
'

&

$

%

Phase Semantics and

the Undecidability of Boolean BI
(presented in LICS'10)

Dominique Larchey-Wendling & Didier Galmiche

TYPES team, LORIA { CNRS

Nancy, France

GEOCAL-LAC, LORIA, Nancy

1

'

&

$

%

Separation Logic

� Introduced by Reynolds&O'Hearn 01 to model:

– a resource logic

– properties of the memory space (cells)

– aggregation of cells into heaps: Loc −*f Val

– heaps can be combined: ∅, A |B = C

� Combines:

– classical logic connectives: ∧, ∨, → . . .

– multiplicative conjunction: ∗

� De�ned via Kripke semantics extended by:

m A ∗B i� ∃a; b s.t. a; b . m and a A and b B

2

'

&

$

%

Separation models

� Decomposition a; b . m interpreted in various structures:

– stacks in pointer logic (Reynolds&O'Hearn&Yang 01),

a | b v m

– but also a | b = m (Calcagno&Yang&O'Hearn 01)

– trees in spatial logics (Calcagno&Cardelli&Gordon 02)

a | b ≡ m

– resource trees in BI-Loc (Biri&Galmiche07)
l1

l2

m1

l3

m2

� Additive → can be Boolean (pointwise) or intuitionistic

3

'

&

$

%

Bunched Implication logic (BI)

� Introduced by Pym 99, 02

– intuitionistic logic connectives: ∧, ∨, → . . .

– multiplicative connectives of MILL: ∗, −∗, I

– sound and complete bunched sequent calculus, with cut

elimination

� Kripke semantics (Pym&O'Hearn 99, Galmiche&Mery&Pym 02)

– partially ordered partial commutative monoids (M; ◦;6)

– intuitionistic Kripke semantics for additives

– relevant Kripke semantics for multiplicatives

– sound and complete Kripke semantics for BI

4

'

&

$

%

BI Logic continued

� In BI, decomposition interpreted by a ◦ b 6 m:

– resource monoids (partial, ordered)

– intuitionistic additives and relevant multiplicatives

� BI has proof systems:

– cut-free bunched sequent calculus (Pym 99)

– resource tableaux (Galmiche&Mery&Pym 05)

– inverse method (Donnelly&Gibson et al. 04)

� Additives intuitionistic in BI, mostly Boolean in Separation Logic

5

'

&

$

%

Boolean BI (BBI)

� Loosely de�ned by Pym as BI + {¬¬A→ A}

– cut elimination lost, no \nice" sequent calculus

– Kripke sem. by relational monoids (Larchey&Galmiche 06)

– Display Logic based cut-free proof-system (Brotherston 09)

� Other de�nition (logical core of Separation and Spatial logics)

– additive implication → Kripke interpreted pointwise

– based on (commutative) partial monoids (M; ◦)

– has a sound and complete (labelled tableaux) proof-system

6

'

&

$

%

Proof theory for BBI

� Compared to (intuitionistic) BI: much less satisfying situation

– BI has Bunched sequent calculus (O'Hearn&Pym 99)

– with cut-elimination from its inception

– BI is decidable (Galmiche et al. 05)

� Hilbert system s/c for relational BBI (LW.&Galmiche 06, Yang)

� Semantic tableaux s/c for (partial) monoidal BBI

– (unexpected) embedding of BI into BBI (LW.&Galmiche 09)

� Display calculi s/c for relational BBI (Brotherston 09, 10)

7

'

&

$

%

Kripke semantics of BBI (i)

� Non-deterministic(/relational) monoid (ND) (M; ◦; �)

– ◦ :M ×M −→ P(M) and � ∈M

– for X;Y ∈ P(M), X ◦ Y = {z | ∃x ∈ X;∃y ∈ Y; z ∈ x ◦ y}

– � ◦ x = {x} (neutrality), x ◦ y = y ◦ x (commutativity)

– x ◦ (y ◦ z) = (x ◦ y) ◦ z (associativity)

– (P(M); ◦; {�}) is a (usual) commutative monoid

– residuation: X −−◦ Y = {z | z ◦X ⊆ Y }

8

'

&

$

%

Kripke semantics of BBI (ii)

