# Phase Semantics and the Undecidability of Boolean BI 

(presented in LICS'10)

Dominique Larchey-Wendling \& Didier Galmiche TYPES team, LORIA - CNRS

Nancy, France

GEOCAL-LAC, LORIA, Nancy

## Separation Logic

- Introduced by Reynolds\&O'Hearn 01 to model:
- a resource logic
- properties of the memory space (cells)
- aggregation of cells into heaps: Loc $\longrightarrow_{\mathrm{f}} \mathrm{Val}$
- heaps can be combined: $\varnothing, A \uplus B=C$
- Combines:
- classical logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative conjunction: *
- Defined via Kripke semantics extended by:

$$
m \Vdash A * B \quad \text { iff } \quad \exists a, b \text { s.t. } a, b \triangleright m \text { and } a \Vdash A \text { and } b \Vdash B
$$

## Separation models

- Decomposition $a, b \triangleright m$ interpreted in various structures:
- stacks in pointer logic (Reynolds\&O'Hearn\&Yang 01), $a \biguplus b \sqsubseteq m$
- but also $a \uplus b=m$ (Calcagno\&Yang\&O'Hearn 01)
- trees in spatial logics (Calcagno\&Cardelli\&Gordon 02) $a \mid b \equiv m$
- resource trees in BI-Loc (Biri\&Galmiche07)
- Additive $\rightarrow$ can be Boolean (pointwise) or intuitionistic


## Bunched Implication logic (BI)

- Introduced by Pym 99, 02
- intuitionistic logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative connectives of MILL: *, $\rightarrow$, I
- sound and complete bunched sequent calculus, with cut elimination
- Kripke semantics (Pym\&O'Hearn 99, Galmiche\&Mery\&Pym 02)
- partially ordered partial commutative monoids ( $\mathrm{M}, \circ, \leqslant$ )
- intuitionistic Kripke semantics for additives
- relevant Kripke semantics for multiplicatives
- sound and complete Kripke semantics for BI


## BI Logic continued

- In BI , decomposition interpreted by $a \circ b \leqslant m$ :
- resource monoids (partial, ordered)
- intuitionistic additives and relevant multiplicatives
- BI has proof systems:
- cut-free bunched sequent calculus (Pym 99)
- resource tableaux (Galmiche\&Mery\&Pym 05)
- inverse method (Donnelly\&Gibson et al. 04)
- Additives intuitionistic in BI, mostly Boolean in Separation Logic


## Boolean BI (BBI)

- Loosely defined by Pym as $\mathrm{BI}+\{\neg \neg A \rightarrow A\}$
- cut elimination lost, no "nice" sequent calculus
- Kripke sem. by relational monoids (Larchey\&Galmiche 06)
- Display Logic based cut-free proof-system (Brotherston 09)
- Other definition (logical core of Separation and Spatial logics)
- additive implication $\rightarrow$ Kripke interpreted pointwise
- based on (commutative) partial monoids ( $\mathrm{M}, \circ$ )
- has a sound and complete (labelled tableaux) proof-system


## Proof theory for BBI

- Compared to (intuitionistic) BI: much less satisfying situation
- BI has Bunched sequent calculus (O’Hearn\&Pym 99)
- with cut-elimination from its inception
- BI is decidable (Galmiche et al. 05)
- Hilbert system s/c for relational BBI (LW.\&Galmiche 06, Yang)
- Semantic tableaux s/c for (partial) monoidal BBI
- (unexpected) embedding of BI into BBI (LW.\&Galmiche 09)
- Display calculi s/c for relational BBI (Brotherston 09, 10)


## Kripke semantics of BBI (i)

- Non-deterministic(/relational) monoid (ND) ( $M, \circ, \epsilon$ )
$-\circ: M \times M \longrightarrow \mathbb{P}(M)$ and $\epsilon \in M$
- for $X, Y \in \mathbb{P}(M), X \circ Y=\{z \mid \exists x \in X, \exists y \in Y, z \in x \circ y\}$
$-\epsilon \circ x=\{x\}$ (neutrality), $x \circ y=y \circ x$ (commutativity)
$-x \circ(y \circ z)=(x \circ y) \circ z$ (associativity)
- $(\mathbb{P}(M), \circ,\{\epsilon\})$ is a (usual) commutative monoid
- residuation: $X \multimap Y=\{z \mid z \circ X \subseteq Y\}$


