Kripke Models of Boolean BI and Invertible Resources

> Dominique Larchey-Wendling TYPES team

> > LORIA – CNRS Nancy, France

Domains IX, Brighton, UK

Separation Logic

- Introduced by Reynolds&O'Hearn 01 to model:
 - properties of the memory space (cells)
 - aggregation of cells into wider structures
- Combines:
 - classical logic connectives: \land , \lor , \rightarrow ...
 - multiplicative conjunction: *
- Defined via Kripke semantics extended by:

 $m \Vdash A * B \quad ext{iff} \quad \exists a, b ext{ s.t. } a \uplus b \subseteq m \land a \Vdash A \land b \Vdash B$

Boolean BI (BBI)

- Loosely defined by Pym as $BI + \{\neg \neg A \rightarrow A\}$
 - no known pure sequent based proof system
 - Kripke semantics is non-deterministic (Larchey&Galmiche)
 - faithfully embeds S4 and thus IL
- Other definition (logical core of Separation and Spatial logics)
 - additive implication \rightarrow Kripke interpreted classically
 - based on (commutative) partial monoids (\mathcal{M},\circ)
 - has a sound and complete (labelled tableaux) proof-system
 - still embeds S4 and IL
 - even (intuitionistic) BI (Larchey&Galmiche 08, submitted)

In this talk

- BI/BBI
 - constraints based Kripke models
 - resources vs labels, labelled calculi
- Proof-search based models
 - generation of constraints/properties of constraints models
 - BI (resource graphs)/BBI (deal with invertible resources ?)
- Consequences
 - expressivity
 - embedding
 - representation/implementation

Proof methods for **BI** and **BBI**

- Labels and constraints based methods
 - calculi with constraints: $\mathbb{T}A:m, \mathbb{F}B:n, m \nleftrightarrow n$
 - sound and complete proof-search method for BI and BBI
 - counter-models extracted from proof-search (Hintikka)
- Properties of the models generated by proof-search
 - implement/optimize theorem provers
 - extract complete sub-classes of counter-models
 - model theoretic and logical links between BI and BBI
 - expressivity properties of BI and BBI

Constraints generated by proof-search (i)

- $\mathcal{C} = \{\ldots, x_i \nleftrightarrow y_i, \ldots\}$ from γ
- $A_{\gamma} = A_{\mathcal{C}} = \{c \in L \mid c \text{ occurs in } \mathcal{C}\}$
- $\sqsubseteq_{\gamma} = \sqsubseteq_{\mathcal{C}} / \sim_{\gamma} = \sim_{\mathcal{C}}$
- branch expansion
 - $a
 eq b ext{ new } (a,b
 ot\in A_\gamma)$
 - $\ \mathcal{C}' = \mathcal{C} \cup \{ab \rightsquigarrow m\}$
 - $egin{array}{ll} & & \sqsubseteq_{\gamma}{}' = \sqsubseteq_{\gamma} + \{ab \nleftrightarrow m\} \ & & \sim_{\gamma}{}' = \sim_{\gamma} + \{ab \nleftrightarrow m\} \end{array}$

Constraints generated by proof-search (ii)

- $\mathcal{C} = \{\ldots, x_i \nleftrightarrow y_i, \ldots\}$ from γ
- $A_{\gamma} = A_{\mathcal{C}} = \{c \in L \mid c \text{ occurs in } \mathcal{C}\}$
- $\sqsubseteq_{\gamma} = \sqsubseteq_{\mathcal{C}} / \sim_{\gamma} = \sim_{\mathcal{C}}$
- branch expansion
 - $egin{array}{lll} &-x,y ext{ s.t. } xy \sqsubseteq_\gamma m \ &/ xy \sim_\gamma m \ &-\mathcal{C}_A = \mathcal{C}_B = \mathcal{C} \end{array}$
 - $-\sqsubseteq_{\gamma_A}=\sqsubseteq_{\gamma_B}=\sqsubseteq_{\gamma}$

$$-\sim_{\gamma_A}=\sim_{\gamma_B}=\sim_{\gamma_B}$$

Constraints generated by proof-search (iii)

- $\mathcal{C} = \{\ldots, x_i \rightsquigarrow y_i, \ldots\}$ from γ
- $A_{\gamma} = A_{\mathcal{C}} = \{c \in L \mid c \text{ occurs in } \mathcal{C}\}$
- $\sqsubseteq_{\gamma} = \sqsubseteq_{\mathcal{C}} / \sim_{\gamma} = \sim_{\mathcal{C}}$
- branch closure

 $- \ m \sqsubseteq_\gamma n \ / \ m \sim_\gamma n$

Extensions in **BI** (i)

