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Well Quasi Orders (WQO)
▶ Classical defn. for R : rel2 X (ie. X → X → Prop) :

▶ R is a Quasi Order (refl., trans.)
▶ Almost Full (AF): ∀f : N→ X , ∃i < j ,R fi fj
▶ any ∞ sequence contains a good pair
▶ univ. quantified over ∞ sequences, as classical wf.

▶ Important in computer science and mathematics
▶ termination: terminator rule, Karp-Miller
▶ decidability: relevance logic (Kripke)
▶ polynomial ideals and Gröbner basis (Hilbert)
▶ Dickson, Higman, Kruskal, Robertson-Seymour

▶ This AF notion is constructively too weak:
▶ requires added constructively “acceptable” axioms
▶ Count. Ch., bar ind. princ. (Veldman&Bezem 93)
▶ Stumps and Brouwer’s thesis (Veldman 2004)
▶ limited to relations over N
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AF relations in Inductive Type Theory

▶ About Brouwer’s Fan Theorem (Coquand 2003):
▶ intuitive explanation of this constructive weakness
▶ Almost Full: ∀f : N→ X ...
▶ only captures sequences N→ X given by laws
▶ bar ind. predicates capture arbitrary ∞ sequences

▶ Stronger (constructive) AF notions:
▶ do not require added axioms
▶ bar ind. predicates (Coquand&Fridlender 93)
▶ ind. well-foundedness (Seisenberger 2003)

▶ only for decidable relations

▶ inductive AF relations (Vytiniostis et al. 2012)
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Why (quasi) morphisms are important

▶ Veldman’s proof of Kruskal in Coq (DLW2015)
▶ Major cleanup and refactoring (2022–24)
▶ Morphisms used extensively

▶ Surjective relational morphisms
▶ Monotonicity, functional maps have drawbacks
▶ But rel. morph. versatile tool to transfer AF

▶ Quasi morphisms
▶ Emerged as an abstraction (was inlined)
▶ Can be understood independently
▶ Factors out FAN and bar inductive predicates

▶ The project published on opam− coq

▶ Description: @GH/DmxLarchey/Coq-Kruskal

https://github.com/DmxLarchey/Coq-Kruskal
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Almost Fullness inductively
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Inductive Almost Full relations
▶ Inductive predicate (Vytiniostis et al. 2012)
▶ For R : rel2 X , define af R : Prop (or Type)

∀x y , R x y

af R
⟨af_full⟩

∀a, af R↑a
af R

⟨af_lift⟩

▶ the lifted relation: (R↑a) x y := R x y ∨ R a x
▶ any seq. containing x (R-above a) is R↑a-good
▶ any sequence of liftings ultimately renders R full and

af R → ∀f : N→ X ,∃tm ∃i < j < m,R fi fj

▶ Enough for constructive Ramsey (Dickson’s lemma):

af R → af T →
{
af (R ∩ T )
af (R × T )
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AF transfer: how to prove af R → af T

▶ In the artifact of (Vytiniostis et al. 2012)

▶ af_mono : R ⊆ T → af R → af T
▶ limited: R,T : rel2 X have same carrier type

▶ af_comap : af R → af
(
λ x1 x2, R (f x1) (f x2)

)
▶ impose a shape R (f ·) (f ·) on goal

▶ Transfers af R → af T w/o those limitations

▶ Using surjective morphisms f : X → Y
▶ surjective: ∀y : Y ,∃tx : X , y = f x
▶ morphism: ∀x1 x2, R x1 x2 → T (f x1) (f x2)

▶ But what about e.g. af R → af (R⇓P)?
▶ surjective on to carrier {y | P y}?
▶ unless assuming P to be Boolean...
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Surjective relational morphisms

▶ A restricted rel. R⇓P has carrier type {x | P x}
▶ is an important use case
▶ P decidable/Boolean is too strong assumption

▶ But the morphism need not be a function!!

▶ As a relational map: f : X → Y → Prop with
▶ ∀y : Y , ∃tx : X , f x y
▶ ∀x1 x2 y1 y2, f x1 y1 → f x2 y2 → R x1 x2 → T y1 y2

▶ We get af R → af T under surjective morphisms

▶ Versatile tool, subsumes af_mono and af_comap

▶ Example of direct application:
▶ af R → af (R⇓P) (partial id. map)
▶ af R↑a↔ af R⇓(¬R a) (when R a dec.)
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Quasi morphisms
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Transfers using Quasi morphisms

▶ Inlined in (Fridlender99) and (Veldman04) proofs
▶ a bit specific to this use case
▶ but abstracts away the FAN theorem

▶ For transfers: af R → af T↑y0

▶ An evaluation function ev : X → Y
▶ X = analyses, Y = evaluations
▶ E : rel1 X are exceptional analyses
▶ finite inverse image: ∀y , fin (ev−1 y)
▶ ∀x1 x2, R x1 x2 → T (ev x1) (ev x2) ∨ E x1
▶ ∀y , (ev−1 y) ⊆ E → T y0 y