� Boolean (pointwise) Kripke semantics extended by:

m A ∗B i� ∃a; b s.t. m ∈ a ◦ b and a A and b B

m A −∗B i� ∀a; b (b ∈ a ◦m and a A)⇒ b B

m I i� m = �

� Decision problems:

– checking a particular model (m A), Calcagno et al. 01 (SL)

– validity in a particular interpretation (∀m;m A)

– univ. validity w.r.t. class of models (∀M∀∀m;m A)

9

'

&

$

%

Classes of models for BBI

� Partial (deterministic) monoids (PD): a ◦ b ⊆ {k}

� Total (deterministic) monoids (TD): a ◦ b = {k}

� Obviously: TD (PD (ND

� Separation models are in HM (Brotherston&Kanovich 10):

– Heaps monoids: (L −*f V;|;∅), sub-class of PD

– RAM-domain model: (Pf(N);]; ∅) ' (N −*f {?};|;∅)

� Free monoids: (Mf(X);+; 0), sub-class of TD

� Validity de�nes di�erent logics: BBIND (BBIPD (BBITD

10

'

&

$

%

Overview of the main steps

� The map denoted !(·) I ∧ (·):

– is a (sound) embedding from ILL to BBI (not faithful)

– is faithful for Trivial Phase Semantics

– is faithful for fragments which are complete for TPS

� Search a fragment both complete for TPS and undecidable:

– ILL undecidable but IMALL is, hence ! is needed

– (!;�)-Horn fragment (Kanovich 95) not complete for TPS

– s-IMELL(
0
fragment (De Groote et al 04) is complete for TPS

– s-IMELL(
0
decidability is equiv. to MELL (still open problem)

– eILL extends s-IMELL(
0
and ful�lls the requirements

11

'

&

$

%

Kripke vs. Phase semantics for BBI

� Change of notation: m A i� m ∈ [[A]]

� The interpretation of multiplicative conjunction ∗

m A ∗B i� ∃a; b s.t. a ◦ b = m and a A and b B

[[A ∗B]] = [[A]] ◦ [[B]]

� Phase semantics for BBI (equiv. to Kripke sem.):

[[⊥]] = ∅ [[A ∨B]] = [[A]] ∪ [[B]]

[[>]] =M [[A ∧B]] = [[A]] ∩ [[B]]

[[I]] = {�} [[A ∗B]] = [[A]] ◦ [[B]]

[[¬A]] =M\[[A]] [[A −∗B]] = [[A]] −−◦ [[B]]

12

'

&

$

%

Phase semantics for ILL

� Intuitionistic phase space (M; ◦; �; (·)�;K):

– (M; ◦; �) in ND (usually TD)

– (·)� is a closure operator with A� ◦B� ⊆ (A ◦B)� (stability)

– K sub-monoid of M : � ∈ K and K ◦K ⊆ K

– K ⊆ {�}� ∩ {x ∈M | x ∈ (x ◦ x)�}

� Phase interpretation of ILL operators:

[[⊥]] = ∅� [[A�B]] = ([[A]] ∪ [[B]])�

[[>]] =M [[A&B]] = [[A]] ∩ [[B]]

[[1]] = {�}� [[A�B]] = ([[A]] ◦ [[B]])�

[[!A]] = (K ∩ [[A]])� [[A(B]] = [[A]] −−◦ [[B]]

13

'

&

$

%

Trivial phase semantics for ILL

� Intuitionistic phase space (M; ◦; �; (·)�;K):

– (·)� is the identity closure : A� = A

– and as a consequence K = {�}

� Trivial phase interpretation of ILL operators:

[[⊥]] = ∅ [[A�B]] = [[A]] ∪ [[B]]

[[>]] =M [[A&B]] = [[A]] ∩ [[B]]

[[1]] = {�} [[A�B]] = [[A]] ◦ [[B]]

[[!A]] = {�} ∩ [[A]] [[A(B]] = [[A]] −−◦ [[B]]

14

'

&

$

%

ILL vs. BBI phase semantics

Trivial phase sem. for ILL Phase sem. for BBI

[[⊥]] = ∅

[[>]] =M

[[1]] = {�}

[[!A]] = {�} ∩ [[A]]

[[A�B]] = [[A]] ∪ [[B]]

[[A&B]] = [[A]] ∩ [[B]]

[[A�B]] = [[A]] ◦ [[B]]

[[A(B]] = [[A]] −−◦ [[B]]

