction principle associated with
bar predicates because we are going to use it extensively:

Proposition 2.2 (Induction on bar predicates). Assume P :
list A — P and a property K : 1ist A — P. To establish

VI barPl —> Kl

it is sufficient to prove:

1.Vl Pl - KI;
2. VI, (\/a, barP (a: l)) - (\/a, K(a: l)) — KL
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Rocq generates the principle on its own as a Fixpoint
structural on the proof of bar P I. The first induction hypoth-
esis Va, bar P (a :: I) of item 2 is rarely needed, except in
the proof in the mutual principle of Proposition 2.3. In the
file bar. v, we collect basic results about bar predicates and
highlight some of these below, where P,Q : list _ — P.

We give an intuitive understanding of bar P [] with

barP[] — Vp:N —> A, 3n, P[py-1;---;p0] (2)

In plain english, bar P [] entails that any sequence of shape
n+— [pn-1;...; po] unavoidably meets P, regardless of how
it is extended by adding elements at its head. In the termi-
nology of bar induction, P is barred. The characterization by
sequences’ in N — A is called Brouwer’s bar theorem [3] and
can be proved using XM and DC, or alternatively with the
weaker intuitionistic principle called Brouwer’s thesis [25].
Constructively however, universal quantification over se-
quences is weaker than bar P [] because the type N — A
does not account for lawless sequences [3, 12].

We show that bar is a mono(tonic) operator

VPQ,PC Q — barP CbarQ (3)

by a straightforward induction on bar P _; more generally,
bar is a closure operator. We show the following equivalence

Vir,barP(l4r) & bar(Ap,P(p+4r))l. (4)

A predicate Q is monotone ifVal, Q1 — Q (a::I). The bar
operator preserves monotone predicates:

if P is monotone then so is bar P. (5)

One observation that was made in [5] and which is used in
the proof of the HBT in Section 5.3 is the following: if P is
closed under insertion then so is bar P, or more formally:

(Vir,P(I#r) > P(4+m+r)) ]
— (VIr,barP(I4r) - barP (l4+ m+r)) (6)

for any m : 1ist A, which is a generalization of the preser-
vation of monotone predicates (5) by bar above.
In the Section 3, we will reason by mutual induction on

two bar predicates using the following induction principle:

Proposition 2.3 (Mutual induction on bar predicates). As-
sumeP : list A - Pand Q : list B — P and a (mutual)
property K : 1ist A — list B — P. To establish

Vim, barPl - barQm — Klm

it is sufficient to show:

1.VIim, Pl - Klm;
2.¥lm, Qm — Klm;
3.Vim, (Va, K (a:1)m) — (Vb, KI(b=m)) — KIm.

Proof. By nested induction, on bar P, then on barQm. O

“meaning, as a logical equivalence instead of an implication in Equation (2).
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2.3.2 Pausing sequences. Consider a sequence of finitely
generated ideals 7, :== idl | [py-1;...;po]] of a ring R. This
sequence is increasing: Vn, 7, C I,,1. A pause in the se-
quence is a index n where the associated ideal does not grow,
ie. Iy € I, or equivalently idl [ [pn-1;...5p0]] pn- By
Equation (1), at that point, p, is a linear combination of the

previous values in the sequence’’

Definition 2.4 (Pausing lists). Given alist m: list R, we
say that m pauses and write PAm if:

PAm:=3lxr,m=1+[x] #r Aidl|r]x.

In the file noetherian. v, we favor an inductive definition
for PA for shorter Rocq proofs, but we nevertheless establish
the equivalence with the above given (FOL like) Definition 2.4
of PA. We study the PAm property when m already has a
given structure, e.g. PA (I + [x] 4 r) holds iff

e either | = I’ # [y] + m and idl [m + [x] # r] y hold
for some I’,m : 1ist R and y : R, meaning that the
pause occurs in /;

e or idl | r] x (the pause occurs at x);

e or PAr (the pause occurs in r).

We show that PA is closed under arbitrary insertions:
Vimr,PA(l4r) > PA(l+m+7)
which by (6) entails the same property for bar PA:
Vimr, barPA(l4r) > barPA(l +m+r) (7)

Additionally PA is closed under ring sub-homomorphisms.

Proposition 2.5. Let R and T be two ringsand ¢ : R = T
be a sub-homomorphism. The entailment PAl — PA (¢ [) holds
foranyl:1list R, where we simply write ¢ | for map ¢ [.

2.3.3 Noetherian rings. Following [5], we characterize
the pausing of increasing sequences of finitely generated
ideals using a bar predicate. The definitions and results be-
low can be reviewed in the file noetherian.v.

Definition 2.6 (Noetherian ring). We say that a ring R is
(Bar) Noetherian and write noetherian R if:

noetherian R := bar (@PAR) []

where @PA R is a RocQ notation to specify the otherwise
implicit argument R of PA.

Notice that [5] employs the term “Good” instead “pauses”
but we favor terminology from constructive algebra rather
than importing one we find a bit specific to WQO theory.

Since bar PA [] entails that PA is barred (2), in a Noetherian
ring, any sequence n +— idl | [pn—1;...; po]] pauses!! Finite
rings are Noetherian, and Noetherian rings are closed under
surjective homomorphisms and quotients. In particular,

(Bar) Noetherian rings are closed under isomorphism.

Richman [19] and Seidenberg [21] characterize RS-Noetherian rings this
way: any increasing sequence of finitely generated ideals contains a pause.
hyt this is not exactly the same as RS-Noetherian, see Section 6.
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To show that Z is Noetherian, we implement the following:

Theorem 2.7. Consider a Bezout ring R where divisibility
is (logically) decidable and strict divisibility is a well-founded
relation. Then R is (Bar) Noetherian.

Proof. In a Bezout ring every finitely generated ideal is gen-
erated by a singleton. We write x | y := 3k, k X x ~ y for
divisibility and x |s y == x | y A y 1 x for strict divisibility
which are both logically decidable binary relations. We show

Vgl, idl |I] = id1|[g]] — bar PAI ()

by induction on g using the well-founded strict divisibility
relation |s. The induction hypothesis is:

IH : Ve, e|s g — VI, idl [I] = |[e]] — barPAl

and assuming /s.t. id1 [I| = |[g]], we need to prove bar PAL.
We apply the second constructor of bar and hence pick any
x and the goal becomes bar PA (x :: [). By Bezout, we get e
s.t.idl [x 1] = [[e]]. From idl |x :: [] g we deduce e | g.
We discriminate between g | e or g 1 e:
e in the former case, we have idl |x :: [] = idl |[e]] =
idl[[g]] = idl|!l] and then idl |I] x, so x :: [ pauses;
e in the later case, we have e |; g and we apply IH and
immediately get the goal bar PA (x :: [).

