Kripke Models of Boolean BI and Invertible Resources

Dominique Larchey-Wendling TYPES team

$$
\begin{gathered}
\text { LORIA - CNRS } \\
\text { Nancy, France }
\end{gathered}
$$

Domains IX, Brighton, UK

Separation Logic

- Introduced by Reynolds\&O'Hearn 01 to model:
- properties of the memory space (cells)
- aggregation of cells into wider structures
- Combines:
- classical logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative conjunction: *
- Defined via Kripke semantics extended by:

$$
m \Vdash A * B \quad \text { iff } \quad \exists a, b \text { s.t. } a \uplus b \subseteq m \wedge a \Vdash A \wedge b \Vdash B
$$

Bunched Implication logic (BI)

- Introduced by Pym 99, 02
- intuitionistic logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative connectives: *, \rightarrow
- sound and complete bunched sequent calculus
- Kripke semantics for BI, (Pym\&O'Hearn 99, Galmiche et al. 02)
- partially ordered partial commutative monoids ($\mathcal{M}, \circ, \leqslant$)
- intuitionistic Kripke semantics for additives
- relevant Kripke semantics for multiplicatives
- sound and complete Kripke semantics for BI

Boolean BI (BBI)

- Loosely defined by Pym as $\mathrm{BI}+\{\neg \neg A \rightarrow A\}$
- no known pure sequent based proof system
- Kripke semantics is non-deterministic (Larchey\&Galmiche)
- faithfully embeds S4 and thus IL
- Other definition (logical core of Separation and Spatial logics)
- additive implication \rightarrow Kripke interpreted classically
- based on (commutative) partial monoids (\mathcal{M}, \circ)
- has a sound and complete (labelled tableaux) proof-system
- still embeds S4 and IL
- even (intuitionistic) BI (Larchey\&Galmiche 08, submitted)

In this talk

- $\mathrm{BI} / \mathrm{BBI}$
- constraints based Kripke models
- resources vs labels, labelled calculi
- Proof-search based models
- generation of constraints/properties of constraints models
- BI (resource graphs)/BBI (deal with invertible resources ?)
- Consequences
- expressivity
- embedding
- representation/implementation

Words and constraints based models for BI/BBI

- Resources as Words of $L^{\star}=$ multisets of letters
- Constraints $=($ ordered $)$ pairs of words: $m \leftrightarrow n$ with $m, n \in L^{\star}$
- Partial monoidal order (PMO): \sqsubseteq closed under $\langle\epsilon, l, r, d, c, t\rangle$
- Partial monoidal equivalence (PME): ~ closed under $\langle\epsilon, s, d, c, t\rangle$

- $\langle s\rangle+\langle t\rangle$ implies $\langle l\rangle$ and $\langle r\rangle$
- Hence a PME is also a PMO

Constraints based Kripke models for BI/BBI

- $R \equiv \sqsubseteq$ for $\mathrm{BI} / R \equiv \sim$ for BBI
- Usual (pointwise) Kripke interpretation for \wedge, \vee, \perp and T

$m \Vdash_{R} \quad$ । iff $\quad \in R m$	
$\mathrm{BI} / \mathrm{BBI}$	$m \Vdash_{R} A * B \quad$ iff $\quad \exists x, y x y R m \wedge x \Vdash_{R} A \wedge y \Vdash_{R} B$
	$m \Vdash_{R} A \rightarrow B \quad$ iff $\quad \forall x, y\left(x m R y \wedge x \Vdash_{R} A\right) \Rightarrow y \Vdash_{R} B$
BI	$m \Vdash_{\sqsubseteq} A \rightarrow B \quad$ iff $\quad \forall x\left(m \sqsubseteq x \wedge x \Vdash_{\sqsubseteq} A\right) \Rightarrow x \Vdash_{\sqsubseteq} B$
BBI	$m \Vdash_{\sim} A \rightarrow B \quad$ iff $\quad m \Vdash_{\sim} A \Rightarrow m \Vdash_{\sim} B$
	$m \Vdash_{\sim} \neg A \quad$ iff $\quad m \nVdash_{\sim} A$

Complete constraints based Kripke semantics

- Quotient monoids:
$-L^{\star} / \sqsubseteq=$ partially ordered partial monoid
$-L^{\star} / \sim=$ partial monoid
- These quotient maps $\sqsubseteq \mapsto L^{\star} / \sqsubseteq$ and $\sim \mapsto L^{\star} / \sim$ are full:
- any partially ordered partial monoid is of the form L^{\star} / \sqsubseteq
- any partial monoid is of the form L^{\star} / \sim
- Completeness theorem:
- \Vdash^{\sqsubseteq} sound and complete Kripke semantics for BI
$-\Vdash$ ~ sound and complete Kripke semantics for BBI