[[⊥]] = ∅

[[>]] =M

[[I]] = {�}

[[I ∧ A]] = {�} ∩ [[A]]

[[A ∨B]] = [[A]] ∪ [[B]]

[[A ∧B]] = [[A]] ∩ [[B]]

[[A ∗B]] = [[A]] ◦ [[B]]

[[A −∗B]] = [[A]] −−◦ [[B]]

15

'

&

$

%

ILL as a fragment of BBIx (x ∈ {ND;PD;TD})

ILL

BBIx

Phase Sem. Phase Sem. (x)

!(·) I ∧ (·)

� De�ne a map denoted !(·) I ∧ (·)

– replace 1=I, �=∨, &=∧, �=∗, (=−∗

– replace !A by I ∧ A

� Result: Sound embedding for phase semantics (but not faithful)

16

'

&

$

%

ILLt

x
as a fragment of BBIx (x ∈ {ND;PD;TD})

ILLt
x

BBIx

Triv. Ph. Sem. (x) Phase Sem. (x)

(·) I ∧ (·)

� Result: !(·) I ∧ (·) is faithful for Trivial Phase Semantics

17

'

&

$

%

Towards the undecidability of BBIx

ILL
BBIx

Phase Sem. Phase Sem. (x)

(·) I ∧ (·)F

� Among the known/unkown fragments of ILL, �nd F

– s.t. F is complete for trivial phase semantics (in class x)

– s.t. F is undecidable

18

'

&

$

%

The elementary fragment eILL of ILL

� Extension of s-IMELL(
0
(De Groote et al. 04)

� Elementary sequents: ! �; g1; : : : ; gk ` d (gi; a; b; c; d variables)

– In �: a((b(c), (a(b)(c or (a& b)(c

– where a, b and c variables

� G-eILL, goal directed rules for eILL:

! �; a ` a
〈Ax〉

! �;� ` a ! �;� ` b

! �;�;� ` c
a((b(c) ∈ �

!�;�; a ` b

! �;� ` c
(a(b)(c ∈ �

!�;� ` a ! �;� ` b

! �;� ` c
(a& b)(c ∈ �

19

'

&

$

%

Completeness results for eILL

� G-eILL is sound for ND phase semantics on eILL

– hence sound w.r.t. any class of models

� free monoidal trivial phase sem. (FM) is complete for G-eILL

– hence G-eILL is complete for eILL

– hence trivial phase sem. (x ∈ {ND;PD;TD}) is also complete

� we can also prove eILL is complete for class HM (bisimulation)

20

'

&

$

%

Undecidability results for eILL/BBI

� encode two counter Minsky machines acceptance in eILL

– compared to Kanovich 95: forking with & instead of �

– faithfullness proof by semantic argument like Lafont 96

– Kanovich 95 was through normalization (i.e. cut-elimination)

– Rem: Okada 02 proved cut-elim. through phase semantics

� obtain eILLt
N×N is undecidable, deduce eILL is undecidable

� Consequence: BBIx is undecidable (x ∈ {ND;PD;TD;HM;FM})

21

'

&

$

%

Two counter Minsky Machines

� Two counters, a and b, values in N

� l+ 1 positions, 0 is terminal position, l instructions

� State (i; x; y): i position, x value of a, y value of b

� Two kinds of instructions: \add 1" & \z.t./sub 1"

i: a := a+ 1 ; goto j (i; x; y)→ (j; x+ 1; y)

i: if a = 0 then goto j (i; 0; y)→ (j; 0; y)

else a := a − 1 ; goto k (i; x+ 1; y)→ (k; x; y)

� Acceptance: (x; y) accepted if (1; x; y)→? (0; 0; 0)

� Minsky: there exists a MM with non-recursive acceptance

22

'

&

$

%

Encoding acceptance of two counter MM

� Build a sequent ! �; ax; by ` qi for state (i; x; y)

– variables a and b for the two counters, plus a and b (z.t.)

