Labelled Tableaux for Proofs and Models in BI logics

Dominique Larchey-Wendling TYPES team

LORIA - CNRS

Nancy, France

Automated Deduction Day, Nancy, France

Separation Logic

- Introduced by Reynolds\&O'Hearn 01 to model:
- a resource logic
- properties of the memory space (cells)
- aggregation of cells into wider structures
- Combines:
- classical logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative conjunction: *
- Defined via Kripke semantics extended by:

$$
m \Vdash A * B \quad \text { iff } \quad \exists a, b \text { s.t. } a, b \triangleright m \wedge a \Vdash A \wedge b \Vdash B
$$

Separation models

- Decomposition $a, b \triangleright m$ interpreted in various structures:
- stacks in pointer logic (Reynolds\&O’Hearn\&Yang 01), $a \uplus b \subseteq m$
- but also $a \uplus b=m$ (Calcagno\&Yang\&O'Hearn 01)
- trees in spatial logics (Calcagno\&Cardelli\&Gordon 02) $a \mid b \equiv m$
- resource trees in BI-Loc (Biri\&Galmiche07)

- Additive \rightarrow can be Boolean (pointwise) or intuitionistic

Bunched Implication logic (BI)

- Introduced by Pym 99, 02
- intuitionistic logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative connectives of MILL: $*, \rightarrow$, I
- sound and complete bunched sequent calculus, with cut elimination
- Kripke semantics (Pym\&O’Hearn 99, Galmiche\&Mery\&Pym 02)
- partially ordered partial commutative monoids $(\mathcal{M}, \circ, \leqslant)$
- intuitionistic Kripke semantics for additives
- relevant Kripke semantics for multiplicatives
- sound and complete Kripke semantics for BI

BI Logic continued

- In BI , decomposition interpreted by $a \circ b \leqslant m$:
- resource monoids (partial, ordered)
- intuitionistic additives and relevant multiplicatives
- BI has proof systems:
- cut-free bunched sequent calculus (Pym 99)
- resource tableaux (Galmiche\&Mery\&Pym 05)
- inverse method (Donnelly\&Gibson et al. 04)
- Additives are intuitionistic in BI, mostly Boolean in Separation Logic

Boolean BI (BBI)

- Loosely defined by Pym as $\mathrm{BI}+\{\neg \neg A \rightarrow A\}$
- no known pure sequent based proof system
- Kripke semantics by relational monoids (Larchey\&Galmiche 06)
- faithfully embeds S4 and thus IL
- Display Logic based cut-free proof-system (Brotherston 09)
- Other definition (logical core of Separation and Spatial logics)
- additive implication \rightarrow Kripke interpreted pointwise
- based on (commutative) partial monoids (\mathcal{M}, \circ)
- has a sound and complete (labelled tableaux) proof-system
- still embeds S4 and IL and even BI (Larchey\&Galmiche 09)

In this talk

- We focus on provability, not validity checking (specific model).
- Tools for propositional tautologies in (monoidal) BI and BBI
- BI defined by partially ordered partial monoids
- BBI defined by partial monoids
- Common methodology for $\mathrm{BI} / \mathrm{BBI}$
- words and constraints based Kripke models
- labels and contraints based tableaux calculi
- From properties of proof-search based models
- representation of BI-models by BBI-models
- embedding of BI into BBI

Words and constraints based models for $\mathrm{BI} / \mathrm{BBI}$

- Resources as Words of $L^{\star}=$ multisets of letters
- Constraints $=($ ordered $)$ pairs of words: $m \rightarrow n$ with $m, n \in L^{\star}$
- Partial monoidal order (PMO): \sqsubseteq closed under $\langle\varepsilon, l, r, d, c, t\rangle$
- Partial monoidal equivalence (PME): $\sim \operatorname{closed}$ under $\langle\varepsilon, s, d, c, t\rangle$

PMOs	PMEs	PMOs \& PMEs
$\frac{x-y}{x-x}\langle l\rangle$	$\frac{x+y}{y-x}\langle s\rangle$	$\frac{k y-k y}{\varepsilon-\varepsilon}\langle\varepsilon\rangle$
$\frac{x-y}{y+y}\langle r\rangle$		$\frac{x y-x y}{x+x}\langle d\rangle$

- $\langle s\rangle+\langle t\rangle$ implies $\langle l\rangle$ and $\langle r\rangle$, hence a PME is also a PMO
- Constraints solving: given \mathcal{C}, how to compute the closure $\sqsubseteq_{\mathcal{C}} / \sim_{\mathcal{C}}$?