- a and b are new letters $(a \not\sqsubseteq a \text{ and } b \not\sqsubseteq b)$
- m defined in $\sqsubseteq (m \sqsubseteq m)$
- Four types of extensions

$$egin{array}{lll} &\sqsubseteq' = oxdot + \{ab \nleftrightarrow m\} \ (ext{rule } \mathbb{T}*) & &\sqsubseteq' = oxdot + \{am \nleftrightarrow b\} \ (ext{rule } \mathbb{F} wdot *) \ &\sqsubseteq' = oxdot + \{\epsilon \nleftrightarrow m\} \ (ext{rule } \mathbb{T} ext{l}) \end{array}$$

- Basic PMO = (finite or infinite) sequence of such extensions
- Extensions can be solved:

$$egin{array}{lll} egin{array}{lll} egin{arra$$

Extensions in **BI** (ii)

- Properties of basic PMO $\sqsubseteq_{\mathcal{C}}$ (by induction on \mathcal{C}):
 - ϵ -minimality: if $m \sqsubseteq_{\mathcal{C}} \epsilon$ then $m = \epsilon$
 - no square: if $mm \sqsubseteq_{\mathcal{C}} mm$ then $m = \epsilon$

- regularity: if $kx \sqsubseteq_{\mathcal{C}} ky$ then $x \sqsubseteq_{\mathcal{C}} y$

- \Rightarrow finiteness: $\{m \in L^* \mid m \sqsubseteq_{\mathcal{C}} m\}$ is finite (\mathcal{C} finite sequence)
 - Solving constraints in C: (finite) resource graph (Mery 04)
 - Complete sub-class for BI:
 - these properties hold for infinite sequences of basic extensions
 - regular monoids where ϵ is minimal and without square
 - Application: no BI-formula F such that $m \Vdash_{\square} F$ iff $mm \sqsubseteq mm$

Extensions in **BBI** (i)

- a and b are new letters, m defined in \sim
- Three types of extensions

$$\sim' = \sim + \{ab \nleftrightarrow m\}$$
 (rule $\mathbb{T}*$)
 $\sim' = \sim + \{am \nleftrightarrow b\}$ (rule $\mathbb{F}-*$)
 $\sim' = \sim + \{\epsilon \nleftrightarrow m\}$ (rule \mathbb{T} I)

- Basic PME = (finite or infinite) sequence of such extensions
- Extensions $ab \Leftrightarrow m$ (and $am \Leftrightarrow b$) solved when $\boxed{mm \nsim mm}$:

$$egin{array}{lll} &\sim + \left\{ ab \nleftrightarrow m
ight\} = &\sim \cup \left\{ ax \nleftrightarrow ay, bx \nleftrightarrow by \mid x \sim y ext{ and } mx \sim my
ight\} \ &\cup \left\{ abx \nleftrightarrow aby \mid mx \sim my
ight\} \ &\cup \left\{ abx \nleftrightarrow y, y \nleftrightarrow abx \mid mx \sim y
ight\} \end{array}$$

Extensions in **BBI** (ii)

- Problems with the $\sim + \{\epsilon \rightsquigarrow m\}$ extension:
 - does not preserve regularity

- introduce squares (if $\epsilon \sim m$ then $mm \sim mm$)

 $-\epsilon$ -minimality irrelevant

 \Rightarrow Invertible letters produce | infinite models | (not as in BI)

- No simple solution for $\sim + \{ab \nleftrightarrow m\}$ when $mm \sim mm$
- Invertible letters: $I_{\sim} = \{i \in L \mid ix \sim \epsilon \text{ for some } x \in L^{\star}\}$

 \Rightarrow How to discriminate invertible letters/resources and others ?

Algorithm to compute invertible letters

Require: A list
$$C$$
 of constraints $[..., m \nleftrightarrow n, ...]$
Ensure: $N(C) = (I, \sigma, D, \mathcal{E})$ terminates
 $I \leftarrow \emptyset, \sigma \leftarrow \lambda x.x, D \leftarrow [], \mathcal{E} \leftarrow C$
while choose $m \nleftrightarrow n \in \mathcal{E}$ s.t. $(m \in I^* \text{ or } n \in I^*)$ do
 $I \leftarrow I \cup A_m \cup A_n, \sigma \leftarrow \varphi(\sigma, I, m \nleftrightarrow n)$
 $D \leftarrow D @ [m \nleftrightarrow n], \mathcal{E} \leftarrow \mathcal{E} \setminus (m \nleftrightarrow n)$
end while
return $(I, \sigma, D, \mathcal{E})$

- Underlying sets: $|C = D \cup E|$
- Discriminate invertible/non-invertible letters: $I_{\sim_{\mathcal{C}}} = I = A_{\mathcal{D}}$
- $\sigma: L \longrightarrow L^{\star}$ an inverse substitution: $i\sigma(i) \sim \epsilon$ for $i \in I^{\star}$
- If $m \nleftrightarrow n \in \mathcal{D}$ then $m, n \in I^{\star}$
- If $m \nleftrightarrow n \in \mathcal{E}$ then $m, n \not\in I^{\star}$ (hence $\epsilon \nleftrightarrow m \not\in \mathcal{E}$)