▶ Quasi morphisms can be ext. to relational maps
▶ requires several extra (technical) assumptions
▶ used in @GH/DmxLarchey/Kruskal-Veldman

https://github.com/DmxLarchey/Kruskal-Veldman
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Quasi morphisms: the decidable case

▶ This case is easy to understand, but less general

▶ Assuming T y0 and E are decidable:
▶ ∀y : Y , T y0 y ∨t ¬Ty0y
▶ ∀x : X , E x ∨t ¬E x

▶ Surj. rel. morph. from R⇓(¬E ) to T⇓(¬T y0)
▶ rel. morph.: λ x y , π1(ev x) = π1 y
▶ surj. by finitary choice over ev−1 y for E

▶ But af R → af
(
R⇓(¬E )

)
(always)

▶ And af R⇓(¬T y0)→ af T↑y0 (by dec.)

▶ Hence af R → af T↑y0
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Quasi morphisms: the general case

▶ No dec. assumption on T y0 nor on E
▶ This case is not trivial

▶ The full argument in the artifact

▶ We just introduce the tools involved:
▶ Bar inductive predicates and good lists
▶ The FAN theorem for inductive bars
▶ A finitary combinatorial principle
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FANs as finitary choice sequences
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Bar inductive predicates and AF
▶ R : rel2 X and good R ,P : rel1 (list X )
▶ bar P : list X → Prop (or Type)

P l
bar P l

R y x y ∈ l

good R (x :: l)

∀x , bar P (x :: l)

bar P l

good R l

good R (x :: l)

▶ bar P l : P is bound to be met...

bar P [] → ∀f : N→ X ∃tm,P [fm−1; . . . ; f0]

▶ equivalences:

good R [x1; . . . ; xn] ↔ ∃ i j , j < i ∧ R xi xj
bar (good R) [x1; . . . ; xn] ↔ af (R↑xn↑ . . . ↑x1)

▶ derive af R ↔ bar (good R) []
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The FAN theorem for inductive bars

▶ The product embedding for lists for R : X → Y → Prop

▶ Forall2 R : list X → list Y → Prop

Forall2 R [] []

R x y Forall2 R l m

Forall2 R (x :: l) (y ::m)

▶ define FAN lw := λ c , Forall2 (· ∈ ·) c lw
▶ collects finitely many choices sequences

[c1; . . . ; cn] ∈ FAN [w1; . . . ;wn] ↔ c1 ∈ w1, . . . , cn ∈ wn

▶ FAN theorem for P : rel1 (list X ) (Fridlender 99)
▶ if monotonic: ∀ x l , P l → P (x :: l)
▶ then bar P []→ bar (λ lw , FAN lw ⊆ P) []

▶ mono. predicates bound to be met uniformly /FAN
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Finitary choice principles

▶ Finite one dimensional choice:
▶ for F ,P,Q : rel1 X
▶ if finF and F ⊆ P ∪ Q
▶ then F ⊆ P or ∃x ,F x ∧ Q x

▶ Finite two dimensional choice:

▶ for P : rel1 (list X ), B : rel1 X , and lw : list (list X )

▶ assuming ∀c , FAN lw c → P c ∨ ∃x , x ∈ c ∧ B x
▶ any choice sequence satisfies P or meets B

▶ we have either:
▶ ∃c , FAN lw c ∧ P c (P contains a choice sequence)
▶ or ∃w , w ∈ lw ∧ w ⊆ B (B is unavoidable)
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Termination using AF relations
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From Almost Full to Well Founded

▶ Induction principle from (Vytiniostis et al. 2012)

af R → T+ ∩ R−1 ⊆ ∅ → well_foundedT

▶ small examples in Stop when you are almost full...

▶ larger example: Karp-Miller (Yamamoto et al. 17)
▶ deciding coverability for Petri nets

▶ revisited at @GH/DmxLarchey/Karp-Miller
▶ decision: a covering or its impossibility
▶ refined: Karp-Miller tree with accel. transitions

https://github.com/DmxLarchey/Karp-Miller
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Bounding search using Almost Fullness
▶ A constructive König’s lemma:

▶ for R : rel2 X with af R
▶ and P : N→ rel1 X with ∀n, fin (P n)

∃tm, ∀v : Xm, (∀i ,P i vi)→∃i < j , R vi vj

▶ P as a finitely branching search space

▶ is m obtained via bar P [] and the FAN theorem

▶ Coq proof here: @GH/DmxLarchey/Kruskal-FAN
▶ used for redundancy avoiding (proof-)search:

▶ deciding Implicational Relevance Logic (IJCAR 18)
▶ m bounds height of irredundant search branches
▶ at @GH/DmxLarchey/Relevant-decidability

▶ Friedman’s tree(n) and TREE(n) monsters
▶ m guards termination of unbounded linear search
▶ Coq code at @GH/DmxLarchey/Friedman-TREE

https://github.com/DmxLarchey/Kruskal-FAN
https://github.com/DmxLarchey/Relevant-decidability
https://github.com/DmxLarchey/Friedman-TREE
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