Proof methods for BI and BBI

- Labels and constraints based methods
- calculi with constraints: $\mathbb{T} A: m, \mathbb{F} B: n, m \leftrightarrow n$
- sound and complete proof-search method for BI and BBI
- counter-models extracted from proof-search (Hintikka)
- Properties of the models generated by proof-search
- implement/optimize theorem provers
- extract complete sub-classes of counter-models
- model theoretic and logical links between BI and BBI
- expressivity properties of BI and BBI

Constraints generated by proof-search (i)

$$
\begin{gathered}
x_{i} \leftrightarrow y_{i} \\
\vdots \\
\sqrt{ } \mathbb{T} A * B: m
\end{gathered}
$$

- $\mathcal{C}=\left\{\ldots, x_{i} \leftrightarrow \triangleleft y_{i}, \ldots\right\}$ from γ
- $A_{\gamma}=A_{\mathcal{C}}=\{c \in L \mid c$ occurs in $\mathcal{C}\}$
- $\sqsubseteq_{\gamma}=\sqsubseteq_{\mathcal{C}} / \sim_{\gamma}=\sim_{\mathcal{C}}$
- branch expansion

$-a \neq b$ new $\left(a, b \notin A_{\gamma}\right)$
$-\mathcal{C}^{\prime}=\mathcal{C} \cup\{a b \leftrightarrow m\}$
$-\sqsubseteq_{\gamma}{ }^{\prime}=\sqsubseteq_{\gamma}+\{a b \leftrightarrow m\}$
$-\sim_{\gamma}{ }^{\prime}=\sim_{\gamma}+\{a b \leftrightarrow m\}$

Constraints generated by proof-search (ii)

- $\mathcal{C}=\left\{\ldots, x_{i} \leftrightarrow y_{i}, \ldots\right\}$ from γ
- $A_{\gamma}=A_{\mathcal{C}}=\{c \in L \mid c$ occurs in $\mathcal{C}\}$
- $\sqsubseteq_{\gamma}=\sqsubseteq_{\mathcal{C}} / \sim_{\gamma}=\sim_{\mathcal{C}}$
- branch expansion
$-x, y$ s.t. $x y \sqsubseteq_{\gamma} m / x y \sim_{\gamma} m$
$-\mathcal{C}_{A}=\mathcal{C}_{B}=\mathcal{C}$
$-\sqsubseteq \gamma_{A}=\sqsubseteq_{B}=\sqsubseteq \gamma$
$-\sim_{\gamma_{A}}=\sim_{\gamma_{B}}=\sim_{\gamma}$

Constraints generated by proof-search (iii)

$$
\begin{array}{cl}
x_{i} \leftrightarrow y_{i} & \bullet \mathcal{C}=\left\{\ldots, x_{i} \leftrightarrow y_{i}, \ldots\right\} \text { from } \gamma \\
\mathbb{T} X: m & \bullet A_{\gamma}=A_{\mathcal{C}}=\{c \in L \mid c \text { occurs in } \mathcal{C}\} \\
\vdots & \bullet \sqsubseteq_{\gamma}=\sqsubseteq_{\mathcal{C}} / \sim_{\gamma}=\sim_{\mathcal{C}}
\end{array}
$$

- branch closure
$-m \sqsubseteq_{\gamma} n / m \sim_{\gamma} n$

Extensions in BI (i)

- a and b are new letters ($a \nsubseteq a$ and $b \nsubseteq b$)
- m defined in $\sqsubseteq(m \sqsubseteq m)$
- Four types of extensions

$$
\begin{array}{ll}
\sqsubseteq^{\prime}=\sqsubseteq+\{a b \leftrightarrow m\} \quad(\text { rule } \mathbb{T} *) & \left.\sqsubseteq^{\prime}=\sqsubseteq+\{a m \leftrightarrow b\} \quad \text { (rule } \mathbb{F}-*\right) \\
\left.\sqsubseteq^{\prime}=\sqsubseteq+\{m \leftrightarrow b\} \quad(\text { rule } \mathbb{F} \rightarrow) \quad \sqsubseteq^{\prime}=\sqsubseteq+\{\epsilon \leftrightarrow m\} \quad \text { (rule } \mathbb{T} \mid\right)
\end{array}
$$

