
Mechanising Undecidability results in Coq:
Elementary Linear Logic and Boolean BI

Dominique Larchey-Wendling, LORIA – CNRS

December 15, 2017

Abstract

We present a constructive Coq mechanization of undecidability results
for linear logic (more precisely the elementary fragment) and as a conse-
quence Boolean BI.

The mechanisation of undecidability results in proof assistants in general
(and in Coq in particular) is a difficult task because the mechanisation of com-
putability theory has only started recently [7, 8, 4, 2]. Undecidability results are
often established by reduction to other previously known undecidability results.
Typically for linear logic, by reduction to the computation of counter or Minsky
machines [6, 3, 5].

Hence, before showing the undecidability of elementary linear logic, one
has to show that the computation of Minsky machines is undecidable. As a
side remark, it seems that some people are still unconvinced of the Turing
completeness of Minsky machines.1

To fully mechanise such undecidability results in proof assistants, we cannot
assume a library of already established undecidability results because the devel-
opement of such a library is only at its very earlier stages. Hence, for the case of
linear logic, we need a mechanised reduction of Turing machines (TM) to Minsky
machines (MM). Direct certified programming with TM or MM is very difficult.
Actually, it is never done in pen and paper proofs. Even reductions of MM
problems to logic problems (or other problems), are rarely or never proved com-
putable in papers. The reason being that doing so would involve very detailed
description of encodings with corresponding correctedness proofs. These might
obfuscate the “interesting” aspects of reductions. But mechanisation requires a
much higher level of details.

Instead of certified programming in assembly like languages (TM or MM), we
propose a certified compiler of high-level languages (functional or weak call-by-
value λ-calculus [2]) to TM/MM. Hence, we do not need to show the correction
of MM simulating TMs but only the correction of a TM interpreter written in
a high-level language. This is still difficult but much more doable than proving
the correction of an interpreter written in assembly language.

Then we can mecanize our reduction [5] of MM to elementary linear logic
and get of certified proof of undecidability of linear logic and Boolean BI, the
elementary fragment being common to these two logics.

1https://sites.ualberta.ca/~bimbo

1



References
[1] Mauricio Ayala-Rincón and César A. Muñoz, editors. Interactive Theorem

Proving - 8th International Conference, ITP 2017, Brasília, Brazil, Septem-
ber 26-29, 2017, Proceedings, volume 10499 of Lecture Notes in Computer
Science. Springer, 2017.

[2] Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as a
model of computation in coq. In Ayala-Rincón and Muñoz [1], pages 189–
206.

[3] Max Kanovich. Linear Logic as a Logic of Computations. Annals of Pure
and Applied Logic, 67(1–3):183–212, 1994.

[4] Dominique Larchey-Wendling. Typing total recursive functions in coq. In
Ayala-Rincón and Muñoz [1], pages 371–388.

[5] Dominique Larchey-Wendling and Didier Galmiche. Nondeterministic phase
semantics and the undecidability of boolean bi. ACM Trans. Comput. Logic,
14(1):6:1–6:41, February 2013.

[6] Patrick Lincoln, John Mitchell, Andre Scedrov, and Natarajan Shankar.
Decision problems for propositional linear logic. In FOCS, volume 2, pages
662–671. IEEE, 1990.

[7] Michael Norrish. Mechanised Computability Theory. In Proceedings of the
Second International Conference on Interactive Theorem Proving, ITP’11,
pages 297–311, Berlin, Heidelberg, 2011. Springer-Verlag.

[8] Jian Xu, Xingyuan Zhang, and Christian Urban. Mechanising Turing Ma-
chines and Computability Theory in Isabelle/HOL. In Interactive Theorem
Proving, ITP 2013, volume 7998 of Lecture Notes in Computer Science,
pages 147–162. Springer, 2013.

2


