
'

&

$

%

Kripke Models of Boolean BI
and Invertible Resources

Dominique Larchey-Wendling

TYPES team

LORIA { CNRS

Nancy, France

Domains IX, Brighton, UK

1

'

&

$

%

Separation Logic

� Introduced by Reynolds&O'Hearn 01 to model:

– properties of the memory space (cells)

– aggregation of cells into wider structures

� Combines:

– classical logic connectives: ∧, ∨, → . . .

– multiplicative conjunction: ∗

� De�ned via Kripke semantics extended by:

m
 A ∗B i� ∃a; b s.t. a] b ⊆ m ∧ a
 A ∧ b
 B

2

'

&

$

%

Bunched Implication logic (BI)

� Introduced by Pym 99, 02

– intuitionistic logic connectives: ∧, ∨, → . . .

– multiplicative connectives: ∗, −∗

– sound and complete bunched sequent calculus

� Kripke semantics for BI, (Pym&O'Hearn 99, Galmiche et al. 02)

– partially ordered partial commutative monoids (M; ◦;6)

– intuitionistic Kripke semantics for additives

– relevant Kripke semantics for multiplicatives

– sound and complete Kripke semantics for BI

3

'

&

$

%

Boolean BI (BBI)

� Loosely de�ned by Pym as BI+ {¬¬A→ A}

– no known pure sequent based proof system

– Kripke semantics is non-deterministic (Larchey&Galmiche)

– faithfully embeds S4 and thus IL

� Other de�nition (logical core of Separation and Spatial logics)

– additive implication → Kripke interpreted classically

– based on (commutative) partial monoids (M; ◦)

– has a sound and complete (labelled tableaux) proof-system

– still embeds S4 and IL

– even (intuitionistic) BI (Larchey&Galmiche 08, submitted)

4

'

&

$

%

In this talk

� BI/BBI

– constraints based Kripke models

– resources vs labels, labelled calculi

� Proof-search based models

– generation of constraints/properties of constraints models

– BI (resource graphs)/BBI (deal with invertible resources ?)

� Consequences

– expressivity

– embedding

– representation/implementation

5

'

&

$

%

Words and constraints based models for BI/BBI

� Resources as Words of L? = multisets of letters

� Constraints = (ordered) pairs of words: m] n with m;n ∈ L?

� Partial monoidal order (PMO): v closed under 〈�; l; r; d; c; t〉
� Partial monoidal equivalence (PME): ∼ closed under 〈�; s; d; c; t〉

PMOs PMEs PMOs & PMEs

x] y

x] x
〈l〉

x] y

y] x
〈s〉

�] �
〈�〉

ky] ky x] y

kx] ky
〈c〉

x] y

y] y
〈r〉

xy] xy

x] x
〈d〉

x] y y] z

x] z
〈t〉

� 〈s〉+〈t〉 implies 〈l〉 and 〈r〉

� Hence a PME is also a PMO

6

'

&

$

%

Constraints based Kripke models for BI/BBI

� R ≡ v for BI / R ≡ ∼ for BBI

� Usual (pointwise) Kripke interpretation for ∧, ∨, ⊥ and >

BI=BBI

m
R I i� � R m

m
R A ∗B i� ∃x; y xy R m ∧ x
R A ∧ y
R B

m
R A−∗B i� ∀x; y (xm R y ∧ x
R A)⇒ y
R B

BI m
v A→B i� ∀x (m v x ∧ x
v A)⇒ x
v B

BBI
m
∼ A→B i� m
∼ A⇒ m
∼ B

m
∼ ¬A i� m 1∼ A

7

'

&

$

%

Complete constraints based Kripke semantics

� Quotient monoids:

– L?=v = partially ordered partial monoid

– L?=∼ = partial monoid

� These quotient maps v 7→ L?=v and ∼ 7→ L?=∼ are full:

– any partially ordered partial monoid is of the form L?=v

– any partial monoid is of the form L?=∼

� Completeness theorem:

–
v sound and complete Kripke semantics for BI

–
∼ sound and complete Kripke semantics for BBI

8

'

&

$

%

Proof methods for BI and BBI

� Labels and constraints based methods

– calculi with constraints: TA : m, FB : n, m] n

– sound and complete proof-search method for BI and BBI

– counter-models extracted from proof-search (Hintikka)

� Properties of the models generated by proof-search

– implement/optimize theorem provers

– extract complete sub-classes of counter-models

– model theoretic and logical links between BI and BBI

– expressivity properties of BI and BBI

9

'

&

$

%

Constraints generated by proof-search (i)

.

.

.

xi] yi
.
.
.

√
TA ∗B : m

.

.