- Basic $\mathrm{PMO}=$ (finite or infinite) sequence of such extensions
- Extensions can be solved:

$$
\begin{aligned}
\sqsubseteq+\{a b \leftrightarrow m\}=\sqsubseteq & \cup\{a x \leftrightarrow a y \mid x \sqsubseteq y \text { and } m x \sqsubseteq m y\} \\
& \cup\{b x \leftrightarrow b y \mid x \sqsubseteq y \text { and } m x \sqsubseteq m y\} \\
& \cup\{a b x \leftrightarrow a b y \mid x \sqsubseteq y \text { and } m x \sqsubseteq m y\} \\
& \cup\{a b x \leftrightarrow y \mid m x \sqsubseteq y\}
\end{aligned}
$$

Extensions in BI (ii)

- Properties of basic PMO $\sqsubseteq_{\mathcal{C}}$ (by induction on \mathcal{C}):
- ϵ-minimality: if $m \sqsubseteq_{\mathcal{C}} \epsilon$ then $m=\epsilon$
- no square: if $m m \sqsubseteq_{\mathcal{C}} m m$ then $m=\epsilon$
- regularity: if $k x \sqsubseteq_{\mathcal{C}} k y$ then $x \sqsubseteq_{\mathcal{C}} y$
\Rightarrow finiteness: $\left\{m \in L^{\star} \mid m \sqsubseteq_{\mathcal{C}} m\right\}$ is finite (\mathcal{C} finite sequence)
- Solving constraints in \mathcal{C} : (finite) resource graph (Mery 04)
- Complete sub-class for BI :
- these properties hold for infinite sequences of basic extensions
- regular monoids where ϵ is minimal and without square
- Application: no BI-formula F such that $m \Vdash^{\square} \sqsubseteq$ iff $m m \sqsubseteq m m$

Extensions in BBI (i)

- a and b are new letters, m defined in \sim
- Three types of extensions

$$
\begin{array}{ll}
\sim^{\prime}=\sim+\{a b \leftrightarrow m\} & \\
\sim^{\prime}=\sim+\{a m \leftrightarrow b\} & \\
\left.\sim^{\prime}=\sim \text { rule } \mathbb{F} *\right) \\
\sim^{\prime}=\sim+\{\epsilon \leftrightarrow m\} & \\
(\text { rule } \mathbb{T} I)
\end{array}
$$

- Basic PME $=$ (finite or infinite) sequence of such extensions
- Extensions $a b \leftrightarrow m$ (and $a m \leftrightarrow b$) solved when $m m \nsim m m$:

$$
\begin{aligned}
\sim+\{a b \leftrightarrow m\}=\sim & \cup\{a x \leftrightarrow a y, b x \leftrightarrow b y \mid x \sim y \text { and } m x \sim m y\} \\
& \cup\{a b x \leftrightarrow a b y \mid m x \sim m y\} \\
& \cup\{a b x \leftrightarrow y, y \leftrightarrow a b x \mid m x \sim y\}
\end{aligned}
$$

Extensions in BBI (ii)

- Problems with the $\sim+\{\epsilon \leftrightarrow \rightarrow m\}$ extension:
- does not preserve regularity
- introduce squares (if $\epsilon \sim m$ then $m m \sim m m$)
$-\epsilon$-minimality irrelevant
\Rightarrow Invertible letters produce infinite models (not as in BI)
- No simple solution for $\sim+\{a b \leftrightarrow m\}$ when $m m \sim m m$
- Invertible letters: $I_{\sim}=\left\{i \in L \mid i x \sim \epsilon\right.$ for some $\left.x \in L^{\star}\right\}$
\Rightarrow How to discriminate invertible letters/resources and others?

Algorithm to compute invertible letters

$$
\begin{aligned}
& \text { Require: A list } \mathcal{C} \text { of constraints }[\ldots, m \leftrightarrow n, \ldots] \\
& \text { Ensure: } N(\mathcal{C})=(I, \sigma, \mathcal{D}, \mathcal{E}) \text { terminates } \\
& I \leftarrow \emptyset, \sigma \leftarrow \lambda x \cdot x, \mathcal{D} \leftarrow[], \mathcal{E} \leftarrow \mathcal{C} \\
& \text { while choose } m \leftrightarrow n \in \mathcal{E} \text { s.t. }\left(m \in I^{\star} \text { or } n \in I^{\star}\right) \text { do } \\
& \quad I \leftarrow I \cup A_{m} \cup A_{n}, \sigma \leftarrow \varphi(\sigma, I, m \leftrightarrow n) \\
& \quad \mathcal{D} \leftarrow \mathcal{D} @[m \leftrightarrow n], \mathcal{E} \leftarrow \mathcal{E} \backslash(m \leftrightarrow n) \\
& \text { end while } \\
& \text { return }(I, \sigma, \mathcal{D}, \mathcal{E})
\end{aligned}
$$