Having proved Statement (8), we then instantiate it on
g :=0and [ := [], and derive that bar PA [] holds. O

Corollary 2.8. The ring Z of integers is (Bar) Noetherian.

3 The Direct Product is a Noetherian Ring

As we consider it an original theoretical contribution of our
work, we give a quite detailed account for the below result:

Theorem 3.1. If R and 7 are Noetherian rings then so is
their direct product R X 7.

3.1 The origins of the proof

In [20], a weaker result is established for RS-Noetherian
rings; they further assume that R (or 7°) is a strongly discrete
ring. Their proof reminded us of that of Dickson’s lemma,
which itself classically follows from Ramsey’s theorem. This
translates constructively using a different statement of Ram-
sey’s theorem: the direct product of two WQOs is a WQO,
where WQOs are interpreted as AF relations [26].

We rather started from [6] because it is based on an equiv-
alent bar characterization of AF relations for its statement
of Ramsey’s theorem. We simplified that proof in the hope
of being able to adapt it to the context of algebra!? It turned
out that we could indeed convert this simplified proof and
establish our intended result w/o assuming strong discrete-
ness. The file product_noetherian.v mechanizes this new
result and we now give an overview of the arguments. Of
course we first need to give an explicit construction of the

12The auxiliary file ramsey . v records that reworked proof.
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direct product ring R X 7 (in product.v) and show that
this construction is correct in the sense of category theory,
as the terminal object in the category of product diagrams
(see category.v). We do not elaborate on these standard
considerations here.

3.2 The detailed account

Turning to the statement of Theorem 3.1, we want to show

bar (@PAR) [] — bar (@PAT) []
— bar (@PA(RXT))[]1 (9

but unfolded as such, induction is not possible. So following
the scheme of [6], we first generalize the statement to

Vlixly, bar PAlx — barPAly — bar (Bixly) []  (10)

where 6 : listR — list7 — list (R X T ) — P must
be wisely chosen. However [6] has a overly complex way of
describing 6 and a critical aspect of our work was to give it
a much nicer form. Skipping the details, we ended up with
the following simple definition for our adaptation:

Olxlyl :=PA(l+ ¢lx+ yYly)

where ¢(x : R) == (x,0) and ¥ (y : 7) = (0,y), both output
values belonging to the ring R x 7. Clearly, ¢ and ¢ are ring
sub-homomorphisms. Additionally, we write 1 : RX7 — R
and 7, : RXT — T for the canonical projections 7 (x, y) :=
x and 73 (x, y) := y which are ring homomorphisms.

The predicate 6 Ix ly being based on PA, it is monotone
and so is bar (6 Ix ly). When Ix and ly are empty lists then
0[] [11is identical to PAl. Hence statement (10) instantiates
to statement (9) with that empty assignment for Ix and Iy,
exactly the unfolding of Theorem 3.1.

To prove statement (10), we proceed by mutual induction
using Proposition 2.3. It is enough to show:

1. bar (0 Ix ly) [] assuming PA Ix;

2. bar (0 Ix ly) [] assuming PA ly;

3. bar (0 Ix ly) [] assuming Vx, bar (6 (x :: Ix) ly) [] and
Yy, bar (0 Ix (y :: ly)) [].

For item 1, if Ix pauses then so does [] + ¢ Ix + i/ ly because
¢ is a sub-homomorphism. Hence 6 Ix Iy [] holds and we get
bar (0 Ix ly) [] using the first constructor for bar. A similar
argument applies when ly pauses (item 2).

The difficult case is item 3 for which we need to show
bar (6 Ixly) [] under two induction hypotheses. We first
apply the second constructor for bar. We fix an arbitrary z :
RxT and we now need to establish the goal bar (0 Ix ly) [z].
We instantiate our two induction hypotheses on 7y z/ 7, z as

IH; :bar (6 (myz = Ix) ly) [] IH, :bar (01x (w2 z = 1y)) []
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and, to achieve the goal bar (0 Ix ly) [z], we prove the gen-
eralized statement

Vm, bar (0 lx (m2 z :: ly)) m — bar (0 (71 z = Ix) ly) m
— bar (Olxly) (m+ [z]) (11)

that, for m := [], in combination with our two instances IH;
and IH,, delivers us the required conclusion bar (0 Ix ly) [z]
for completing the proof of item 3.

So far, we followed a script similar to our adaptation of
the proof of Ramsey’s theorem [6], except of course for our
definition of 6 which is novel. However, the arguments we
now use to establish (11) largely diverge from that script.

Proof of statement (11). In a first phase, we observe that
idl [ly] (me2) — 0 (my z:lx) lym — Olx ly (m+[z]) (12)

holds. Indeed, the second hypothesis states that there is a
pause in m + [¢(7; 2)] # ¢ Ix 4 ¢ ly and we analyze this
situation. If the pause occurs in either m or ¢ Ix or  ly,
then there is a corresponding pause in m + [z] #+ ¢ Ix + ¢/ ly
because ¢ (71 z) ~ (1,0)Xz.If the pause occurs at ¢ (77 z) (the
delicate case), then we have idl [ ¢ Ix 4 ¢/ ly] ¢ (s z). But
since we assume idl |ly] (7 z), we get idl |¢ ly] ¥/ (3 2)
by Proposition 2.5. We deduce idl | ¢ Ix # ¢/ ly] Y (72 z) by
inclusion of lists. From the equation z ~ ¢ (71 z) + /(71 z) we
finally get idl [ Ix + ¢ ly] z and thus m+ [z] + ¢ Ix + ¥ Iy
pauses. This concludes the proof of statement (12).
Because bar is monotonic (3), we derive

idl |ly] (mpz) — bar (0 (71 z = Ix) ly) m
— bar (Olxly) (m+ [z]) (13)

from Observation (12), also using Equivalence (4).