Constraints based Kripke models for $\mathrm{BI} / \mathrm{BBI}$

- $R \equiv \sqsubseteq$ for $\mathrm{BI} / R \equiv \sim$ for BBI
- Usual (pointwise) Kripke interpretation for \wedge, \vee, \perp and \top

	$m \Vdash_{R} \quad$ I \quad iff $\quad \varepsilon R m$
$\mathrm{BI} / \mathrm{BBI}$	$m \Vdash_{R} A * B \quad$ iff $\quad \exists x, y x y R m \wedge x \Vdash_{R} A \wedge y \Vdash_{R} B$
	$m \Vdash_{R} A * B \quad$ iff $\quad \forall x, y\left(x m R y \wedge x \Vdash_{R} A\right) \Rightarrow y \Vdash_{R} B$
BI	$m \Vdash_{\sqsubseteq} A \rightarrow B \quad$ iff $\quad \forall x\left(m \sqsubseteq x \wedge x \Vdash_{\sqsubseteq} A\right) \Rightarrow x \Vdash_{\sqsubseteq} B$
BBI	$m \Vdash \Vdash_{\sim} A \rightarrow B \quad$ iff $m \Vdash \sim A \Rightarrow m \Vdash_{\sim} B$
	$m \Vdash \sim \neg A \quad$ iff $\quad m \nVdash \sim A$

Complete constraints based Kripke semantics

- Quotient monoids:
- $L^{\star} / \sqsubseteq=$ partially ordered partial monoid
- $L^{\star} / \sim=$ partial monoid
- These quotient maps $\sqsubseteq \mapsto L^{\star} / \sqsubseteq$ and $\sim \mapsto L^{\star} / \sim$ are full:
- any partially ordered partial monoid is of the form L^{\star} / \sqsubseteq
- any partial monoid is of the form L^{\star} / \sim
- Completeness theorem:
$-\Vdash_{\sqsubseteq}$ sound and complete Kripke semantics for BI
- \Vdash ~ sound and complete Kripke semantics for BBI

Labelled tableaux for BI and BBI

- Statements $(\mathbb{T} A: m, \mathbb{F} B: n)$ and assertions (ass : $m \rightarrow n$)
- Requirements (req : m $R n$) with $R=\sqsubseteq$ or \sim (side condition)
- Tableaux expansion rules for I and $*$:

- Tableaux expansion rules for $-*$:

- Tableaux expansion rules for \rightarrow (only BI):

Assertions and proof-search

- $\mathcal{C}=\left\{\ldots, x_{i}-y_{i}, \ldots\right\}$ from γ
- $A_{\gamma}=A_{C}=\{c \in L \mid c$ occurs in $C\}$
$\sqrt{ } \mathbb{T} A * B: m$
- $\sqsubseteq_{\gamma}=\sqsubseteq_{c} / \sim_{\gamma}=\sim_{c}$
- branch expansion
- $a \neq b$ new $\left(a, b \notin A_{\gamma}\right)$
$-C^{\prime}=\mathcal{C} \cup\{a b-m\}$
$-\sqsubseteq_{\gamma}{ }^{\prime}=\sqsubseteq_{\gamma}+\{a b-m\}$
$-\sim_{\gamma}{ }^{\prime}=\sim_{\gamma}+\{a b-m\}$

Requirements and proof-search

	- $\mathcal{C}=\left\{\ldots, x_{i}-y_{i}, \ldots\right\}$ from γ
ass : $x_{i}-y_{i}$	- $A_{\gamma}=A_{C}=\{c \in L \mid c$ occurs in $C\}$
$\sqrt{ } \mathbb{F} A * B: m$	- $\sqsubseteq_{\gamma}=\sqsubseteq_{C} / \sim_{\gamma}=\sim_{C}$
	- branch expansion
γ	$-x, y$ s.t. $x y \sqsubseteq_{\gamma} m / x y \sim_{\gamma} m$
req : $x y \mathrm{Rm}$	- $\mathcal{C}_{A}=\mathcal{C}_{B}=\mathcal{C}$
	$-\left\ulcorner\gamma_{A}-\square\right.$
$\mathbb{F} A: x \quad \mathbb{F} B: y$	$-\sqsubseteq \gamma_{A}=\sqsubseteq \gamma_{B}=\sqsubseteq \gamma$
$\|\quad\|$	$\sim \gamma_{B}$
$\gamma_{A} \quad \gamma_{B}$	