- Underlying sets: $\mathcal{C}=\mathcal{D} \cup \mathcal{E}$
- Discriminate invertible/non-invertible letters: $I_{\sim_{\mathcal{C}}}=I=A_{\mathcal{D}}$
- $\sigma: L \longrightarrow L^{\star}$ an inverse substitution: $i \sigma(i) \sim \epsilon$ for $i \in I^{\star}$
- If $m \leftrightarrow n \in \mathcal{D}$ then $m, n \in I^{\star}$
- If $m \leftrightarrow n \in \mathcal{E}$ then $m, n \notin I^{\star}$ (hence $\epsilon \leftrightarrow m \notin \mathcal{E}$)

Relations between invertible words in \mathcal{D}

Let $N(\mathcal{C})=(I, \sigma, \mathcal{D}, \mathcal{E})$ and $\mathcal{D}=\left[m_{1} \leftrightarrow n_{1}, \ldots, m_{p} \leftrightarrow n_{p}\right]$

- For any $i \in I^{\star}=A_{D}^{\star}, i$ defined in $\sim_{\mathcal{C}}\left(i \sim_{\mathcal{C}} i\right)$
- For any $i, j \in I^{\star}$, we have $i \sim_{\mathcal{C}} j$ iff $i \sim_{\mathcal{D}} j$
- Canonical embedding $I^{\star} \subseteq \mathbb{Z}^{I}$
- Subgroup generated by $\left\{\ldots, n_{k}-m_{k}, \ldots\right\}: G=\sum_{k=1}^{p}\left(n_{k}-m_{k}\right) \mathbb{Z}$
- For any $i, j \in I^{\star}$, we have $i \sim_{\mathcal{D}} j$ iff $j-i \in G$

$$
A_{\mathcal{D}}^{\star} / \sim_{\mathcal{D}} \simeq \mathbb{Z}^{I} / \sum_{k}\left(n_{k}-m_{k}\right) \mathbb{Z}
$$

Reductions of constraints remaining in \mathcal{E}

Let $N(\mathcal{C})=(I, \sigma, \mathcal{D}, \mathcal{E})$ and $\mathcal{E}=\mathcal{E}_{0} @[a b \leftrightarrow m] @ \mathcal{E}_{1}$

- Could be am $\leftrightarrow b$ but $\epsilon \leftrightarrow m \notin \mathcal{E}$ (because $\epsilon \in I^{\star}$)
- Order in $\mathcal{E}=$ same as in \mathcal{C} (\mathcal{E} obtained by deletion)
- If a (resp. b) not new in $\mathcal{D} @ \mathcal{E}_{0}$ then $a \in A_{\mathcal{D}}=I$ (resp. $b \in I$)
- Either a or b new (because otherwise $a b \in I^{\star}$ thus $a b \leftrightarrow m \in \mathcal{D}$)
- If $a \in I$ then transform $a b \leftrightarrow m$ into $b \leftrightarrow \sigma(a) m$ (where b new)

Obtain \mathcal{E}^{\prime} composed of: $a b \leftrightarrow m, b \leftrightarrow m, a m \leftrightarrow b$ with a, b new

- $\mathcal{D} @ \mathcal{E}^{\prime}$ equivalent to $\mathcal{D} @ \mathcal{E}\left(\sim_{\mathcal{D} @ \mathcal{E}^{\prime}}=\sim_{\mathcal{D} @ \mathcal{E}}\right)$

Properties of extensions in $\mathcal{D} @ \mathcal{E}^{\prime}$

- $\sim_{\mathcal{D}}$ is regular: $k x \sim_{\mathcal{D}} k y \Rightarrow x \sim_{\mathcal{D}} y\left(\sim_{\mathcal{D}}\right.$ is a group $)$
- Prove by induction on the length of \mathcal{E}^{\prime} :
$-m m \sim_{\mathcal{D} @ \mathcal{E}^{\prime}} m m$ iff $m \in I^{\star}=A_{\mathcal{D}}^{\star}$
$-\sim_{\mathcal{D} @ \mathcal{E}^{\prime}}$ is regular
- Hence basic (finite) extensions:
- have "no square": $m m \sim m m$ iff $m \in I_{\sim}^{\star}$
- are regular: $k x \sim_{\mathcal{D}} k y \Rightarrow x \sim_{\mathcal{D}} y$