– variables q0; : : : ql represents the l+ 1 positions of the MM

– instructions encoding in �, a and b never in goal position

– acceptance as (universal) validity:

(i; x; y)→? (0; 0; 0) i� ! �; ax; by ` qi univ. valid

� Encode zero test on b: ! �; ax; by ` a i� y = 0

� Prove soundness: (i; x; y)→r (0; 0; 0)⇒ ! �; ax; by ` qi

� Prove completeness: ! �; ax; by ` qi ⇒ (i; x; y)→? (0; 0; 0)

23

'

&

$

%

Encoding zero test on b (soundness)

� With (a(a)(a and a((a(a) in �

〈Ax〉
! �; a ` a

〈Ax〉
! �; a ` a

〈Ax〉
! �; a; by ` a

(a(a)(a ∈ �
!�; by ` a

a((a(a) ∈ �
::: applied x − 1 times

! �; ax−1; by ` a
a((a(a) ∈ �

!�; ax; by ` a

� is the only possible proof, and only when y = 0

24

'

&

$

%

Ground case of the recursion r = 0 (soundness)

� Corresponds to 0 transitions: (i; x; y)→0 (0; 0; 0)

� In this case, i = x = y = 0

� With (a(a)(q0 in �

〈Ax〉
! �; a ` a

(a(a)(q0 ∈ �
!� ` q0

� We have our (unique) G-eILL proof

25

'

&

$

%

Encoding add 1 to a (soundness)

� With (a(qj)(qi in �

� \add 1" instruction: i : a := a+ 1 ; goto j

� Operational semantics: (i; x; y)→ (j; x+ 1; y)→r (0; 0; 0)

� Recursively built (unique) G-eILL proof to establish validity:

: : :

! �; ax; a; by ` qj
(a(qj)(qi ∈ �

!�; ax; by ` qi

26

'

&

$

%

Encoding sub 1/zero test on a (soundness) (i)

� \sub 1/zero t.": i : if a = 0 then goto j else a := a − 1 ; goto k

� Case x = 0, with (b& qj)(qi in �

� Operational semantics: (i; 0; y)→ (j; 0; y)→r (0; 0; 0)

� Corresponding (unique) G-eILL proof:

z.t. on a

! �; by ` b

: : :

! �; by ` qj
(b& qj)(qi ∈ �

!�; by ` qi

27

'

&

$

%

Encoding sub 1/zero test on a (soundness) (ii)

� \sub 1/zero t.": i : if a = 0 then goto j else a := a − 1 ; goto k

� Case x+ 1 > 0, with a((qk(qi) in �

� Operational semantics: (i; x+ 1; y)→ (k; x; y)→r (0; 0; 0)

� Corresponding (unique) G-eILL proof:

〈Ax〉
! �; a ` a

: : :

! �; ax; by ` qk
a((qk(qi) ∈ �

!�; a; ax; by ` qi

28

'

&

$

%

Summary of the encoding and soundness

� Start with � =

a((a(a); b((b(b);

(a(a)(a; (a(a)(b; (a(a)(q0

� For instruction i : a := a+ 1 ; goto j

– add
{
(a(qj)(qi

}
to �

� For instruction i : if a = 0 then goto j else a := a − 1 ; goto k

– add
{
(b& qj)(qi; a((qk(qi)

}
to �

� Soundness theorem:

if (i; x; y)→? (0; 0; 0) then !�; ax; by ` qi has a G-eILL proof

� as a consequence, ! �; ax; by ` qi is univ. valid

29

'

&

$

%

Completeness of the encoding (summary)

� Let us suppose ! �; ax; by ` qi is univ. valid, � = �1; : : : ; �r

� By trivial phase interpretation in N × N (class FM)

[[a]] = {(1; 0)} [[b]] = {(0; 1)} [[a]] = N × {0} [[b]] = {0} × N

[[qi]] = {(x; y) ∈ N × N | (i; x; y)→
? (0; 0; 0)}

� We will show (0; 0) ∈ [[�i]] for any i (completeness Lemma)

� By universal validity of ! �; ax; by ` qi, we derive:

[[!�1]] ◦ · · · ◦ [[!�r]] ◦ [[a]] ◦ · · · ◦ [[a]] ◦ [[b]] ◦ · · · ◦ [[b]] ⊆ [[qi]]

� Hence {(0; 0)} ◦ · · · ◦ {(0; 0)} ◦ {(x; 0)} ◦ {(0; y)} ⊆ [[qi]]

� Thus (x; y) ∈ [[qi]], and as a consequence (i; x; y)→? (0; 0; 0)

30

'

&

$

%

Inside the proof of the Completeness Lemma (i)