In a second phase, we can deal with the proof of (11). We
proceed by induction on bar (0 Ix (m z :: ly)) m:

e in the base case, we have the hypotheses

Hy :0lx(mpz:ly)m
H, :bar (0 (m z = Ix) ly) m

and we target the goal bar (0 Ix ly) (m + [z]). We ana-
lyze the pause Hy in m+ ¢ Ix + [ (72 2)] # ¢ ly. If the
pause occurs in either m or ¢ Ix or i ly then there is a
corresponding pause in m + [z] + ¢ Ix + ¢ ly, which
entails 0 Ix ly (m 4 [z]) hence our goal using the first
constructor of bar.

While we omit some details about how to transfer the
above pause, we instead put the focus on the delicate
case where the pause is at /(7 z), and in that case
we have idl |/ ly| ¢ (2 z). Since 7, o ) is the identity
map, we deduce idl |ly]| (s, z) by Proposition 2.5 (us-
ing 7, as a sub-homomorphism). The situation now
corresponds to Statement (13) that we established in
the first phase, first phase which de facto implements
a nested recursive call on bar (0 (7 z : Ix) ly) m;
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e in the recursive case, we have an hypothesis
H, :bar (0 (mz:1x) ly) m
and an additional induction hypothesis

IH : V2, bar (0 (m z :: Ix) ly) (2 :: m)
— bar (0lxly) (z/ :: m+ [z])

and we have to establish the goal bar (0 Ix ly) (m +
[z]). We apply the second constructor of bar and
hence we pick an arbitrary z’ : R X 7 and prove

bar (0 Ixly) (z' = m+ [z]).

We apply the induction hypothesis IH and the goal
becomes bar (6 (1 z :: Ix) ly) (2’ :: m) which follows
from hypothesis H; because bar (6 __) is monotone.

This concludes our account of the proof of Theorem 3.1. O

3.3 Discussion

The above proof might look a bit intricate, especially for
those unfamiliar with inductive reasoning in general, or
those troubled with the inductive formulation of bar predi-
cates in particular. One might feel that it does not give a lot of
intuition about what is going on. We argue that generalized
inductive reasoning is hard to communicate on paper, espe-
cially for readers unused to its mechanics: many different
statements, hypotheses or goals, need to be tracked down.
This feeling given by the pen&paper outline, reflecting
the happy conclusion of a proof search process, is however
quite different from the experience of actually unfolding the
proof search process with the help of the Rocq proof assis-
tant. In particular, a lot of statements are inferred by the
assistant itself, which also largely supports the mechanics
of applying induction principles. What remains difficult is
to devise which induction principle is best suited and which
generalization is required before performing induction. In
the dynamics of a proof, having an intuition about the “mean-
ing” of a specific bar statement is not as critical as being able
to pickup the “right” induction principle. This observation
could be viewed in the light of Von Neumann’s quote:

Young man, in mathematics you don’t under-
stand things. You just get used to them.

The proof script in the file product_noetherian.v was
designed to be human readable. Despite giving more details
than the above pen&paper account, it has a comparable size
and most sub proofs are shorter than 5 loc, with the excep-
tions of those of Statement (12) which is 12 loc (first phase),
and of Statement (11) which is 30 loc (second phase).

4 Construction of the Polynomial Ring

We now turn to the construction of the polynomial ring
which we discuss within this section. This construction is of
course critical in the implementation of the HBT because it
deals with polynomials. Notice that the choice we made for
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our implementation of rings as setoids was also influenced
by the requirements of the construction of polynomial rings.

4.1 What is a polynomial?

The notion of polynomial can be understood in contexts
much larger than ring algebra. In general, they can be viewed
as expressions built from values of the carrier algebra A,
combined with (the syntactic counterparts of) algebraic op-
erators (given by a signature) and some unknowns in U. E.g.
for rings, an example could look like (1 + X X Y) X (Y + Z).
One then defines the least congruence satisfying the alge-
braic laws (e.g. with an inductive predicate) and the quotient
forms the algebra of polynomials, denoted A[U]. At this
level of abstraction there is no canonical representative of a
given expression: think of the Lindenbaum algebra for intu-
itionistic logic for instance. Even for rings where canonical
forms may exist, notions like degrees, head coefficients, or
monomials require computing canonical forms.

When introduced to students in algebra, polynomials in
the unknown X over a ring R (often it is even a field) are
rather defined as formal expressions xoX° + x; X! + -+ +
x,X", where x,, is must be nonzero!® This gives a canonical
(and unique) form to the polynomial. But unless assuming
a discrete ring, it is not possible to ensure the existence of
a canonical form: computing the canonical representative
of the sum P+ Q where P = --- +aX" and Q = --- + bX"
requires being able to discriminate a + b from 0.

4.2 Polynomial representations

This representation of polynomials as an ordered sequence
of monomials xp + x1 X + - - - + x,X" is assumed for the proof
of the HBT in [5], and generally, even classical proofs of the
HBT work with sum of (multivariate) monomials.

In our implementation file poly.v, instead of trying to
normalize arbitrary polynomial expressions into ordered
sequences, we view polynomial representations over a ring
R and (a single variable X) as lists [xo;...;x,] in R[X] :=
list R, however not requiring that x, is nonzero. That is
why we call them representations, and those are not unique.
E.g. [x0;x1] and [x¢; x1; 0; 0] are two representations of the
same polynomial, but they are “identified” under a suit-
able congruence ~. Using setoids is critical here because
we do not need to find the shortest representation, hence
the discreteness of R need not be assumed!* Compared to
the C-CoRN library [13], we proceed similarly except that
they hardwire the list structure in the cpoly type: i.e. they
view the polynomial xoX O+ %, X' + x,X? in its Horner form
Xo + X (x1 + X(x2 + X.0)). We favor lists in order to exploit
the generic tools of the List module, rather than having to
create a copy of that library specialized on cpoly.

4]ater allowing us to confirm the generality of the HBT as claimed in [5].
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The construction of the polynomials in R[X] as lists oth-
erwise follows the same guideline as in the C-CoRN library:
if a coefficient is missing, then pick 0 instead. For instance,
the equivalence [xg; x1] ~ [x]] holds for polynomial repre-
sentations when xy ~ x; and x; ~ 0 hold in R. We will not
detail here how we implemented the algebraic structure over
R[X] := (list R,...). With the right tools, we view it as an
“easy” exercise; but see the discussion in Section 5.4.

How do we know that our implementation of polynomial
representations is really the intended polynomial ring R[X],
and not an arbitrary ring? This is where category theory
helps: below we show that polynomial representations, to-
gether with its ring structure, form an initial object in the
category of pointed extensions of the ring R.

