Typing Total Recursive Functions in Coq

Dominique Larchey-Wendling TYPES team, ANR TICAMORE

> LORIA - CNRS

Nancy, France
https://github.com/DmxLarchey/Coq-is-total

Interactive Theorem Proving
ITP 2017, Brazilia, Sept. 2017

Turing completeness for (axiom-free) Coq

- Does Coq contain any μ-recursive function as a term nat ${ }^{k} \rightarrow$ nat?
- Axiom free Coq defines only total functions
- meta-level (strong/weak) normalization
- The Kleene T predicate method (Bove\&Capretta 2005):
-T is cumbersome $=$ small-step semantics
- primitive recursive schemes hard to program with
- Lambda calculus method (LW 2017, big dev. of 25k lines):
- left-most and head normalization (so also small-step sem.)
- intersection type systems (solvability)

How avoid small-step semantics?

The content of the function type nat \rightarrow nat

- What is contained in the type nat \rightarrow nat ?
- it depends on axioms (even if only of sort Prop)
- without axioms, only total recursive functions (normalization)
- but are every total and recursive functions present?
- What are (total) recursive functions ?
- recursive functions are an inductive class of relations
- but totality depends on meta-theory:
* Goodstein sequence (Kirby\&Paris)
* Finite Ramsey theorem (Paris\&Harrington)
- Turing completeness for Coq-provably total recursive functions
- with (short ?) Coq-implementation of this claim

Our method: avoid small-step semantics

- Bove\&Capretta's hint (Kleene's normal form theorem):
$-\mu$-recursive fun. $=$ minimization of primitive recursive fun.
- Kleene's T pred. relates prog. and computations (prim. rec.)
- primitive rec. fun. are (trivially) Coq-definable terms
- unbounded minimization of these terms (mutual recursion ?)
- Kleene's T predicate $=$ small-step semantics
- implement as primitive recursive $=$ awfully complicated
- a provably correct compiler with prim. rec. schemes
- We avoid small-step semantics
- unbounded minimization of decidable (\& inhabited) predicates
- cost-aware big-step semantics as Coq decidable predicate

Coq-provably total \& computable relations

- To shorten notations, \mathcal{N} denotes the type nat
- μ-recursive function $\mathbb{N}^{k} \longrightarrow \mathbb{N}=$ func. relation $\mathcal{N}^{k} \rightarrow \mathcal{N} \rightarrow$ Prop
- an inductive class of functional/deterministic relations
- constants, successor, zero, projections, composition, primitive recursion and unbounded minimization
- each μ-recursive function is described by an algorithm
- algorithm must be given, it cannot be extracted
- μ-recursive $R: \mathcal{N}^{k} \rightarrow \mathcal{N} \rightarrow$ Prop is total if $\forall \vec{v}: \mathcal{N}^{k}, \exists n: \mathcal{N}, R \vec{v} n$
- R is Coq-computable if $\forall \vec{v}: \mathcal{N}^{k},\{n: \mathcal{N} \mid R \vec{v} n\}$
- Transforming $(\exists n, R \vec{v} n)$ into $\{n \mid R \vec{v} n\}$ called reification

Specificity of Coq existential quantifiers

- Three type of existential quantifiers (Σ-types)
- for $P: X \rightarrow$ Prop, non-informative $\exists x: X, P x$ of type Prop
- for $P: X \rightarrow$ Prop, partially info. $\{x: X \mid P x\}$ of type Type
- for $P: X \rightarrow$ Type, fully info. $\{x: X \& P x\}$ of type Type
- Reification is a map $(\exists x: X, P x) \rightarrow\{x: X \mid P x\}$
- axiom called Constructive Indefinite Description
- alternativelly, it is a map inhabited $X \rightarrow X$
- Reification can be implemented without axioms:
- when X is an enumerable type (like \mathcal{N})
- when $P: X \rightarrow\{$ Prop, Type $\}$ is decidable
- implementation by unbounded minimization