## Kripke semantics of BBI (ii)

- Boolean (pointwise) Kripke semantics extended by:

$$
\begin{array}{cll}
m \Vdash A * B & \text { iff } & \exists a, b \text { s.t. } m \in a \circ b \text { and } a \Vdash A \text { and } b \Vdash B \\
m \Vdash A * B & \text { iff } & \forall a, b \quad(b \in a \circ m \text { and } a \Vdash A) \Rightarrow b \Vdash B \\
m \Vdash I & \text { iff } & m=\epsilon
\end{array}
$$

- Decision problems:
- checking a particular model $(m \Vdash A)$, Calcagno et al. 01 (SL)
- validity in a particular interpretation $(\forall m, m \Vdash A)$
- univ. validity w.r.t. class of models $(\forall \mathcal{M} \forall \Vdash \forall m, m \Vdash A)$


## Classes of models for BBI

- Partial (deterministic) monoids (PD): $a \circ b \subseteq\{k\}$
- Total (deterministic) monoids (TD): $a \circ b=\{k\}$
- Obviously: TD $\subsetneq \mathrm{PD} \subsetneq \mathrm{ND}$
- Separation models are in HM (Brotherston\&Kanovich 10):
- Heaps monoids: $\left(L \longrightarrow_{\mathrm{f}} V, \uplus, \varnothing\right)$, sub-class of PD
- RAM-domain model: $\left(\mathcal{P}_{\mathrm{f}}(\mathbb{N}), \uplus, \emptyset\right) \simeq\left(\mathbb{N} \longrightarrow_{\mathrm{f}}\{\star\}, \uplus, \varnothing\right)$
- Free monoids: $\left(\mathbb{M}_{\mathrm{f}}(X),+, 0\right)$, sub-class of TD
- Validity defines different logics: $\mathrm{BBI}_{\mathrm{ND}} \subsetneq \mathrm{BBI}_{\mathrm{PD}} \subsetneq \mathrm{BBI}_{\mathrm{TD}}$


## Overview of the main steps

- The map denoted $!(\cdot) \leadsto>\mid \wedge(\cdot)$ :
- is a (sound) embedding from ILL to BBI (not faithful)
- is faithful for Trivial Phase Semantics
- is faithful for fragments which are complete for TPS
- Search a fragment both complete for TPS and undecidable:
- ILL undecidable but IMALL is, hence! is needed
- (!, $\oplus$ )-Horn fragment (Kanovich 95) not complete for TPS
- s-IMELL ${ }_{0}^{-0}$ fragment (De Groote et al 04) is complete for TPS
- s-IMELL ${ }_{0}^{-0}$ decidability is equiv. to MELL (still open problem)
- elLL extends s-IMELL ${ }_{0}^{-0}$ and fulfills the requirements


## Kripke vs. Phase semantics for BBI

- Change of notation: $m \Vdash A$ iff $m \in \llbracket A \rrbracket$
- The interpretation of multiplicative conjunction *

$$
\begin{array}{cl}
m \Vdash A * B & \text { iff } \quad \exists a, b \text { s.t. } a \circ b=m \text { and } a \Vdash A \text { and } b \Vdash B \\
\llbracket A * B \rrbracket & =\llbracket A \rrbracket \circ \llbracket B \rrbracket
\end{array}
$$

- Phase semantics for BBI (equiv. to Kripke sem.):

$$
\left.\begin{array}{rlrl}
\llbracket \perp \rrbracket & =\emptyset & & \llbracket A \vee B \rrbracket
\end{array}=\llbracket A \rrbracket \cup \llbracket B \rrbracket\right]
$$