Closure condition for proof-search

$$
\begin{array}{cl}
\text { ass }: x_{i}-y_{i} & \bullet C=\left\{\ldots, x_{i}-y_{i}, \ldots\right\} \text { from } \gamma \\
\mathbb{T} X: m & \bullet A_{\gamma}=A_{C}=\{c \in L \mid c \text { occurs in } C\} \\
\vdots & \bullet \sqsubseteq_{\gamma}=\sqsubseteq_{C} / \sim_{\gamma}=\sim_{C} \\
\mathbb{F} X: n & \bullet \text { branch closure } \\
\vdots & -m \sqsubseteq_{\gamma} n / m \sim_{\gamma} n \\
\square \gamma &
\end{array}
$$

BBI proof of $(\mathrm{J} * \mathrm{~J}) \rightarrow \mathrm{J}$ with $\mathrm{J}=\neg(\mathrm{T} * \neg \neg)$

- with $\mathcal{K}=\left\{c-d, a_{0} a_{1}-c, b_{0} a_{0}-c_{0}, \varepsilon-c_{0}, b_{1} a_{1}-c_{1}, \varepsilon-c_{1}\right\}$

Checking the requirement

- $\mathcal{K}=\left\{c-d, a_{0} a_{1}-c, b_{0} a_{0}-c_{0}, \varepsilon-c_{0}, b_{1} a_{1}-c_{1}, \varepsilon-c_{1}\right\}$
- We check the requirement $b_{0} b_{1} c \sim_{\mathcal{K}} \varepsilon$ by solving \mathcal{K}
- $\left\{c, d, a_{0}, a_{1}, b_{0}, b_{1}, c_{0}, c_{1}\right\}^{\star} / \sim_{\mathcal{K}}$ isomorphic to $\mathbb{Z} \times \mathbb{Z}$ with:

$$
\begin{array}{cl}
c_{0}=c_{1}=\varepsilon=(0,0) & a_{0}=-b_{0}=(1,0) \\
c=d=(1,1) & a_{1}=-b_{1}=(0,1)
\end{array}
$$

- $b_{0} b_{1} c \sim_{\mathcal{K}} \varepsilon$ because $(-1,0)+(0,-1)+(1,1)=(0,0)$
- Remark: the solution of the (finite) set \mathcal{K} is infinite

Tableaux completeness and counter-models

- Labels and constraints based methods:
- calculi with constraints: $\mathbb{T} A: m, \mathbb{F} B: n, m \rightarrow n$
- sound/complete proof-search method for tautologies of BI/BBI
- counter-models from open and saturated proof-search branch
- Why study the counter-models generated by proof-search:
- implement/optimize proof assistants
- extract complete sub-classes of counter-models
- expressivity properties of BI and BBI
- model theoretic and logical links between BI and BBI

PMO extensions in Bl-tableaux (i)

- a and b are new letters $(a \nsubseteq a$ and $b \nsubseteq b)$
- m defined in $\sqsubseteq(~ m \sqsubseteq m)$
- Four types of extensions

$$
\begin{array}{ll}
\sqsubseteq^{\prime}=\sqsubseteq+\{a b-m\} \quad(\text { rule } \mathbb{T} *) & \sqsubseteq^{\prime}=\sqsubseteq+\{a m-b\} \quad(\text { rule } \mathbb{F} \rightarrow) \\
\sqsubseteq^{\prime}=\sqsubseteq+\{m-b\} \quad(\text { rule } \mathbb{F} \rightarrow) & \sqsubseteq^{\prime}=\sqsubseteq+\{\varepsilon-m\} \quad(\text { rule } \mathbb{T} \mathbf{l})
\end{array}
$$

- Basic $\mathrm{PMO}=$ (finite or infinite) sequence of such extensions
- Extensions can be solved:

$$
\begin{aligned}
\sqsubseteq+\{a b-m\}=\sqsubseteq & \cup\{a x-a y \mid x \sqsubseteq y \text { and } m x \sqsubseteq m y\} \\
& \cup\{b x-b y \mid x \sqsubseteq y \text { and } m x \sqsubseteq m y\} \\
& \cup\{a b x-y \mid m x \sqsubseteq y\}
\end{aligned}
$$

PMO extensions in Bl-tableaux (ii)