Direct application to expressivity of BBI

- By compactness, infinite sequence of basic PME extensions:
- have "no square": $m m \sim m m$ iff $m \in I_{\sim}^{\star}$
- are regular: $k x \sim_{\mathcal{D}} k y \Rightarrow x \sim_{\mathcal{D}} y$
- $m \in I_{\sim}^{\star}$ expressible by $m \Vdash_{\sim} \neg\left(\top \rightarrow_{*} \neg\right.$) in BBI
- Suppose $m \Vdash_{\sim} F$ iff $m m \sim m m$
- then $F \rightarrow \neg(\top \rightarrow \neg \mathrm{I})$ would valid in basic BBI models
- by completeness: $F \rightarrow \neg(\top \rightarrow \neg \mathrm{I})$ BBI-provable
- obviously, $1 \nVdash \sim F \rightarrow \neg(\top \rightarrow \neg)$ in \mathbb{N}
being squarable not expressible in BBI either

Related result: embedding BI into BBI

Let \sqsubseteq be a basic PMO (infinite sequence of basic extensions)

- There exists K and \sim such that:
$-K \cap A_{\sqsubseteq}=\emptyset$
$-\sim$ is a basic PME
- for any $x, y \in A_{\sqsubseteq}^{\star}, x \sqsubseteq y$ iff $\delta x \sim y$ for some $\delta \in K^{\star}$
- Any basic model of BI represented by a basic model of BBI
- Idea: $\sqsubseteq+\{a b \leftrightarrow m\} / \sim+\{\delta q \leftrightarrow m, a b \leftrightarrow q\}(\delta, q$ new and $\delta \in K)$
- This embedding of (counter-)models can be extended into a faithful embedding of BI into BBI (Larchey\&Galmiche 08, submitted)

Implementing PMEs

Representation matrix/graph for PMEs:

- Let \sim be any PME over $L, I=I_{\sim}$ (invertible letters)
- For any $\alpha, \beta \in I^{\star}, x, y \in(L \backslash I)^{\star}$:

$$
\alpha x \sim \beta y \quad \text { iff } \quad \beta-\alpha \in H_{x, y}
$$

- $H_{x, y}$ is a (unique) congruence class of \mathbb{Z}^{I}
- $H_{x, y}$ either \emptyset of $H_{x, y}=\delta_{x, y}+G_{x, y}$ with $G_{x, y}$ subgroup of \mathbb{Z}^{I}
- If \sim is regular (as is the case for basic PMEs):
- either $H_{x, y}=\emptyset$
- or $G_{x, y}=G_{\epsilon, \epsilon}$ and in this case $H_{x, y}=\delta_{x, y}+G_{\epsilon, \epsilon}$

Implementing basic PMEs

Let $N^{\prime}(\mathcal{C})=\left(I, \sigma, \mathcal{D}, \mathcal{E}^{\prime}\right)$ with $\mathcal{D}=\left[m_{1} \leftrightarrow n_{1}, \ldots, m_{p} \leftrightarrow n_{p}\right]$

- Goal $=$ structure for deciding $\sim_{\mathcal{C}}$
- In this case $G_{\epsilon, \epsilon}=\sum_{k}\left(n_{k}-m_{k}\right) \mathbb{Z}$
- As $\sim_{\mathcal{C}}$ basic then $H_{x, y}=\emptyset$ whenever x or y contains a square:
\Rightarrow the matrix $H_{x, y}$ is finite
- When $H_{x, y}$ is not empty: $\alpha x \sim_{\mathcal{C}} \beta y$ iff $\beta-\alpha \in \delta_{x, y}+G_{\epsilon, \epsilon}$
- Basic extensions $a b \leftrightarrow m, b \leftrightarrow m, a m \leftrightarrow b$ of \mathcal{E}^{\prime} :
- translate into simple transformations of the matrix $\left(\delta_{x, y}\right)$

Conclusion and perspectives

- Achievements:
- complete tableaux with constraints method for BBI
- properties of proof-search generated BBI constraints
- expressivity properties for BI and BBI , embedding
- algorithmic solution to BBI constraints solving
- introduction of the notion of invertible resource
- Perspectives:
- implement constraint solving and proof-search for BBI
- decidability for BBI (approximate infinite extensions ?)
- provide intuitive understanding of invertible resources
- e.g. Petri Nets with token loans?