� Case of instruction i : a := a+ 1 ; goto j

� � contains (a(qj)(qi

� Completeness Lemma condition: (0; 0) ∈ [[(a(qj)(qi]]

� Interpreted by [[a]] −−◦ [[qj]] ⊆ [[qi]]

� Translates into ∀x; y (x; y) + (1; 0) ∈ [[qj]]⇒ (x; y) ∈ [[qi]]

� Thus ∀x; y (j; x+ 1; y)→? (0; 0; 0)⇒ (i; x; y)→? (0; 0; 0)

� This is exactly the operational semantics of \add 1 to a"

31

'

&

$

%

Inside the proof of the Completeness Lemma (ii)

� Case x = 0 of instruction i : if a = 0 then goto j else : : :

� � contains (b& qj)(qi

� Completeness Lemma condition: (0; 0) ∈ [[(b& qj)(qi]]

� Interpreted by [[b]] ∩ [[qj]] ⊆ [[qi]]

� or ∀x; y
(
x = 0 and (j; x; y)→? (0; 0; 0)

)
⇒ (i; x; y)→? (0; 0; 0)

� Thus ∀y (j; 0; y)→? (0; 0; 0)⇒ (i; 0; y)→? (0; 0; 0)

� This is exactly the operational semantics of the \then" branch

32

'

&

$

%

Inside the proof of the Completeness Lemma (iii)

� Case x+ 1 > 0 of i : if a = 0 then : : : else a := a − 1 ; goto k

� � contains a((qk(qi)

� Completeness Lemma condition: (0; 0) ∈ [[a((qk(qi)]]

� Interpreted by [[a]] ◦ [[qk]] ⊆ [[qi]]

� Becomes ∀x; y (k; x+ 1; y)→? (0; 0; 0)⇒ (i; x; y)→? (0; 0; 0)

� This is exactly the operational semantics of the \else" branch

33

'

&

$

%

Consequences of the encoding of MM

� An encoding suitable for classes ND, PD, TD and FM

– N × N ∈ FM ⊆ TD ⊆ PD ⊆ ND

– obtain for undecidability of eILLt
N×N and also for eILL

� Also of BBIND, BBIPD, BBITD, BBIFM and BBIN×N

� Undecidability for BBIHM through bisimulation

34

'

&

$

%

Conclusion, related works, perspectives

� Encoding suitable for class FM and thus, all classes

– undecidability of eILL, BBIx, ∀x ∈ {ND;PD;TD;HM;FM}

� Encoding adapted for class of groups (LW., MFPS 10)

– another proof of undecidability of Classical BI (CBI)

� Similar results by Brotherston&Kanovich (LICS 10)

– focus on Separation Logic (RAM-domain model)

– obtained completely independently, also applies to CBI

� What about decidability of BBI restricted to N ?

– 1-counter MM are decidable (Bouajjani et al. 99)

� Complete the classi�cation of BBIx

35

'

&

$

%

Bisimulation vs. Kripke/phase semantics of BBI

� (M; ◦; �) and (N; ?; �) two ND monoids

� Bisimulation relation ∼ ⊆M ×N checks:

m ∼ m′ ⇒

m = � i� m′ = �

∀a ◦ b 3 m∃a′ ? b′ 3 m′ a ∼ a′ and b ∼ b′

∀a′ ? b′ 3 m′ ∃a ◦ b 3 m a ∼ a′ and b ∼ b′

∀b ∈ a ◦m∃b′ ∈ a′ ? m′ a ∼ a′ and b ∼ b′

∀b′ ∈ a′ ? m′ ∃b ∈ a ◦m a ∼ a′ and b ∼ b′

� if m ∼ m′ then for any F of BBI, m ∈ [[F]] i� m′ ∈ [[F]]′

36

'

&

$

%

Bisimulating N × N in Pf(N)

� (Pf(N);]; ∅) and (N × N;+; (0; 0)) are two ND monoids

� Let N = E] O (e.g. even/odd numbers)

� For X ∈ Pf(N), let '(X) = (card(X ∩ E); card(X ∩ O))

� ' : Pf(N) −→ N × N is a projection (surjective)

� ' ⊆ Pf(N) × (N × N) is a bisimulation

� Use ' to transform the N × N model into a Pf(N) model

– simply de�ne [[x]]′ = '−1
(
[[x]]

)

37