## Phase semantics for ILL

- Intuitionistic phase space $\left(M, \circ, \epsilon,(\cdot)^{\diamond}, K\right)$ :
- ( $M, \circ, \epsilon$ ) in ND (usually TD)
$-(\cdot)^{\diamond}$ is a closure operator with $A^{\diamond} \circ B^{\diamond} \subseteq(A \circ B)^{\triangleright}$ (stability)
- $K$ sub-monoid of $M: \epsilon \in K$ and $K \circ K \subseteq K$
$-K \subseteq\{\epsilon\}^{\diamond} \cap\left\{x \in M \mid x \in(x \circ x)^{\triangleright}\right\}$
- Phase interpretation of ILL operators:

$$
\begin{aligned}
& \llbracket \perp \rrbracket=\emptyset^{\circ} \quad \llbracket A \oplus B \rrbracket=(\llbracket A \rrbracket \cup \llbracket B \rrbracket)^{\circ} \\
& \llbracket \top \rrbracket=M \quad \llbracket A \& B \rrbracket=\llbracket A \rrbracket \cap \llbracket B \rrbracket \\
& \llbracket 1 \rrbracket=\{\epsilon\}^{\diamond} \quad \llbracket A \otimes B \rrbracket=(\llbracket A \rrbracket \circ \llbracket B \rrbracket)^{\circ} \\
& \llbracket!A \rrbracket=(K \cap \llbracket A \rrbracket)^{\circ} \quad \llbracket A \multimap B \rrbracket=\llbracket A \rrbracket \multimap \llbracket B \rrbracket
\end{aligned}
$$

## Trivial phase semantics for ILL

- Intuitionistic phase space $\left(M, \circ, \epsilon,(\cdot)^{\circ}, K\right)$ :
$-(\cdot)^{\circ}$ is the identity closure: $A^{\circ}=A$
- and as a consequence $K=\{\epsilon\}$
- Trivial phase interpretation of ILL operators:

$$
\begin{aligned}
& \llbracket \perp \rrbracket=\emptyset \quad \llbracket A \oplus B \rrbracket=\llbracket A \rrbracket \cup \llbracket B \rrbracket \\
& \llbracket T \rrbracket=M \quad \llbracket A \& B \rrbracket=\llbracket A \rrbracket \cap \llbracket B \rrbracket \\
& \llbracket 1 \rrbracket=\{\epsilon\} \quad \llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \circ \llbracket B \rrbracket \\
& \llbracket!A \rrbracket=\{\epsilon\} \cap \llbracket A \rrbracket \quad \llbracket A \multimap B \rrbracket=\llbracket A \rrbracket \multimap \llbracket B \rrbracket
\end{aligned}
$$

## ILL vs. BBI phase semantics

Trivial phase sem. for ILL
$\llbracket \perp \rrbracket=\emptyset$
$\llbracket \uparrow \rrbracket=M$
$\llbracket 1 \rrbracket=\{\epsilon\}$
$\llbracket!A \rrbracket=\{\epsilon\} \cap \llbracket A \rrbracket$
$\llbracket A \oplus B \rrbracket=\llbracket A \rrbracket \cup \llbracket B \rrbracket$
$\llbracket A \& B \rrbracket=\llbracket A \rrbracket \cap \llbracket B \rrbracket$
$\llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \circ \llbracket B \rrbracket$
$\llbracket A \multimap B \rrbracket=\llbracket A \rrbracket \multimap \llbracket B \rrbracket$

Phase sem. for BBI
$\llbracket \perp \rrbracket=\emptyset$
$\llbracket \top \rrbracket=M$
$\llbracket 1 \rrbracket=\{\epsilon\}$
$\llbracket \mid \wedge A \rrbracket=\{\epsilon\} \cap \llbracket A \rrbracket$
$\llbracket A \vee B \rrbracket=\llbracket A \rrbracket \cup \llbracket B \rrbracket$
$\llbracket A \wedge B \rrbracket=\llbracket A \rrbracket \cap \llbracket B \rrbracket$
$\llbracket A * B \rrbracket=\llbracket A \rrbracket \circ \llbracket B \rrbracket$
$\llbracket A * B \rrbracket=\llbracket A \rrbracket \multimap \llbracket B \rrbracket$

ILL as a fragment of $\mathrm{BBI}_{x}(x \in\{\mathrm{ND}, \mathrm{PD}, \mathrm{TD}\})$