Inductive definitions of Coq existential quantifiers

Inductive inhabited (P : Type) : Prop := \mid inhabits : $P \rightarrow$ inhabited P
Inductive ex $\{X:$ Type $\}(P: X \rightarrow$ Prop $):$ Prop $:=$ | ex_intro : $\forall x: X, P x \rightarrow \operatorname{ex} P$ (also denoted $\exists x: X, P x$)
Inductive $\operatorname{sig}\{X:$ Type $\}(P: X \rightarrow$ Prop $):$ Type $:=$ \mid exist $: \forall x: X, P x \rightarrow \operatorname{sig} P \quad$ (also denoted $\{x: X \mid P x\})$
Inductive $\operatorname{sigT}\{X:$ Type $\}(P: X \rightarrow$ Type $):$ Type $:=$

$$
\mid \text { existT }: \forall x: X, P x \rightarrow \operatorname{sigT} P \text { (also denoted }\{x: X \& P x\})
$$

$\exists x: X, P x$ equivalent to inhabited $\{x: X \mid P x\}$

Unbounded minimization (sample OCaml code)

- Minimization of Boolean function $f:$ int \rightarrow bool
- try $f 0, f 1, f 2, \ldots$ until $f n$ outputs true
- if e.g. $f 0$ does not terminate, then minimization loops as well
- Implemented by this sample code:
let rec minimize_rec $f n=$ match $f n$ with true $\rightarrow n$
| false \rightarrow minimize_rec $f(1+n)$
let minimize $f=$ minimize_rec $f 0$
- This codes does not always terminate, but Coq code must...

Terminating unbounded minimization (OCaml)

- How to ensure termination: decorate with a decreasing argument let rec minimize_rec $f n H_{n}=$ match $f n$ with

$$
\mid \text { true } \rightarrow n
$$

$$
\mid \text { false } \rightarrow \text { minimize_rec } f(1+n) H_{1+n}
$$

let minimize $f=$ minimize_rec $f 0 H_{0}$

- Problems:
- Termination input: non-informative proof $H_{f}: \exists n, f n=$ true
- How to obtain H_{1+n} from H_{n} s.t. H_{1+n} is simpler than H_{n} ?
- How to build H_{0} from $H_{f}: \exists n, f n=$ true?
- Solution: H_{n} is Acc $R n$ for some rel. $R: \mathcal{N} \rightarrow \mathcal{N} \rightarrow$ Prop

Non-informative existence as accessibility

Inductive Acc $\{X:$ Type $\} \quad(R: X \rightarrow X \rightarrow \operatorname{Prop})(x: X):=$ \mid Acc_intro: $(\forall y: X, R y x \rightarrow \operatorname{Acc} R y) \rightarrow \operatorname{Acc} R x$

- Accessibility Acc R is the least R-hereditary predicate

	$R(\mathrm{~S} n) n$
	R 54 R 43
	$R 21$ $R 10$

- Let e.g. $P x$ iff $x=2$ or $x=5$
- Let $R n m$ iff $(n=\mathrm{S} m) \wedge \neg P m$
- Then Acc $R 5$ because 5 has no R-antecedent
- Acc $R 4$ as Acc $R 5$ (5 only antecedent of 4)
- Acc $R 3$ as Acc $R 4$ (4 only antecedent of 3)
- Acc $R 2$ because 2 has no antecedent
- Then Acc $R 1$ and Acc $R 0$
- But \neg Acc $R i$ for $i \geq 6$

Well-founded unbounded minimization (1)

Variables $(P: \mathcal{N} \rightarrow \operatorname{Prop})\left(H_{P}: \forall n: \mathcal{N},\{P n\}+\{\neg P n\}\right)$
Let $R(n m: \mathcal{N}) \quad:=(n=1+m) \wedge \neg P m$
Let P_Acc_R : $\forall n: \mathcal{N}, P n \rightarrow \operatorname{Acc} R n$
Let Acc_R_dec : $\forall n: \mathcal{N}, \operatorname{Acc} R(1+n) \rightarrow \operatorname{Acc} R n$
Let Acc_R_zero: $\forall n: \mathcal{N}, \operatorname{Acc} R n \rightarrow \operatorname{Acc} R 0$
Let ex_P_Acc_R_zero : $(\exists n: \mathcal{N}, P n) \rightarrow$ Acc $R 0$
Let Acc_R_eq : $\forall n: \mathcal{N}, \operatorname{Acc} R n \Longleftrightarrow \exists i: \mathcal{N}, n \leqslant i \wedge P i$