Relations between invertible words in ${\mathcal D}$

Let $N(\mathcal{C}) = (I, \sigma, \mathcal{D}, \mathcal{E})$ and $\mathcal{D} = [m_1 \nleftrightarrow n_1, \ldots, m_p \nleftrightarrow n_p]$

- For any $i \in I^{\star} = A_D^{\star}$, i defined in $\sim_{\mathcal{C}} (i \sim_{\mathcal{C}} i)$
- For any $i,j \in I^{\star}$, we have $i \sim_{\mathcal{C}} j$ iff $i \sim_{\mathcal{D}} j$
- Canonical embedding $I^{\star} \subseteq \mathbb{Z}^{I}$
- Subgroup generated by $\{\ldots,n_k-m_k,\ldots\}$: $G=\sum (n_k-m_k)\mathbb{Z}$

k = 1

• For any $i,j\in I^{\star},$ we have $i\sim_{\mathcal{D}}j$ iff $j-i\in G$

$$egin{array}{ll} A^{\star}_{\mathcal{D}}/{\sim_{\mathcal{D}}} \ \simeq \ \mathbb{Z}^{I}/\sum_{k}(n_{k}-m_{k})\mathbb{Z}^{I} \end{array}$$

Properties of extensions in $\mathcal{D} \ @ \mathcal{E}'$

• $\sim_{\mathcal{D}}$ is regular: $kx \sim_{\mathcal{D}} ky \Rightarrow x \sim_{\mathcal{D}} y$ ($\sim_{\mathcal{D}}$ is a group)

• Prove by induction on the length of \mathcal{E}' :

 $- \ mm \sim_{\mathcal{D} @ \mathcal{E}'} mm ext{ iff } m \in I^\star = A^\star_\mathcal{D}$

 $-\sim_{\mathcal{D}@\mathcal{E}'}$ is regular

- Hence basic (finite) extensions:
 - have "no square": $mm \sim mm$ iff $m \in I^{\star}_{\sim}$
 - $ext{ are regular: } kx \sim_{\mathcal{D}} ky \Rightarrow x \sim_{\mathcal{D}} y$

Implementing **PME**s

Representation matrix/graph for PMEs:

- Let \sim be any PME over $L, I = I_{\sim}$ (invertible letters)
- For any $lpha,eta\in I^\star,\,x,y\in (Lackslash I)^\star$:

$$lpha x \sim eta y \quad ext{iff} \quad eta - lpha \in H_{x,y}$$

- $H_{x,y}$ is a (unique) congruence class of \mathbb{Z}^{I}
- $H_{x,y}$ either \emptyset of $H_{x,y} = \delta_{x,y} + G_{x,y}$ with $G_{x,y}$ subgroup of \mathbb{Z}^I
- If \sim is regular (as is the case for basic PMEs):
 - either $H_{x,y} = \emptyset$

- or $G_{x,y} = G_{\epsilon,\epsilon}$ and in this case $H_{x,y} = \delta_{x,y} + G_{\epsilon,\epsilon}$

Implementing basic PMEs

Let $N'(\mathcal{C}) = (I, \sigma, \mathcal{D}, \mathcal{E}')$ with $\mathcal{D} = [m_1 \Leftrightarrow n_1, \ldots, m_p \Leftrightarrow n_p]$

- Goal = structure for deciding $\sim_{\mathcal{C}}$
- In this case $G_{\epsilon,\epsilon} = \sum_k (n_k m_k) \mathbb{Z}$
- As $\sim_{\mathcal{C}}$ basic then $H_{x,y} = \emptyset$ whenever x or y contains a square: \Rightarrow the matrix $H_{x,y}$ is finite
- $\bullet \ \text{When} \ H_{x,y} \ \text{is not empty:} \ \boxed{\alpha x \sim_{\mathcal{C}} \beta y} \quad \text{iff} \quad \beta \alpha \in \delta_{x,y} + G_{\epsilon,\epsilon}$
- Basic extensions $ab \Leftrightarrow m, b \Leftrightarrow m, am \Leftrightarrow b$ of \mathcal{E}' :

- translate into simple transformations of the matrix $(\delta_{x,y})$

Conclusion and perspectives

- Achievements:
 - complete tableaux with constraints method for BBI
 - properties of proof-search generated BBI constraints
 - expressivity properties for BI and BBI, embedding
 - algorithmic solution to BBI constraints solving
 - introduction of the notion of invertible resource
- Perspectives:
 - implement constraint solving and proof-search for BBI
 - decidability for BBI (approximate infinite extensions ?)
 - provide intuitive understanding of invertible resources
 - e.g. Petri Nets with token loans ?