- Define a map denoted ! $(\cdot) \leadsto \rightarrow \mid \wedge(\cdot)$
- replace $1 / I, \oplus / \vee, \& / \wedge, \otimes / *, \multimap / *$
- replace ! $A$ by $\mathrm{I} \wedge A$
- Result: Sound embedding for phase semantics (but not faithful)


## $\mathrm{ILL}_{x}^{t}$ as a fragment of $\mathrm{BBI}_{x}(x \in\{\mathrm{ND}, \mathrm{PD}, \mathrm{TD}\})$



Triv. Ph. Sem. ( $x$ )
Phase Sem. ( $x$ )

- Result: $!(\cdot) \rightsquigarrow \mid \wedge(\cdot)$ is faithful for Trivial Phase Semantics


## Towards the undecidability of $\mathrm{BBI}_{x}$



- Among the known/unkown fragments of ILL, find $F$
- s.t. $F$ is complete for trivial phase semantics (in class $x$ )
- s.t. $F$ is undecidable


## The elementary fragment elLL of ILL

- Extension of s-IMELL ${ }_{0}^{-0}$ (De Groote et al. 04)
- Elementary sequents: $!\Sigma, g_{1}, \ldots, g_{k} \vdash d \quad\left(g_{i}, a, b, c, d\right.$ variables $)$
$-\operatorname{In} \Sigma: a \multimap(b \multimap c),(a \multimap b) \multimap c$ or $(a \& b) \multimap c$
- where $a, b$ and $c$ variables
- G-eILL, goal directed rules for elLL:

$$
\begin{array}{ll}
\frac{!\Sigma, \Gamma \vdash a!}{!\Sigma, a \vdash a}\langle\mathrm{Ax}\rangle & \frac{!\Sigma, \Delta \vdash b}{!\Sigma, \Gamma, \Delta \vdash c} a \multimap(b \multimap c) \in \Sigma \\
\frac{!\Sigma, \Gamma, a \vdash b}{!\Sigma, \Gamma \vdash c}(a \multimap b) \multimap c \in \Sigma & \frac{!\Sigma, \Gamma \vdash a!\Gamma, \Gamma \vdash b}{!\Sigma, \Gamma \vdash c}(a \& b) \multimap c \in \Sigma
\end{array}
$$

## Completeness results for elLL

- G-elLL is sound for ND phase semantics on eILL
- hence sound w.r.t. any class of models
- free monoidal trivial phase sem. (FM) is complete for G-eILL
- hence G-eILL is complete for eILL
- hence trivial phase sem. $(x \in\{\mathrm{ND}, \mathrm{PD}, \mathrm{TD}\})$ is also complete
- we can also prove eILL is complete for class HM (bisimulation)


## Undecidability results for eILL/BBI

- encode two counter Minsky machines acceptance in elLL
- compared to Kanovich 95: forking with \& instead of $\oplus$
- faithfullness proof by semantic argument like Lafont 96
- Kanovich 95 was through normalization (i.e. cut-elimination)
- Rem: Okada 02 proved cut-elim. through phase semantics
- obtain $\operatorname{elLL}_{\mathbb{N} \times \mathbb{N}}^{t}$ is undecidable, deduce elLL is undecidable
- Consequence: $\mathrm{BBI}_{x}$ is undecidable ( $x \in\{\mathrm{ND}, \mathrm{PD}, \mathrm{TD}, \mathrm{HM}, \mathrm{FM}\}$ )


## Two counter Minsky Machines

- Two counters, a and b, values in $\mathbb{N}$
- $l+1$ positions, 0 is terminal position, $l$ instructions
- State $(i, x, y): i$ position, $x$ value of $\mathrm{a}, y$ value of b
- Two kinds of instructions: "add 1" \& "z.t./sub 1"

$$
\begin{array}{ll|l}
i: \quad \mathrm{a}:=\mathrm{a}+1 ; \text { goto } j & (i, x, y) \rightarrow(j, x+1, y) \\
i: \text { if } \mathrm{a}=0 \text { then goto } j & (i, 0, y) \rightarrow(j, 0, y) \\
& \text { else } \mathrm{a}:=\mathrm{a}-1 \text {; goto } k & (i, x+1, y) \rightarrow(k, x, y)
\end{array}
$$