Well-founded unbounded minimization (2)

Let $R n m:=(n=1+m) \wedge \neg P m$
Let Acc_inv $(n: \mathcal{N})\left(H_{n}: \operatorname{Acc} R n\right)(F: \neg P n): \operatorname{Acc} R(1+n):=$ let $F^{\prime}:=$ conj eq_refl F in match H_{n} with Acc_intro _ $H \mapsto H_{-} F^{\prime}$ end

Fixpoint Acc_P $(n: \mathcal{N})\left(H_{n}: \operatorname{Acc} R n\right):\{x: \mathcal{N} \mid P x\}:=$ match $H_{P} n$ with

$$
\begin{aligned}
& \mid \text { left } T \mapsto \text { exist } _n T \\
& \mid \text { right } F \mapsto \text { Acc_P }^{(1+n)\left(\text { Acc_inv }_{-} H_{n} F\right)}
\end{aligned}
$$

end.

Reification of decidable predicates

- For $P: \mathcal{N} \rightarrow$ Prop and $H_{P}: \forall n,\{P n\}+\{\neg P n\}$

Theorem nat_reify : $(\exists n: \mathcal{N}, P n) \rightarrow\{n: \mathcal{N} \mid P n\}$

- Proof:
- intros $H: \exists n, P n$, goal is now $\{n: \mathcal{N} \mid P n\}$
- apply Acc_P with $(n:=0)$, goal is now Acc $R 0$: Prop
- apply ex_P_Acc_R_zero, goal is now $\exists n: \mathcal{N}, P n$
- assumption, goal solved by hypothesis H
- We also get the fully specified:

Theorem minimize : $(\exists n, P n) \rightarrow\{n \mid P n \wedge \forall m, P m \rightarrow n \leqslant m\}$

Reification of dec. and informative predicates

- Decidability for informative predicates P : Type

$$
\text { decidable_t } P:=P+(P \rightarrow \text { False })
$$

- For $P: \mathcal{N} \rightarrow$ Type and $H_{P}: \forall n,(P n)+(P n \rightarrow$ False $)$

Theorem nat_reify_t $:(\exists n: \mathcal{N}, \operatorname{inhabited}(P n)) \rightarrow\{n: \mathcal{N} \& P n\}$

- Hypothesis $\exists n: \mathcal{N}$, inhabited $(P n)$ has no informative content
- It computes:
- n (minimal) such that $P n$ is inhabited
- but it also computes an inhabitant of (that) $P n$
- The proof is very similar to that of nat_reify

An inductive type for recursive algorithms

- X^{n} is the type of vectors on X : Type of dimension $n: \mathcal{N}$
- \mathcal{A}_{k} is a notation for recalg $(k: \mathcal{N})$
- recalg : $\mathcal{N} \rightarrow$ Set dependently defined by inductive rules:

$$
\begin{array}{cccc}
\frac{n: \mathcal{N}}{\operatorname{cst}_{n}: \mathcal{A}_{0}} & & & \\
\frac{\text { zero }: \mathcal{A}_{1}}{\operatorname{succ}: \mathcal{A}_{1}} & & \frac{p: \operatorname{pos} k}{\operatorname{proj}_{p}: \mathcal{A}_{k}} \\
\frac{f: \mathcal{A}_{k}}{\operatorname{comp} f g: \mathcal{A}_{i}^{k}} & \frac{f: \mathcal{A}_{k}}{\operatorname{rec} f g: \mathcal{A}_{1+k}} & \frac{f: \mathcal{A}_{1+k}}{\min f: \mathcal{A}_{k}}
\end{array}
$$

- Working with dependent types might involve some difficulties...