4.3 The categorical characterization

We describe the categorical characterization of the polyno-
mial ring R [X], and more generally of the multivariate poly-
nomial ring R[U] where U is an arbitrary type of unknowns,
not just a singleton {X}. It might be less well known than
the characterization of the direct product R X 7~ that we
encountered in Section 3.1. The corresponding file in the
code is still category.v.

Definition 4.1 (Multivariate polynomial ring R[U]). Let
R be aring and U be a type. A multivariate extension of R
with unknowns in U is a tuple (&, ¢, ) where & is a ring,
¢ : R — & is a ring homomorphism, and e : U — & is
simply a map. A homomorphism of multivariate extensions
(&, p,e) and (F, ¥, f) is a ring homomorphismy : & —» F
st.yop = Y and yoe = f. Multivariate extensions of R with
unknowns in U form a category of which initial objects are
called multivariate polynomial rings over R with unknowns
in U, and are denoted by R[U].

As initial objects in a category, all multivariate polynomial
rings over R with unknowns in U are isomorphic, which
somehow justifies denoting them all with R[U]. Any bijec-
tive correspondence between the types U and V gives rises
to an isomorphism between the rings R[U] and R[V].

Definition 4.2 (Univariate polynomial ring R[X]). Given a
name X for the unknown, a univariate polynomial ring is a
multivariate polynomial ring for U := {X}, a singleton type,
and is denoted R[X]. Hence, they are the initial objects of
the category of univariate (or pointed) extensions of R.

Because there is a bijection between the singleton {X}
and the singleton {Y} (and in fact any other singleton), the
polynomial rings R[X] and R[Y] are isomorphic as well.

Theorem 4.3. Given a ring R, one can compute a ring de-
noted poly_ring R := (listR,...) based on the carrier type
list R. Moreover the pointed extension

(poly_ring R, ¢, [0;1]) where ¢ := Ax,[x]

is a (univariate) polynomial ring over R, i.e. R[X].
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Proof. We build the ring poly_ring R : ring based on the
polynomial representation as described in Section 4.2. Recall
that the ring record type is based on setoids which allows for
several representations of the same polynomial. The named
unknown X is associated to the list [0; 1] representing the
polynomial 0.X° + 1.X'. The map ¢ associates any value
x : R to the polynomial x.X° represented by the list [x]. O

In the sequel, we may denote R[X] for the particular
implementation poly_ring R of a univariate polynomial
ring, which is standard practice. However, the statements and
proofs of upcoming Theorems 4.4 and 5.2, and of Lemma 5.5
actually work only with this implementation of R[X], and
not at the more abstract level of Definition 4.2.

4.4 Critical observation for the HBT

We describe the critical observation that serves in the base
case of the short but (somewhat) sophisticated bar inductive
proof of the HBT [5]. For a simpler formulation, we abusively
write “polynomial” instead of “polynomial representation”
in its informal statement below:

Theorem 4.4. Given a polynomial p : R[X] and a list m :
list R[X] of shorter polynomials s.t. the head coefficient of
p is a linear combination of the head coefficients in m, there is
a polynomial q : R[X], strictly shorter than p and s.t. p — q is
a linear combination of m.

Before we state it formally, we need some tools. Recall that
/| : N is the length and it applies in particular to polynomial
representations (i.e. lists). We capture the head coefficient of
a polynomial representation with the inductive predicate
is_last {A}: A — list A — P defined by the single rule:

is_lasta (I + [a])

Notice that the length and the head coefficient are notions
attached to polynomial representations, not to polynomi-
als’® Moreover, these notions are simple to define for the
representation of polynomials as ordered lists of monomials,
and much less so with polynomials as algebraic expressions
(see Section 4.1).

We recall the Forall; {A} (P: A — P):1listA — Pand
Forall,{AB}(R: A — B — P) : listA — listB—> P
predicates that characterize finite universal quantification
over one or two lists, as defined inductively in the List
module of the standard library, with two rules each:

Pa Forall, Pl
Forall; P (a::1)
Rab Forall,RIm
Forall, R (a::1) (b::m)

Forall; P []

Forall, R[] []

15Polynomials have representations with different lengths and heads. The
“degree” as used in [5] only exists for polynomials over a discrete ring.
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With those definitions, the statement of Theorem 4.4 can
be formalized as: for any p : poly_ring R and any m :
list (poly_ring R), if the two following conditions hold:

1. Forall; (Aq,|q| < |p|) m;
2. dxh, is_lastxp A Forallyis_lasthm A lc hx;

then 3q : poly_ring R, |q| < |p| A le m(p — q).

Proof of Theorem 4.4. First multiply each polynomial in m by
some suitable X* so that all the lengths in m match that of
p. We get a new list m” with the same head coefficients as m,
and all the polynomials in m” have length |p|.

We replay the linear combination of the head coefficients
of m/m’ on the polynomials in m’ themselves and obtain a
polynomial p” which has the same length and same head as
p, and is moreover a linear combination of m’, hence of m.

Then we define q := p — p’ while removing its 0 head
coefficient to ensure |g| < |p|. Moreover p — g ~ p’ holds.
The mechanized statement is named update_lead_coef and
its proof can be reviewed in poly.v. ]

5 Hilbert’s Basis Theorem

We now switch to Hilbert’s basis theorem which we state as:

Theorem 5.1. Let R be a Noetherian ring and Xi, ..., X,
be n : N different unknowns. Then the ring R[Xy, ..., X,] of
multivariate polynomials is Noetherian.

Notice that the original statement of Hilbert assumes that
R is a field (which is thus automatically Noetherian), but of
course with the classical understanding of Noetherian ring
that is not suitable in constructive setting, see Section 2.2.

We state it for (Bar) Noetherian rings instead and it be-
comes a direct consequence of the restricted statement:

Theorem 5.2. For any ring R the following entailment holds:
noetherian R — noetherian (poly_ring R).

Proof of Theorem 5.1. The ring R[X1][Xz] ... [X,] is a mul-
tivariate polynomial ring for R with unknowns {X,..., X}
because it satisfies the categorical characterization of Defini-
tion 4.1. Moreover R’[X;] and poly_ring R’ are isomorphic
for any R’ := R[X1][Xz] ... [Xi-1]. Hence an induction on n
combined with Theorem 5.2 gives a direct proof. The reader
can consult the file hbt.v for details. O

Concerning the proof of Theorem 5.2, we follow the out-
line given in [5] while reformulating some arguments. In
particular, we abstract the notion of update in a finitely gen-
erated ideal, and we replace “open induction” by a lexico-
graphic induction principle, deviating a bit from the minimal
bad sequences argument that open induction emulates.