- Acceptance: $(x, y)$ accepted if $(1, x, y) \rightarrow^{\star}(0,0,0)$
- Minsky: there exists a MM with non-recursive acceptance


## Encoding acceptance of two counter MM

- Build a sequent $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}$ for state $(i, x, y)$
- variables a and b for the two counters, plus $\underline{\mathrm{a}}$ and $\underline{\mathrm{b}}$ (z.t.)
- variables $\mathrm{q}_{0}, \ldots \mathrm{q}_{l}$ represents the $l+1$ positions of the MM
- instructions encoding in $\Sigma$, a and b never in goal position
- acceptance as (universal) validity:

$$
(i, x, y) \rightarrow^{\star}(0,0,0) \quad \text { iff } \quad!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i} \text { univ. valid }
$$

- Encode zero test on $\mathrm{b}:!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \underline{\mathrm{a}}$ iff $y=0$
- Prove soundness: $\quad(i, x, y) \rightarrow^{r}(0,0,0) \Rightarrow!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}$
- Prove completeness: $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i} \Rightarrow(i, x, y) \rightarrow^{\star}(0,0,0)$


## Encoding zero test on b (soundness)

- With $(\mathrm{a} \multimap \mathrm{a}) \multimap \underline{\mathrm{a}}$ and $\mathrm{a} \multimap(\underline{\mathrm{a}} \multimap \underline{\mathrm{a}})$ in $\Sigma$
$\overline{!\Sigma, \mathrm{a} \vdash \mathrm{a}}\langle\mathrm{Ax}\rangle \quad \frac{\overline{!\Sigma, \mathrm{a}^{2}, \mathrm{~b}^{y}+\mathrm{a}}\langle\mathrm{Ax}\rangle}{!\Sigma, \mathrm{b}^{y}+\underline{\mathrm{a}}}(\mathrm{a} \multimap \mathrm{a}) \multimap \underline{\mathrm{a}} \in \Sigma$
$\mathrm{a} \multimap(\underline{\mathrm{a}} \multimap \underline{\mathrm{a}}) \in \Sigma$
! applied $x-1$ times

$$
\frac{\overline{!\Sigma, \mathrm{a} \vdash \mathrm{a}}\langle\mathrm{Ax}\rangle \quad \overline{!\Sigma, \mathrm{a}^{x-1}, \mathrm{~b}^{y} \vdash \underline{\mathrm{a}}}}{!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \underline{\mathrm{a}}} \mathrm{a} \multimap(\underline{\mathrm{a}} \multimap \underline{\mathrm{a}}) \in \Sigma
$$

- is the only possible proof, and only when $y=0$


## Ground case of the recursion $r=0$ (soundness)

- Corresponds to 0 transitions: $(i, x, y) \rightarrow^{0}(0,0,0)$
- In this case, $i=x=y=0$
- With $(\mathrm{a} \multimap \mathrm{a}) \multimap \mathrm{q}_{0}$ in $\Sigma$

$$
\begin{aligned}
& \overline{!\Sigma, \mathrm{a} \vdash \mathrm{a}}\langle\mathrm{Ax}\rangle \\
& !\Sigma \vdash \mathrm{q}_{0}
\end{aligned}(\mathrm{a} \multimap \mathrm{a}) \multimap \mathrm{q}_{0} \in \Sigma
$$

- We have our (unique) G-eILL proof


## Encoding add 1 to a (soundness)

- With $\left(\mathrm{a} \multimap \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i}$ in $\Sigma$
- "add 1 " instruction: $i$ : a $:=\mathrm{a}+1$; goto $j$
- Operational semantics: $(i, x, y) \rightarrow(j, x+1, y) \rightarrow^{r}(0,0,0)$
- Recursively built (unique) G-eILL proof to establish validity:

$$
\frac{!\Sigma, \mathrm{a}^{x}, \mathrm{a}, \mathrm{~b}^{y}+\mathrm{q}_{j}}{!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y}+\mathrm{q}_{i}}
$$