Beware fixpoint definitions are not compositional

```
Variable (P : forall k, recalg k -> Type)
    (Pcst : forall n, P (cst n)) (Pzero ....
Fixpoint recalg_rect k f { struct f } : P k f :=
    match f with
        | cst n => Pcst n
    | zero => Pzero
    | succ => Psucc
    | proj p => Pproj p
    | comp f gj => Pcomp [|f|] (fun p => [|vec_pos gj p|])
    | rec f g => Prec [|f|] [|g|]
    | min f => Pmin [|f|]
end where "[l f |]" := (recalg_rect _ f).
```


Dependencies might involve type castings

- eq_rect maps a term of type $P i$ into $P j$ using a proof $e: i=j$
- Alternatively, use heterogeneous equality JMeq (John Major's eq.)
- Injection lemmas involve type castings:

Fact ra_comp_inj $k k^{\prime} i\left(f: \mathcal{A}_{k}\right)\left(f^{\prime}: \mathcal{A}_{k^{\prime}}\right)\left(\vec{g}: \mathcal{A}_{i}^{k}\right)\left(\vec{g}^{\prime}: \mathcal{A}_{i}^{k^{\prime}}\right)$:

$$
\operatorname{comp} f \vec{g}=\operatorname{comp} f^{\prime} \vec{g}^{\prime} \rightarrow \exists e: k=k^{\prime}, \wedge\left\{\begin{array}{l}
\text { eq_rect _- } f \text { _ } e=f^{\prime} \\
\text { eq_rect _- } \vec{g}-e=\vec{g}^{\prime}
\end{array}\right.
$$

- These difficulties might be frightening for casual Coq users

Relational semantics for recursive algorithms

- We denote $\llbracket f \rrbracket$ for ra_rel $k\left(f: \mathcal{A}_{k}\right): \mathcal{N}^{k} \rightarrow \mathcal{N} \rightarrow$ Prop
- $\llbracket f \rrbracket \vec{v} x$: the computation of f on input \vec{v} halts and outputs x

$$
\begin{aligned}
\llbracket \mathrm{cst}_{n} \rrbracket-x & \Longleftrightarrow n=x \\
\llbracket \mathrm{succ} \rrbracket \vec{v} x & \Longleftrightarrow 1+\vec{v}_{\mathrm{fst}}=x \quad \llbracket \mathrm{zero} \rrbracket-x \Longleftrightarrow 0=x \\
\llbracket \operatorname{comp} f \vec{g} \rrbracket \vec{v} x & \Longleftrightarrow \exists \vec{w}, \llbracket f \rrbracket \vec{w} x \wedge \forall p, \llbracket \vec{g}_{p} \rrbracket \vec{v} \vec{w}_{p} \\
\llbracket \mathrm{rec} f g \rrbracket(0 \# \vec{v}) x & \Longleftrightarrow \llbracket f \rrbracket \vec{v} x \\
\llbracket \mathrm{rec} f g \rrbracket(1+n \# \vec{v}) x & \Longleftrightarrow \exists y, \llbracket \mathrm{rec} f g \rrbracket(n \# \vec{v}) y \wedge \llbracket g \rrbracket(n \# y \# \vec{v}) x \\
\llbracket \min f \rrbracket \vec{v} x & \Longleftrightarrow \exists \vec{w}, \llbracket f \rrbracket(x \# \vec{v}) 0 \wedge \forall p: \operatorname{pos} x, \llbracket f \rrbracket(\vec{p} \# \vec{v})\left(1+\vec{w}_{p}\right)
\end{aligned}
$$

- A simple exercise (given a good recursion principle for $\mathcal{A}_{k} ;$-)
- But $x \mapsto \llbracket f \rrbracket \vec{v} x$ is not a decidable relation.

Big-step semantics for recursive algorithms

- We denote $[f ; \vec{v}] \rightsquigarrow x$ for ra_bs $k f \vec{v} x:$ Prop (or Type...)
- Same meaning as $\llbracket f \rrbracket \vec{v} x$ but defined as an inductive predicate