.

ab]m

TA : a

TB : b

′

� C = {: : : ; xi] yi; : : :} from

� A
 = AC = {c ∈ L | c occurs in C}

� v
 = vC / ∼
 = ∼C

� branch expansion

– a 6= b new (a; b 6∈ A
)

– C′ = C ∪ {ab] m}

– v
 ′ = v
 + {ab] m}

– ∼
 ′ = ∼
 + {ab] m}

10

'

&

$

%

Constraints generated by proof-search (ii)

.

.

.

xi] yi
.
.
.

√
FA ∗B : m

.

.

.

aa!!

FA : x

A

FB : y

B

� C = {: : : ; xi] yi; : : :} from

� A
 = AC = {c ∈ L | c occurs in C}

� v
 = vC / ∼
 = ∼C

� branch expansion

– x; y s.t. xy v
 m / xy ∼
 m

– CA = CB = C

– v
A = v
B = v

– ∼
A = ∼
B = ∼

11

'

&

$

%

Constraints generated by proof-search (iii)

.

.

.

xi] yi

TX : m
.
.
.

FX : n
.
.
.

×

� C = {: : : ; xi] yi; : : :} from

� A
 = AC = {c ∈ L | c occurs in C}

� v
 = vC / ∼
 = ∼C

� branch closure

– m v
 n / m ∼
 n

12

'

&

$

%

Extensions in BI (i)

� a and b are new letters (a 6v a and b 6v b)

� m de�ned in v (m v m)

� Four types of extensions

v′ = v+ {ab] m} (rule T∗) v′ = v+ {am] b} (rule F−∗)

v′ = v+ {m] b} (rule F→) v′ = v+ {�] m} (rule TI)

� Basic PMO = (�nite or in�nite) sequence of such extensions

� Extensions can be solved:

v+ {ab] m} = v ∪ {ax] ay | x v y and mx v my}
∪ {bx] by | x v y and mx v my}
∪ {abx] aby | x v y and mx v my}
∪ {abx] y | mx v y}

13

'

&

$

%

Extensions in BI (ii)

� Properties of basic PMO vC (by induction on C):
– �-minimality: if m vC � then m = �

– no square: if mm vC mm then m = �

– regularity: if kx vC ky then x vC y

⇒ finiteness: {m ∈ L? | m vC m} is �nite (C �nite sequence)

� Solving constraints in C: (�nite) resource graph (Mery 04)

� Complete sub-class for BI:

– these properties hold for in�nite sequences of basic extensions

– regular monoids where � is minimal and without square

� Application: no BI-formula F such that m
v F i� mm v mm

14

'

&

$

%

Extensions in BBI (i)

� a and b are new letters, m de�ned in ∼

� Three types of extensions

∼′ = ∼+ {ab] m} (rule T∗)

∼′ = ∼+ {am] b} (rule F−∗)

∼′ = ∼+ {�] m} (rule TI)

� Basic PME = (�nite or in�nite) sequence of such extensions

� Extensions ab] m (and am] b) solved when mm � mm :

∼+ {ab] m} = ∼ ∪ {ax] ay; bx] by | x ∼ y and mx ∼ my}
∪ {abx] aby | mx ∼ my}
∪ {abx] y; y] abx | mx ∼ y}

15

'

&

$

%

Extensions in BBI (ii)

� Problems with the ∼+ {�] m} extension:

– does not preserve regularity

– introduce squares (if � ∼ m then mm ∼ mm)

– �-minimality irrelevant

⇒ Invertible letters produce in�nite models (not as in BI)

� No simple solution for ∼+ {ab] m} when mm ∼ mm

� Invertible letters: I∼ = {i ∈ L | ix ∼ � for some x ∈ L?}

⇒ How to discriminate invertible letters/resources and others ?

16

'

&

$

%

Algorithm to compute invertible letters

Require: A list C of constraints [: : : ;m] n; : : :]

Ensure: N(C) = (I; �;D; E) terminates

I ← ∅, � ← �x:x, D ← [], E ← C
while choose m] n ∈ E s.t. (m ∈ I? or n ∈ I?) do

I ← I ∪ Am ∪ An, � ← '(�; I;m] n)

D ← D @ [m] n], E ← E\(m] n)

end while

return (I; �;D; E)

� Underlying sets: C = D ∪ E

� Discriminate invertible/non-invertible letters: I∼C = I = AD

� � : L−→ L? an inverse substitution: i�(i) ∼ � for i ∈ I?

� If m] n ∈ D then m;n ∈ I?