5.1 Updating finitely generated ideals

In ideal.v, we characterize the update operation on list of
elements of a ring R as an inductive binary relation update :
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list R — list R — P defined by two rules:

lcl(y—x)
update (x 1) (y == )

updatelm

update (x :: 1) (x :: m)

The update relation is symmetric and preserves the gener-
ated ideal, i.e. VIm, updatelm — idl|l| = idl|m]. As
a consequence, updating also preserves pauses and bar PA;
see noetherian.v for proofs.

Proposition 5.3. For any l,m : 1list R, the two following
entailments hold:

1. updatelm — PAl — PAm;

2. updatelm — bar PAl — barPAm.

In Theorem 4.4, we find a polynomial g s.t. lc m (p — q)
which entails that update (q::m) (p::m) (first rule), and as a
consequence bar PA (q :: m) — bar PA (p :: m) holds as well.
We will use this in the proof of the upcoming Lemma 5.5.

5.2 A tailored lexicographic induction principle

Let A:Typeand T : A — A — P be a binary relation. We
form a binary relation <7 : 1ist A — list A — P defined
inductively with two rules, where we write <7 infix:

Tab I<rm

azm<rbum Il<rb:m

Using a repeated application of the second rule, we show:

I<rm->l<rk+m for any k,I,m: list A

The relation <7 is a kind of lexicographic product and is thus
well-founded as soon as T is. The proof of well-foundedness
would proceed by nested induction but here, we can alter-
natively remark that <r is included into the shortlex lexico-
graphic relation!® which is itself well-founded.

We do not actually need this level of generality, and instead
implement a tailored induction principle:

Theorem 5.4. Assume T is well-founded. Let k : 1ist A be
alist and P : 1list A — P by a property of lists. To show
Va, P (a: k) it is sufficient to establish:

1.VLl<rk—>Pl;

2.Va, ¥V, l<ra:k — Pl)y—> P(axk).

Proof. We prove P (a :: k) by well-founded induction on a
using T for the well-founded relation, hence we assume

IH :Vb,Tba— P (b:k).

We apply item 2 and the goal becomes VI,I <7 a:: k — P1l.
Let us pick I s.t. [ <7 a = k and let us show that P holds.
Inverting I <r a::k, we distinguish two cases: either [ = b::k
with T b a for some b (left rule), thus P (b :: k) holds by IH,
and we get P as required; or else [ <7 k holds (right rule)
and we get P [ using item 1. O

16] is shortlex smaller that m if |I| < |m|, or if |I| = |m| and I is R-
lexicographically smaller than m.
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According to that tailored induction principle, when the
goal P (a :: k) presents itself, we just need to check: in the
base case that Pl holds for any I <r k, and in the recursive
case, we can further assume that P [ holds for any | <7 a:: k.

5.3 The main inductive proof

Let R be a ring and let R[X] := poly_ring R be its ring of
univariate polynomials, implemented using lists (see Theo-
rem 4.3). We define the relation T : R[X] — R[X] — P by
Tpq:=|p| <|ql, ie.p is strictly shorter than g. As the strict
natural order on N is well-founded then so is T and we use
this instance for <7 : list R[X] — listR[X] — P and
activate the tailored lexicographic principle of Theorem 5.4.

Lemma 5.5 (HBT, recursive). Let h : 1list R be a list (of
head coefficients). The following statement holds:

bar PAh — Vk, Forall,is_lasthk

— (Vm, m <t k — bar PAm) — bar PAk.

Proof. Notice the implicit type k : 1ist (poly_ring R) in
the statement, so Rocg knows that the members of k belong
to a (polynomial) ring, and are more than lists of values in
R. We proceed by induction on bar PA k. In the base case we
have H; : PAh. Let us pick k s.t.

H, : Forall,is_lasthk Hs:Vm, m <y k — barPAm

and we aim at the goal bar PA k. By Hj, there is a pause in
h'so h = u+ [x] 4 v with idl |v] x or equivalently 1co x.
As Forall, is_last hk holds, we split k accordingly into
k =1+ [p] #+m where Forall, is_lastul,is_last x p and
Forall,is_lastom.

We discard ! and replace the goal bar PA (I + [p] + m) by
bar PA (p:: m) because bar PA is monotone. We now discrim-
inate between two possibilities: either all the polynomials in
m are shorter than p or one of those is strictly longer:

e if all are shorter, i.e. Forall; (1q,|q| < |p|) m, then
we use Theorem 4.4. Let q : R[X] such that |q| < |p]
and lc m (p — q). We deduce update (q :: m) (p :: m)
and using Proposition 5.3 item 2, we can replace the
goal bar PA (p :: m) with bar PA (q = m).But g m <r
I+ p :: m = k holds and we conclude using Hj;

o if there is ¢ € m s.t. |p| < |q|, then we write m =
m’ 4 [q] + r. Instead of bar PA ([p] + (m" + [q]) + 1),
we can just show bar PA (p::r) because bar PAis closed
under insertions. But p::r <p (I 4 [p]#m’)#q=r =k
holds hence the goal follows from Hj.

In the recursive case, we assume'’

IHy, :Vxk, Forall,is_last (x: h)k

— (Vm, m <t k — bar PAm) — barPAk

7The induction principle of Proposition 2.2 generates another hypothesis
that we do not need and discard right away.
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and pick k s.t.
H, : Forallyis_lasthk Hs:Vm, m <t k — barPAm

and let us prove bar PA k. We apply the second constructor
of bar so let us pick a : R[X] and let us show bar PA (a :: k)
instead. We now use the tailored lexicographic induction
encoded in Theorem 5.4.

For the base case, we need to prove bar PAm for any m <p
k which is precisely the statement of H;.

For the recursive case, the goal bar PA (a :: k) remains
unchanged but we can further assume

IH : VI, | <7 a:k — barPAL

We choose whether a = [] is the empty list, or a = g+ [x]
has a head coefficient:

e if a = [] then a ~ 0 as a polynomial, and idl | k] a
holds in R[X]. Hence a :: k pauses and bar PA (a :: k)
holds using the first constructor of bar;

o if a = q+ [x] then we apply IHj, to the goal bar PA (a::
k), which generates two sub-goals:

- Forall, is_last (x::h) (a::k) which holds because
of H, and a = q # [x];
- Vm, m <t a:: k — bar PAm which is exactly IH.