$$
\begin{aligned}
& \overline{\left[\operatorname{cst}_{n} ; \vec{v}\right] \rightsquigarrow n} \\
& \overline{[z e r o} ; \vec{v}] \rightsquigarrow 0 \\
& \overline{[\operatorname{succ} ; \vec{v}] \rightsquigarrow 1+\vec{v}_{\mathrm{fst}}} \\
& {\left[\operatorname{proj}_{p} ; \vec{v}\right] \rightsquigarrow \vec{v}_{p}} \\
& \frac{[\operatorname{rec} f g ; n \# \vec{v}] \rightsquigarrow y \quad[g ; n \# y \# \vec{v}] \rightsquigarrow x}{[\operatorname{rec} f g ; 1+n \# \vec{v}] \rightsquigarrow x} \quad \frac{[f ; \vec{w}] \rightsquigarrow x \quad \forall p,\left[\vec{g}_{p} ; \vec{v}\right] \rightsquigarrow \vec{w}_{p}}{[\operatorname{comp} f \vec{g} ; \vec{v}] \rightsquigarrow x} \\
& \frac{[f ; \vec{v}] \rightsquigarrow x}{[\operatorname{rec} f g ; 0 \# \vec{v}] \rightsquigarrow x} \quad \frac{[f ; x \# \vec{v}] \rightsquigarrow 0 \quad \forall p: \operatorname{pos} x,[f ; \bar{p} \# \vec{v}] \rightsquigarrow 1+\vec{w}_{p}}{[\min f ; \vec{v}] \rightsquigarrow x}
\end{aligned}
$$

- Easy (intuitive ?) definition
- ra_bs: $\forall k, \mathcal{A}_{k} \rightarrow \mathcal{N}^{k} \rightarrow \mathcal{N} \rightarrow \operatorname{Prop}, \llbracket f \rrbracket \vec{v} x \Longleftrightarrow[f ; \vec{v}] \rightsquigarrow x$
- ra_bs: $\forall k, \mathcal{A}_{k} \rightarrow \mathcal{N}^{k} \rightarrow \mathcal{N} \rightarrow$ Type is a type of computations
- Let us transform ra_bs into a decidable predicate

Cost aware big-step semantics

- We denote $[f ; \vec{v}]-[\alpha\rangle\rangle x$ for ra_ca $k f \vec{v} \alpha x$: Prop
- α represents the cost (or size) of the computation

$$
\begin{aligned}
& \overline{\left[\text { cst }_{n} ; \vec{v}\right]-[1\rangle n} \\
& {[\text { zero } ; \vec{v}]-[1\rangle 0} \\
& \overline{[\text { succ } ; \vec{v}]-[1\rangle 1+\vec{v}_{\mathrm{fst}}} \\
& \left.\left[\operatorname{proj}_{p} ; \vec{v}\right]-\lceil 1\rangle\right\rangle \vec{v}_{p} \\
& \frac{[\operatorname{rec} f g ; n \# \vec{v}] \dashv \alpha\rangle y}{[\operatorname{rec} f g ; 1+n \# \vec{v}]-[1+\alpha+\beta\rangle x} \quad \frac{[f ; n \# y \# \vec{v}]-\lceil\beta\rangle x}{[\operatorname{comp} f \vec{g} ; \vec{v}] \dashv[1+\alpha+\Sigma \vec{\beta}\rangle x} \\
& \frac{[f ; \vec{v}] \dashv \alpha\rangle x}{[\operatorname{rec} f g ; 0 \# \vec{v}]-\lfloor 1+\alpha\rangle x} \quad \frac{[f ; x \# \vec{v}]-[\alpha\rangle\rangle 0 \quad \forall p: \operatorname{pos} x,[f ; \vec{p} \# \vec{v}]-\left\lfloor\vec{\beta}_{p}\right\rangle 1+\vec{w}_{p}}{[\min f ; \vec{v}]-[1+\alpha+\Sigma \vec{\beta}\rangle\rangle x}
\end{aligned}
$$

- for ra_ca, we have $\llbracket f \rrbracket \vec{v} x \Longleftrightarrow \exists \alpha: \mathcal{N},[f ; \vec{v}]-[\alpha\rangle x$
- $x \mapsto[f ; \vec{v}]-[\alpha\rangle x$ is a decidable predicate:
- from α, recover comp. $[f ; \vec{v}] \rightsquigarrow x$: Type by prim. rec. means

Properties of cost aware semantics

- Inversion lemmas:

Lemma ra_ca_rec_S_inv $(k: \mathcal{N})\left(f: \mathcal{A}_{k}\right)\left(g: \mathcal{A}_{2+k}\right) \vec{v} n \gamma x$:

$$
[\operatorname{rec} f g ; 1+n \# \vec{v}]-[\gamma\rangle>x \rightarrow \exists y \alpha \beta, \wedge\left\{\begin{array}{l}
\gamma=1+\alpha+\beta \\
[\operatorname{rec} f g ; n \# \vec{v}]-[\alpha\rangle\rangle y \\
{[g ; n \# y \# \vec{v}]-[\beta\rangle x}
\end{array}\right.
$$