## Encoding sub 1 /zero test on a (soundness) (i)

- "sub 1 /zero t.": $i$ : if $\mathrm{a}=0$ then goto $j$ else $\mathrm{a}:=\mathrm{a}-1$; goto $k$
- Case $x=0$, with $\left(\underline{b} \& \mathrm{q}_{j}\right) \mapsto \mathrm{q}_{i}$ in $\Sigma$
- Operational semantics: $(i, 0, y) \rightarrow(j, 0, y) \rightarrow^{r}(0,0,0)$
- Corresponding (unique) G-eILL proof:

$$
\frac{\frac{\text { z.t. on } \mathrm{a}}{!\Sigma, \mathrm{b}^{y}+\underline{\mathrm{b}}} \frac{\cdots}{!\Sigma, \mathrm{b}^{y}+\mathrm{q}_{j}}}{!\Sigma, \mathrm{b}^{y}+\mathrm{q}_{i}}\left(\underline{\mathrm{~b}} \& \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i} \in \Sigma
$$

## Encoding sub $1 /$ zero test on a (soundness)

- "sub $1 /$ zero t.": $i:$ if $\mathrm{a}=0$ then goto $j$ else $\mathrm{a}:=\mathrm{a}-1$; goto $k$
- Case $x+1>0$, with a $\multimap\left(\mathrm{q}_{k} \multimap \mathrm{q}_{i}\right)$ in $\Sigma$
- Operational semantics: $(i, x+1, y) \rightarrow(k, x, y) \rightarrow^{r}(0,0,0)$
- Corresponding (unique) G-elLL proof:

$$
\frac{\overline{!\Sigma, \mathrm{a} \vdash \mathrm{a}}\langle\mathrm{Ax}\rangle \overline{!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y}+\mathrm{q}_{k}}}{!\Sigma, \mathrm{a}, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}} \mathrm{a} \multimap\left(\mathrm{q}_{k} \multimap \mathrm{q}_{i}\right) \in \Sigma
$$

## Summary of the encoding and soundness

- Start with $\Sigma=\left\{\begin{array}{l}\mathrm{a} \circ(\underline{\mathrm{a}} \circ \underline{\mathrm{a}}), \mathrm{b} \circ(\underline{\mathrm{b}} \circ \underline{\mathrm{b}}), \\ (\mathrm{a} \circ \mathrm{a}) \multimap \underline{\mathrm{a}},(\mathrm{a} \circ \mathrm{a}) \multimap \underline{\mathrm{b}},(\mathrm{a} \multimap \mathrm{a}) \multimap \mathrm{q}_{0}\end{array}\right\}$
- For instruction $i: \mathrm{a}:=\mathrm{a}+1$; goto $j$

$$
-\operatorname{add}\left\{\left(\mathrm{a} \multimap \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i}\right\} \text { to } \Sigma
$$

- For instruction $i$ : if $\mathrm{a}=0$ then goto $j$ else $\mathrm{a}:=\mathrm{a}-1$; goto $k$
$-\operatorname{add}\left\{\left(\underline{\mathrm{b}} \& \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i}, \mathrm{a} \multimap\left(\mathrm{q}_{k} \multimap \mathrm{q}_{i}\right)\right\}$ to $\Sigma$
- Soundness theorem:

$$
\text { if }(i, x, y) \rightarrow^{\star}(0,0,0) \text { then }!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i} \text { has a G-elLL proof }
$$

- as a consequence, $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}$ is univ. valid


## Completeness of the encoding (summary)

- Let us suppose $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}$ is univ. valid, $\Sigma=\sigma_{1}, \ldots, \sigma_{r}$
- By trivial phase interpretation in $\mathbb{N} \times \mathbb{N}$ (class $F M)$

$$
\begin{gathered}
\llbracket \mathrm{a} \rrbracket=\{(1,0)\} \quad \llbracket \mathrm{b} \rrbracket=\{(0,1)\} \quad \llbracket \mathrm{a} \rrbracket=\mathbb{N} \times\{0\} \quad \llbracket \mathrm{b} \rrbracket=\{0\} \times \mathbb{N} \\
\llbracket \mathrm{q}_{i} \rrbracket=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(i, x, y) \rightarrow^{\star}(0,0,0)\right\}
\end{gathered}
$$