� If m] n ∈ E then m;n 6∈ I? (hence �] m 6∈ E)

17

'

&

$

%

Relations between invertible words in D

Let N(C) = (I; �;D; E) and D = [m1] n1; : : : ;mp] np]

� For any i ∈ I? = A?
D, i de�ned in ∼C (i ∼C i)

� For any i; j ∈ I?, we have i ∼C j i� i ∼D j

� Canonical embedding I? ⊆ ZI

� Subgroup generated by {: : : ; nk −mk; : : :}: G =

p∑
k=1

(nk −mk)Z

� For any i; j ∈ I?, we have i ∼D j i� j − i ∈ G

A?
D=∼D ' ZI=

∑
k(nk −mk)Z

18

'

&

$

%

Reductions of constraints remaining in E

Let N(C) = (I; �;D; E) and E = E0 @ [ab] m] @ E1

� Could be am] b but �] m 6∈ E (because � ∈ I?)

� Order in E = same as in C (E obtained by deletion)

� If a (resp. b) not new in D @ E0 then a ∈ AD = I (resp. b ∈ I)

� Either a or b new (because otherwise ab ∈ I? thus ab] m ∈ D)

� If a ∈ I then transform ab] m into b] �(a)m (where b new)

Obtain E ′ composed of: ab] m, b] m, am] b with a; b new

� D @ E ′ equivalent to D @ E (∼D@E′ = ∼D@E)

19

'

&

$

%

Properties of extensions in D @ E ′

� ∼D is regular: kx ∼D ky ⇒ x ∼D y (∼D is a group)

� Prove by induction on the length of E ′:

– mm ∼D@E′ mm i� m ∈ I? = A?
D

– ∼D@E′ is regular

� Hence basic (�nite) extensions:

– have \no square": mm ∼ mm i� m ∈ I ?∼

– are regular: kx ∼D ky ⇒ x ∼D y

20

'

&

$

%

Direct application to expressivity of BBI

� By compactness, in�nite sequence of basic PME extensions:

– have \no square": mm ∼ mm i� m ∈ I ?∼

– are regular: kx ∼D ky ⇒ x ∼D y

� m ∈ I ?∼ expressible by m
∼ ¬(>−∗ ¬I) in BBI

� Suppose m
∼ F i� mm ∼ mm

– then F →¬(>−∗ ¬I) would valid in basic BBI models

– by completeness: F →¬(>−∗ ¬I) BBI-provable

– obviously, 1 1∼ F →¬(>−∗ ¬I) in N

being squarable not expressible in BBI either

21

'

&

$

%

Related result: embedding BI into BBI

Let v be a basic PMO (in�nite sequence of basic extensions)

� There exists K and ∼ such that:

– K ∩ Av = ∅

– ∼ is a basic PME

– for any x; y ∈ A?
v, x v y i� �x ∼ y for some � ∈ K?

� Any basic model of BI represented by a basic model of BBI

� Idea: v+ {ab]m} = ∼+ {�q]m;ab] q} (�; q new and � ∈ K)

� This embedding of (counter-)models can be extended into a

faithful embedding of BI into BBI (Larchey&Galmiche 08,

submitted)

22

'

&

$

%

Implementing PMEs

Representation matrix/graph for PMEs:

� Let ∼ be any PME over L, I = I∼ (invertible letters)

� For any �; � ∈ I?, x; y ∈ (L\I)?:

�x ∼ �y i� � − � ∈ Hx;y

� Hx;y is a (unique) congruence class of ZI

� Hx;y either ∅ of Hx;y = �x;y +Gx;y with Gx;y subgroup of ZI

� If ∼ is regular (as is the case for basic PMEs):

– either Hx;y = ∅

– or Gx;y = G�;� and in this case Hx;y = �x;y +G�;�

23

'

&

$

%

Implementing basic PMEs

Let N ′(C) = (I; �;D; E ′) with D = [m1] n1; : : : ;mp] np]

� Goal = structure for deciding ∼C

� In this case G�;� =
∑

k(nk −mk)Z

� As ∼C basic then Hx;y = ∅ whenever x or y contains a square:

⇒ the matrix Hx;y is �nite

� When Hx;y is not empty: �x ∼C �y i� � − � ∈ �x;y +G�;�

� Basic extensions ab] m, b] m, am] b of E ′:

– translate into simple transformations of the matrix (�x;y)

24

'

&

$

%

Conclusion and perspectives

� Achievements:

– complete tableaux with constraints method for BBI

– properties of proof-search generated BBI constraints

– expressivity properties for BI and BBI, embedding

– algorithmic solution to BBI constraints solving

– introduction of the notion of invertible resource

� Perspectives:

– implement constraint solving and proof-search for BBI

– decidability for BBI (approximate in�nite extensions ?)

– provide intuitive understanding of invertible resources

– e.g. Petri Nets with token loans ?

25