- Functionality:

Theorem ra_ca_fun $(k: \mathcal{N})\left(f: \mathcal{A}_{k}\right)\left(\vec{v}: \mathcal{N}^{k}\right)(\alpha \beta x y: \mathcal{N}):$

$$
[f ; \vec{v}]-[\alpha\rangle>x \rightarrow[f ; \vec{v}]-\lceil\beta\rangle y \rightarrow \alpha=\beta \wedge x=y
$$

- Decidability:

Theorem ra_ca_decidable_t $(k: \mathcal{N})\left(f: \mathcal{A}_{k}\right)\left(\vec{v}: \mathcal{N}^{k}\right)(\alpha: \mathcal{N}):$

$$
\{x|[f ; \vec{v}] \dashv \alpha\rangle\rangle x\}+\{x|[f ; \vec{v}] \dashv \alpha\rangle\rangle x\} \rightarrow \text { False }
$$

Typing total recursive functions

- For $f: \mathcal{A}_{k}$ and $\vec{v}: \mathcal{N}^{k}$ fixed, f terminates on \vec{v} iff:
$-\exists x, \llbracket f \rrbracket \vec{v} x$
$-\exists x \exists \alpha,[f ; \vec{v}]-[\alpha\rangle\rangle x$
$-\exists \alpha \exists x,[f ; \vec{v}]-[\alpha\rangle x$
$-\exists \alpha$, inhabited $\{x \mid[f ; \vec{v}]-[\alpha\rangle x\}$
- For any α, the type $\{x|[f ; \vec{v}]-[\alpha\rangle\rangle x\}$ is decidable:
- nat_reify_t computes $\{\alpha: \mathcal{N} \&\{x: \mathcal{N}|[f ; \vec{v}]-[\alpha\rangle\rangle x\}\}$
- from which we extract x s.t. $\llbracket f \rrbracket \vec{v} x$

Theorem Coq_is_total $(k: \mathcal{N})\left(f: \mathcal{A}_{k}\right)$:
$\left(\forall \vec{v}: \mathcal{N}^{k}, \exists x: \mathcal{N}, \llbracket f \rrbracket \vec{v} x\right) \rightarrow\left\{t: \mathcal{N}^{k} \rightarrow \mathcal{N} \mid \forall \vec{v}: \mathcal{N}^{k}, \llbracket f \rrbracket \vec{v}(t \vec{v})\right\}$

Other applications: reifying undecidable predicates

- Normal forms (typically λ-calculus)
- for $T:$ Type, $R: T \rightarrow T \rightarrow$ Prop
- finitary: $\forall t: T,\{l:$ list $X \mid \forall x, R t x \Longleftrightarrow \operatorname{In} x l\}$
- with normal_form $t n:=(\forall x, \neg R n x) \wedge R^{\star} t n$
- we have: $\forall t,(\exists n$, normal_form $t n) \rightarrow\{n \mid$ normal_form $t n\}$
- From cut-admissibility to cut-elimination
$\forall s(p: \operatorname{proof} s),(\exists q:$ proof s, cut_free $q) \rightarrow\{q:$ proof $s \mid$ cut_free $q\}$
- Recursively enumerable predicates (of the form $\vec{v} \mapsto \llbracket f \rrbracket \vec{v} 0$)

$$
\forall(k: \mathcal{N})\left(f: \mathcal{A}_{k}\right),\left(\exists \vec{v}: \mathcal{N}^{k}, \llbracket f \rrbracket \vec{v} 0\right) \rightarrow\left\{\vec{v}: \mathcal{N}^{k} \mid \llbracket f \rrbracket \vec{v} 0\right\}
$$

Conclusion

- Mechanization of the Turing completeness of Coq
- without using any (extra) axiom
- by implementing reification of decidable predicates over nat
- Coq has a kind of unbounded minimization
- provided the predicate can be informatively decided
- and there is a non-informative inhabitation proof
- Kleene's T predicate replaced with cost aware big-step semantics
- avoid small-step semantics and encodings
- avoid compiler correctedness
- show decidability of cost aware big-step semantics
- Reification extended to some undecidable predicates as well