This concludes the proof. O

Proof of Theorem 5.2. Recall the definition noetherianR :=
bar (@PAR) []. We instantiate Lemma 5.5 with A := [] and
k := []. Two sub goals remain: first Forall, is_last [] []
which is trivial, and second Vm, m <7 [] — bar PA m which
holds because m <t [] is impossible. O

5.4 Discussion

The mechanized proofs in the code are not that long. The
critical observation in Theorem 4.4 is decomposed in two
successive proofs each about 20 loc to be found in the poly.v
file. In hbt. v, the tailored lexicographic induction of Theo-
rem 5.4 involves 10 loc (incl. the definition of <7). The HBT
main Lemma 5.5 is 25 loc (excl. comments), with 2 loc extra
to get Theorem 5.2, and the HBT Theorem 5.1 requires no
more than a total of 25 extra loc.

One may wonder why an implementation of such a land-
mark result as the constructive HBT had been pending for so
long, considering that the pen&paper outline [5] is 25 years
old, and that this work already contained AGpa code for Dick-
son’s lemma to be used in the certification of Buchberger’s
algorithm. Moreover, several other constructive proofs pre-
cede (and succeed) the one we put the focus on, albeit with
other characterizations of Noetherian rings.

We try to answer that question based on guesses informed
by our own experience. First of all, most pen&paper con-
structive accounts of the HBT are not as short and synthetic
as that of [5]. We attribute this feature to the characterization
of Noetherian rings using bar inductive predicates.
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In some followup work in CoQ, Persson [17] mentions
some difficulties with the bar predicate that he seemingly
needs to convert into an Acc(essibility) predicate (a single-
ton with one constructor only) before he can implement the
proof of the HBT, and which he leaves as an “open prob-
lem” in his conclusions. We did not encounter that diffi-
culty. He also imported the implementation of polynomials
in Théry’s work [23, 24] on Buchberger’s algorithm, where
(multivariate) polynomials are ordered lists of monomials in
F X, ...,X,] that need to be normalized, hence assuming
the ring ¥ to be discrete field. This makes sense for Buch-
berger’s algorithm but basing on this view of polynomials,
one cannot follow the outline of [5] because it really needs
the construction of R[X] for a ring R (and not for a field),
to be able to iterate Theorem 5.2.

But why did Persson (apparently) not try to implement
abstract rings and polynomial rings by himself? Because as
discussed in Section 4.2, we did not find it to be an over-
whelming task. Notice the work on the C-CoRN library [13]
came somewhat later so he could not have relied on it, but
we did not have to either!®

We speculate that the difficulty may have come from the
lack of versatile instruments in proof assistants at the time.
Indeed, the construction of the polynomial ring in poly.v
weights around 500 loc but that code makes heavy use of
both the ring tactic [8] and setoid rewriting [22]. Both sets
of tools were absent for AGpa, and w.r.t. CoQ, they were
either lacking or too embryonic at the time, and started to
mature only several years later.

These are however essential tools in our implementation,
avoiding us to painfully solve ring equations by hand. Also
notice that R[X] forms a ring (as required by the ring tac-
tic) only once the structure has been proved to satisfy the
ring axioms. So there is a part of the code, in fact most of
poly.v, which deals with polynomial representations not
as elements of a ring, but exclusively as lists of coefficients.
Setoid rewriting is key in this temporary situation.

6 Well-foundedness for Noetherian rings

We define the notion of witnessed strict inclusion:
PCy Q=PCQA3x,Qx A—-Px

and, as usual, we write Dy, for the converse relation C;VI.
In noetherian_wf.v, we present several well-founded in-
duction principles that hold for Dy, on Noetherian rings.

Theorem 6.1. If the ring R is (Bar) Noetherian then the rela-
tion Dy, is well-founded on the ideals of R. As a consequence
the following relations are well-founded as well:

1. Dy on the finitely generated ideals of R;
2.APQ:R — P,idl P oy id1 Q;

18B t.w. the focus of C-CoRN are constructive real numbers in Cog and,
even thought it contains a significant algebraic hierarchy, that library does
not deal with Noetherian algebra.
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3. Alm:1listR,idl|l] Dw idl [m].

Proof. Let use define the binary relation T over R — P as
T:=APQ:R —>P,Q Cy P A ideal Q. We first show

VI, barPAl — —PAl — VP, [l] C P — AccTP (14)

by induction on bar PA . In the base case where PA[ holds, it
cancels out with the next hypothesis —PAl. In the recursive
base, we further assume the induction hypothesis

IH :Vx, =PA(x 1) > VP, |x::1] CP — AccTP
and picking up some P, the additional hypotheses
HIZﬁPAl Hzl_ngP

and the goal is to prove Acc T P. We apply the constructor
for Acc and pick up Q such that H; : T QP and the goal
becomes Acc T Q. We unfold Hj as

Hy:PCQ Hs:Qx Hg:-Px H,:idealP

for some x : R. We apply IH using that x on the goal Acc T Q,
and this generates two sub-goals:

e —PA (x :: I) which follows from H;, H,, Hy and Hy;
e and | x :: I| € Q which follows from H,, H, and Hs.

Having completed the proof of the statement (14), we
instantiate it with [ := [] and derive bar PA[] — VP, AccT P
because the empty list [] contains no pause and |[]| € P
always holds. Said otherwise, we have proved:'’

noetherianR
— well_founded (AP Q,P Dy, Q A ideal Q).

It follows that Dy, is well-founded on the ideals of R: we
simply transfer well-foundedness using a surjective mor-
phism. The same tool works to derive items 1,2 and 3. O

Using the above well-foundedness results, we study the
links between (Bar) Noetherian rings and alternate construc-
tive characterizations, see noetherian_alt.v. We write C
infix for strict inclusion,ie. PC Q:=PC QA Q ¢ Pand D
for the converse relation C~1. Notice that C is constructively
weaker than witnessed strict inclusion Cy,, but they coincide
on the finitely generated ideals of strongly discrete rings.