- We will show $(0,0) \in \llbracket \sigma_{i} \rrbracket$ for any $i$ (completeness Lemma)
- By universal validity of $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}$, we derive:

$$
\llbracket!\sigma_{1} \rrbracket \circ \cdots \circ \llbracket!\sigma_{r} \rrbracket \circ \llbracket \mathrm{a} \rrbracket \circ \cdots \circ \llbracket \mathrm{a} \rrbracket \circ \llbracket \mathrm{~b} \rrbracket \circ \cdots \circ \llbracket \mathrm{~b} \rrbracket \subseteq \llbracket \mathrm{q}_{i} \rrbracket
$$

- Hence $\{(0,0)\} \circ \cdots \circ\{(0,0)\} \circ\{(x, 0)\} \circ\{(0, y)\} \subseteq \llbracket q_{i} \rrbracket$
- Thus $(x, y) \in \llbracket \mathrm{q}_{i} \rrbracket$, and as a consequence $(i, x, y) \rightarrow^{\star}(0,0,0)$


## Inside the proof of the Completeness Lemma (i)

- Case of instruction $i: \mathrm{a}:=\mathrm{a}+1$; goto $j$
- $\Sigma$ contains $\left(\mathrm{a} \multimap \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i}$
- Completeness Lemma condition: $(0,0) \in \llbracket\left(a \multimap q_{j}\right) \multimap \mathrm{q}_{i} \rrbracket$
- Interpreted by $\llbracket \mathrm{a} \rrbracket \multimap \llbracket \mathrm{q}_{j} \rrbracket \subseteq \llbracket \mathrm{q}_{i} \rrbracket$
- Translates into $\quad \forall x, y \quad(x, y)+(1,0) \in \llbracket \mathrm{q}_{j} \rrbracket \Rightarrow(x, y) \in \llbracket \mathrm{q}_{i} \rrbracket$
- Thus $\forall x, y \quad(j, x+1, y) \rightarrow^{\star}(0,0,0) \Rightarrow(i, x, y) \rightarrow^{\star}(0,0,0)$
- This is exactly the operational semantics of "add 1 to a"


## Inside the proof of the Completeness Lemma (ii)

- Case $x=0$ of instruction $i$ : if $\mathrm{a}=0$ then goto $j$ else $\ldots$
- $\Sigma$ contains $\left(\underline{b} \& \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i}$
- Completeness Lemma condition: $(0,0) \in \llbracket\left(\underline{b} \& q_{j}\right) \multimap \mathrm{q}_{i} \rrbracket$
- Interpreted by $\quad \llbracket \mathrm{b} \rrbracket \cap \llbracket \mathrm{q}_{j} \rrbracket \subseteq \llbracket \mathrm{q}_{i} \rrbracket$
- or $\forall x, y \quad\left(x=0\right.$ and $\left.(j, x, y) \rightarrow^{\star}(0,0,0)\right) \Rightarrow(i, x, y) \rightarrow^{\star}(0,0,0)$
- Thus $\forall y(j, 0, y) \rightarrow^{\star}(0,0,0) \Rightarrow(i, 0, y) \rightarrow^{\star}(0,0,0)$
- This is exactly the operational semantics of the "then" branch


## Inside the proof of the Completeness Lemma (iii)

- Case $x+1>0$ of $i$ : if $\mathrm{a}=0$ then $\ldots$ else $\mathrm{a}:=\mathrm{a}-1$; goto $k$
- $\Sigma$ contains $\mathrm{a} \multimap\left(\mathrm{q}_{k} \multimap \mathrm{q}_{i}\right)$
- Completeness Lemma condition: $(0,0) \in \llbracket a \multimap\left(q_{k} \multimap q_{i}\right) \rrbracket$
- Interpreted by $\llbracket \mathrm{a} \rrbracket \circ \llbracket \mathrm{q}_{k} \rrbracket \subseteq \llbracket \mathrm{q}_{i} \rrbracket$
- Becomes $\forall x, y \quad(k, x+1, y) \rightarrow^{\star}(0,0,0) \Rightarrow(i, x, y) \rightarrow^{\star}(0,0,0)$
- This is exactly the operational semantics of the "else" branch