Definition 6.2 (Noetherian, constructive variants). A ring
is RS-Noetherian if any infinite increasing sequence of finitely
generated ideals pauses. A ring is ML-Noetherian if the rela-
tion D is well-founded on its finitely generated ideals.

Notice that the original definition of ML-Noetherian in [10,
Def. 3.4] further assumes a coherent ring, with a “member-
ship algorithm? There are other terminologies for this con-
cept like “has detachable ideals” [14, p. 514] or “strongly
discrete” [20, Def. 5] (or [4, p. 278]), all of them giving a com-
putational interpretation (informative in Rocq terminology)
of our (non-informative) Definition 2.1 of strongly discrete

YRocq’s StdLib defines well_founded (T : A — A — P) := Va, Acc T a.
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rings. We do not need the assumptions of coherence and
computability for the results below.

Theorem 6.3. Let R be a strongly discrete ring. Then R is
(Bar) Noetherian iff it is ML-Noetherian.

Proof. The only if part follows from Theorem 6.1 (item 1)
since strict inclusion and witnessed strict inclusion are equiv-
alent for the finitely generated ideals of a strongly discrete
ring. For the if part, we show that the predicate PA is (logi-
cally) decidable on strongly discrete rings, hence bar PA is
equivalent to an Acc(essibility) predicate and, we conclude
with a relational morphism. O

Theorem 6.4. Any strongly discrete ML-Noetherian ring is
RS-Noetherian.

Proof. Assume a strongly discrete ML-Noetherian ring R,
and a sequence p : N — R — Ps.t. p, C ppi1 (increasing)
and p,, is a finitely generated ideal, for any n : N. The binary
relation T : N — N — P defined by Tnm = p,, Cy, pp is
well-founded because R is ML-Noetherian. We show

Vndm, n <m A pmi1 € Pm

by well-founded induction on n using T. We get the pause
using the instance where n := 0. O

However, even in the strongly discrete case, the universal
quantification over sequences used in the ascending chain
condition for RS-Noetherian rings is weaker than the induc-
tive predicates bar and Acc used in the definitions of Bar
and ML-Noetherian rings, hence getting the converse im-
plication involves assuming extra axioms [12]. Possibly one
could here adapt to constructive algebra the counter example
given by Blass [1] for WQO theory (see also [2]).

7 Conclusion and Perspectives

We emphasize Bar inductive predicates as a constructive
foundation for Noetherian rings worthy of renewed interest.
Without any other assumption on rings like e.g. coherence
or (strong) discreteness, we implement a pen&paper proof of
Hilbert’s basis theorem. Additionally we show that Noether-
ian rings are closed under direct products, with an imple-
mentation as well. We derive well-foundedness principles for
Bar Noetherian rings and compare with other constructive
approaches like RS- and ML-Noetherianity. All the claimed
results are sustained by an axiom free Rocq artifact.

There are many questions open for some follow up work.
The strong similarity between the proofs of Ramsey’s the-
orem, i.e. the closure of WQOs under direct products, and
the closure of Noetherianity under direct products, make us
wonder whether one result may be derived from the other?
Or whether they both derive from a more abstract state-
ment? In the same vein, one may wonder what could be the
counterpart of the HBT in WQO theory (if any)? The Bar
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inductive predicate proofs of Higman’s lemma that we are
aware of seem to differ largely from that of the HBT.

Since the results we implement work for non-discrete
rings, what about constructive real numbers, the primary
example of a non-discrete field: classically, the zero test func-
tion is not continuous. Can we find a field of constructive
real numbers that would be Bezout? Bar Noetherian?

Finally, the termination of Buchberger’s algorithm that
computes Grobner bases is usually grounded in Dickson’s
lemma [24]. Can we alternatively justify its termination us-
ing the HBT? There are other algorithms [16] for the same
task. May be the HBT could be of some help there as well?

References

[1] A. Blass. 1986. Well-Ordering and Induction in Intuitionistic Logic

and Topoi. In Mathematical Logic and Theoretical Computer Science.

Taylor&Francis Group, Boca Raton, 29-48.

G. Buriola, P. Schuster, and I. Blechschmidt. 2023. A Constructive

Picture of Noetherian Conditions and Well Quasi-orders. In Unity

of Logic and Computation (CiE 2023). Springer, Cham, 50-62. https:

//doi.org/10.1007/978-3-031-36978-0_5

[3] T.Coquand. 2004. About Brouwer’s Fan Theorem. Revue internationale
de philosophie 58, 230 (4) (2004), 483-489. http://www.jstor.org/stable/
23955601

[4] T.Coquand, A. Mortberg, and V. Siles. 2012. Coherent and Strongly Dis-
crete Rings in Type Theory. In Certified Programs and Proofs (CPP’12).
Springer Berlin Heidelberg, 273-288. https://doi.org/10.1007/978-3-
642-35308-6_21

[5] T. Coquand and H. Persson. 1999. Grébner Bases in Type Theory. In
Types for Proofs and Programs (TYPES’98). Springer Berlin Heidelberg,
33-46. https://doi.org/10.1007/3-540-48167-2_3

[6] D. Fridlender. 1998. Higman’s lemma in type theory. In Types for

Proofs and Programs (TYPES’96). Springer Berlin Heidelberg, 112-133.

https://doi.org/10.1007/BFb0097789

D. Fridlender. 1999. An Interpretation of the Fan Theorem in Type

Theory. In Types for Proofs and Programs (TYPES’98). Springer Berlin

Heidelberg, 93-105. https://doi.org/10.1007/3-540-48167-2_7

[8] B. Grégoire and A. Mahboubi. 2005. Proving Equalities in a Commu-
tative Ring Done Right in Coq. In Theorem Proving in Higher Order
Logics (TPHOLs 2005). Springer Berlin Heidelberg, 98-113. https:
//doi.org/10.1007/11541868_7

[9] D. Hilbert. 1890. Ueber die Theorie der algebraischen Formen. Math.

Ann. 36 (1890), 473-534. https://doi.org/10.1007/BF01208503

C. Jacobsson and C. Lofwall. 1991. Standard bases for general co-

efficient rings and a new constructive proof of Hilbert’s basis theo-

rem. Journal of Symbolic Computation 12, 3 (1991), 337-371. https:

—
oo
—

(10]

13

Conference’17, July 2017, Washington, DC, USA

//doi.org/10.1016/S0747-7171(08)80154-X

D. Larchey-Wendling. 2024. The Coq-Kruskal project. https://github.
com/DmxLarchey/Coq-Kruskal

D. Larchey-Wendling. 2025. Constructive Substitutes for Kénig’s
Lemma. In Types for Proofs and Programs (TYPES 2024) (LIPIcs, Vol. 336).
Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2:1-2:23. https:
//doi.org/10.4230/LIPlcs. TYPES.2024.2

E. Makarov et al. 2006. Constructive Coq Repository at Nijmegen.

[11]

[12]

[13]

https://github.com/rocq-community/corn.