## Consequences of the encoding of MM

- An encoding suitable for classes ND, PD, TD and FM
$-\mathbb{N} \times \mathbb{N} \in \mathrm{FM} \subseteq \mathrm{TD} \subseteq \mathrm{PD} \subseteq \mathrm{ND}$
- obtain for undecidability of elLL $L_{\mathbb{N} \times \mathbb{N}}^{t}$ and also for elLL
- Also of $\mathrm{BBI}_{\mathrm{ND}}, \mathrm{BBI}_{\mathrm{PD}}, \mathrm{BBI}_{\mathrm{TD}}, \mathrm{BBI}_{\mathrm{FM}}$ and $\mathrm{BBI}_{\mathbb{N} \times \mathbb{N}}$
- Undecidability for $\mathrm{BBI}_{\mathrm{HM}}$ through bisimulation


## Conclusion, related works, perspectives

- Encoding suitable for class FM and thus, all classes
- undecidability of eILL, $\mathrm{BBI}_{x}, \forall x \in\{\mathrm{ND}, \mathrm{PD}, \mathrm{TD}, \mathrm{HM}, \mathrm{FM}\}$
- Encoding adapted for class of groups (LW., MFPS 10)
- another proof of undecidability of Classical BI (CBI)
- Similar results by Brotherston\&Kanovich (LICS 10)
- focus on Separation Logic (RAM-domain model)
- obtained completely independently, also applies to CBI
- What about decidability of BBI restricted to $\mathbb{N}$ ?
- 1-counter MM are decidable (Bouajjani et al. 99)
- Complete the classification of $\mathrm{BBI}_{x}$


## Bisimulation vs. Kripke/phase semantics of BBI

- ( $M, \circ, \epsilon)$ and $(N, \star, \pi)$ two ND monoids
- Bisimulation relation $\sim \subseteq M \times N$ checks:

$$
m \sim m^{\prime} \Rightarrow\left\{\begin{array}{l}
m=\epsilon \text { iff } m^{\prime}=\pi \\
\forall a \circ b \ni m \exists a^{\prime} \star b^{\prime} \ni m^{\prime} a \sim a^{\prime} \text { and } b \sim b^{\prime} \\
\forall a^{\prime} \star b^{\prime} \ni m^{\prime} \exists a \circ b \ni m a \sim a^{\prime} \text { and } b \sim b^{\prime} \\
\forall b \in a \circ m \exists b^{\prime} \in a^{\prime} \star m^{\prime} a \sim a^{\prime} \text { and } b \sim b^{\prime} \\
\forall b^{\prime} \in a^{\prime} \star m^{\prime} \exists b \in a \circ m a \sim a^{\prime} \text { and } b \sim b^{\prime}
\end{array}\right.
$$

- if $m \sim m^{\prime}$ then for any $F$ of BBI, $m \in \llbracket F \rrbracket$ iff $m^{\prime} \in \llbracket F \rrbracket^{\prime}$


## Bisimulating $\mathbb{N} \times \mathbb{N}$ in $\mathcal{P}_{\mathrm{f}}(\mathbb{N})$

- $\left(\mathcal{P}_{\mathrm{f}}(\mathbb{N}), \uplus, \emptyset\right)$ and $(\mathbb{N} \times \mathbb{N},+,(0,0))$ are two ND monoids
- Let $\mathbb{N}=\mathbb{E} \uplus \mathbb{O}$ (e.g. even/odd numbers)
- For $X \in \mathcal{P}_{\mathrm{f}}(\mathbb{N})$, let $\varphi(X)=(\operatorname{card}(X \cap \mathbb{E}), \operatorname{card}(X \cap \mathbb{O}))$
- $\varphi: \mathcal{P}_{\mathrm{f}}(\mathbb{N}) \longrightarrow \mathbb{N} \times \mathbb{N}$ is a projection (surjective)
- $\varphi \subseteq \mathcal{P}_{\mathrm{f}}(\mathbb{N}) \times(\mathbb{N} \times \mathbb{N})$ is a bisimulation
- Use $\varphi$ to transform the $\mathbb{N} \times \mathbb{N}$ model into a $\mathcal{P}_{\mathrm{f}}(\mathbb{N})$ model
- simply define $\llbracket \mathrm{x} \rrbracket^{\prime}=\varphi^{-1}(\llbracket \mathrm{x} \rrbracket)$