H. Perdry. 2004. Strongly Noetherian rings and constructive ideal

theory. Journal of Symbolic Computation 37, 4 (2004), 511-535. https:

//doi.org/10.1016/j.jsc.2003.02.001

[15] H. Perdry. 2008. Lazy bases: a minimalist constructive theory of
Noetherian rings. Mathematical Logic Quarterly 54, 1 (2008), 70-82.

https://doi.org/10.1002/malq.200710042
H. Perdry and P. Schuster. 2014. Constructing Grébner bases for

Noetherian rings. Mathematical Structures in Computer Science 24, 2

(2014), €240206. https://doi.org/10.1017/S0960129513000509

H. Persson. 2001. An Integrated Development of Buchberger’s Algorithm

in Coq. Technical Report RR-4271. INRIA. https://inria.hal.science/

inria-00072316

B. Puyobro, B. Ballenghien, and B. Wolff. 2025. A Proof of Hilbert

Basis Theorem and an Extension to Formal Power Series. Archive of

Formal Proofs (2025). https://isa-afp.org/entries/Hilbert_Basis.html,

Formal proof development.

F. Richman. 1974. Constructive Aspects of Noetherian Rings. Proc.

Am. Math. Soc. 44 (1974), 436—441. https://doi.org/10.2307/2040452

P. Schuster and I. Yengui. 2025. An iterative constructive Hilbert basis

theorem. Journal of Algebra 676 (2025), 56—-68. https://doi.org/10.

1016/j.jalgebra.2025.03.027

[21] A. Seidenberg. 1974. What is Noetherian? Rend. Sem. Mat. Fis. Milano
44 (1974), 55-61. https://doi.org/10.1007/BF02925651

[22] M. Sozeau. 2009. A New Look at Generalized Rewriting in Type
Theory. Journal of Formalized Reasoning 2, 1 (2009), 41-62. https:
//doi.org/10.6092/issn.1972-5787/1574

[23] L. Théry. 1998. A Certified Version of Buchberger’s Algorithm. In
Conference on Automated Deduction (CADE-15). Springer-Verlag, Berlin,
Heidelberg, 349-364. https://dl.acm.org/doi/10.5555/648234.753471

[24] L. Théry. 2001. A Machine-Checked Implementation of Buchberger’s
Algorithm. Journal of Automated Reasoning 26 (2001), 107-137. https:
//doi.org/10.1023/A:1026518331905

[25] W. Veldman. 2006. Brouwer’s Real Thesis on Bars. Philosophia Scientize
(2006), 21-42. https://doi.org/10.4000/philosophiascientiae.404

[26] D. Vytiniotis, T. Coquand, and D. Wahlstedt. 2012. Stop When You Are
Almost-Full. In Interactive Theorem Proving. Springer Berlin Heidelberg,
250-265. https://doi.org/10.1007/978-3-642-32347-8_17

[14]

[16]

[17]

(18]

[19]

[20]


https://doi.org/10.1007/978-3-031-36978-0_5
https://doi.org/10.1007/978-3-031-36978-0_5
http://www.jstor.org/stable/23955601
http://www.jstor.org/stable/23955601
https://doi.org/10.1007/978-3-642-35308-6_21
https://doi.org/10.1007/978-3-642-35308-6_21
https://doi.org/10.1007/3-540-48167-2_3
https://doi.org/10.1007/BFb0097789
https://doi.org/10.1007/3-540-48167-2_7
https://doi.org/10.1007/11541868_7
https://doi.org/10.1007/11541868_7
https://doi.org/10.1007/BF01208503
https://doi.org/10.1016/S0747-7171(08)80154-X
https://doi.org/10.1016/S0747-7171(08)80154-X
https://github.com/DmxLarchey/Coq-Kruskal
https://github.com/DmxLarchey/Coq-Kruskal
https://doi.org/10.4230/LIPIcs.TYPES.2024.2
https://doi.org/10.4230/LIPIcs.TYPES.2024.2
https://github.com/rocq-community/corn
https://doi.org/10.1016/j.jsc.2003.02.001
https://doi.org/10.1016/j.jsc.2003.02.001
https://doi.org/10.1002/malq.200710042
https://doi.org/10.1017/S0960129513000509
https://inria.hal.science/inria-00072316
https://inria.hal.science/inria-00072316
https://isa-afp.org/entries/Hilbert_Basis.html
https://doi.org/10.2307/2040452
https://doi.org/10.1016/j.jalgebra.2025.03.027
https://doi.org/10.1016/j.jalgebra.2025.03.027
https://doi.org/10.1007/BF02925651
https://doi.org/10.6092/issn.1972-5787/1574
https://doi.org/10.6092/issn.1972-5787/1574
https://dl.acm.org/doi/10.5555/648234.753471
https://doi.org/10.1023/A:1026518331905
https://doi.org/10.1023/A:1026518331905
https://doi.org/10.4000/philosophiascientiae.404
https://doi.org/10.1007/978-3-642-32347-8_17

	Abstract
	1 Introduction
	1.1 Noetherian rings in constructive algebra
	1.2 Contents of the paper
	1.3 Rocq preliminaries

	2 Rings and Ideals in Constructive Algebra
	2.1 Ring ideals
	2.2 Shortcomings of classical definitions
	2.3 Bar Noetherian rings

	3 The Direct Product is a Noetherian Ring
	3.1 The origins of the proof
	3.2 The detailed account
	3.3 Discussion

	4 Construction of the Polynomial Ring
	4.1 What is a polynomial?
	4.2 Polynomial representations
	4.3 The categorical characterization
	4.4 Critical observation for the HBT

	5 Hilbert's Basis Theorem
	5.1 Updating finitely generated ideals
	5.2 A tailored lexicographic induction principle
	5.3 The main inductive proof
	5.4 Discussion

	6 Well-foundedness for Noetherian rings
	7 Conclusion and Perspectives
	References