- Properties of basic PMO \sqsubseteq_{C} (by induction on \mathcal{C}):
- ε-minimality: if $m \sqsubseteq_{C} \varepsilon$ then $m=\varepsilon$
- no square: if $m m \sqsubseteq_{C} m m$ then $m=\boldsymbol{\varepsilon}$
- regularity: if $k x \sqsubseteq_{c} k y$ then $x \sqsubseteq_{c} y$
\Rightarrow finiteness: $\left\{m \in L^{\star} \mid m \sqsubseteq_{C} m\right\}$ is finite (\mathcal{C} finite sequence)
- Solving constraints in C : (finite) resource graph (Mery 04)
- Complete sub-class for BI :
- these properties hold for infinite sequences of basic extensions
- regular monoids where ε is minimal and without square
- Application: no BI-formula F such that $m \Vdash_{\sqsubseteq} F$ iff $m m \sqsubseteq m m$

PME extensions in BBI-tableaux (i)

- a and b are new letters, m defined in \sim (i.e. $m \sim m$)
- Three types of extensions

$$
\begin{array}{ll}
\sim^{\prime}=\sim+\{a b-m\} & \\
\sim^{\prime} & =\sim+\{a m-b\} \\
\sim^{\prime} & (\text { rule } \mathbb{T} *) \\
\sim^{\prime}=\sim+\{\varepsilon-m\} & \\
(\text { rule } \mathbb{T} \mathbf{I})
\end{array}
$$

- Basic PME = (finite or infinite) sequence of such extensions
- Extensions $a b \rightarrow m$ (and $a m-b)$ solved when $m m \nsim m m$:

$$
\begin{aligned}
\sim+\{a b-m\}=\sim & \cup\{a x-a y, b x-b y \mid x \sim y \text { and } m x \sim m y\} \\
& \cup\{a b x-a b y \mid m x \sim m y\} \\
& \cup\{a b x-y, y-a b x \mid m x \sim y\}
\end{aligned}
$$

PME extensions in BBI-tableaux (ii)

- Problems with the $\sim+\{\varepsilon-m\}$ extension:
- does not preserve regularity
- introduce squares (if $\varepsilon \sim m$ then $m m \sim m m$)
- ε-minimality irrelevant
\Rightarrow Invertible letters produce infinite models (not as in BI)
- No simple solution for $\sim+\{a b-m\}$ when $m m \sim m m$
- Automated constraint solving for basic PME not detailed here
- Not the same as the word problem in Thue systems (partiality)

Representing basic PMOs by basic PMEs

- Let $\sqsubseteq=\sqsubseteq_{C}$ be a basic PMO over L with $\mathcal{C}=\left\{x_{0}-y_{0}, \ldots\right\}$
- (K, \sim) is a representation of (L, \sqsubseteq) if
- ~ is PME over $L \cup K \cup \ldots$
- $x \sqsubseteq y$ iff $\exists \delta \in K^{\star}, \delta x \sim y \quad$ (for any $x, y \in L^{\star}$)
- Result: every basic PMO can be represented by a basic PME:
$-\sqsubseteq^{\prime}=\sqsubseteq+\{a b-m\} \quad \rightsquigarrow \quad \sim^{\prime}=\sim+\{\delta c-m, a b-c\}$
$-\sqsubseteq^{\prime}=\sqsubseteq+\{a m-b\} \quad \rightsquigarrow \quad \sim^{\prime}=\sim+\{c m-b, \delta a-c\}$
- δ, c are new, $\delta \in K$ and $c \notin L \cup K$
- this representation is compatible with limits (by compactness)

Validity in $\mathrm{BI} / \mathrm{BBI}$ and PMO/PME representations

- Let K (resp. L) be a new variable for K (resp. L)
- $F \mapsto F^{\circ}$ is a (linear) map from BI to $\mathrm{BBI}:$

$$
\begin{gathered}
X^{\circ}=\mathrm{K} * X \quad \mathrm{I}^{\circ}=\mathrm{K} * \mathrm{I} \quad \perp^{\circ}=\perp \quad \mathrm{T}^{\circ}=\mathrm{\top} \\
(A \oplus B)^{\circ}=A^{\circ} \oplus B^{\circ} \text { for } \oplus \in\{\wedge, \vee\} \\
(A \rightarrow B)^{\circ}=\mathrm{K} \rightarrow\left(\left(\mathrm{~L} \wedge A^{\circ}\right) \rightarrow B^{\circ}\right) \\
(A * B)^{\circ}=\mathrm{K} *\left(\left(\mathrm{~L} \wedge A^{\circ}\right) *\left(\mathrm{~L} \wedge B^{\circ}\right)\right) \\
(A * B)^{\circ}=\left(\mathrm{K} *\left(\mathrm{~L} \wedge A^{\circ}\right)\right) *\left(\mathrm{~L} \rightarrow B^{\circ}\right)
\end{gathered}
$$

- Result: if (K, \sim) represents (L, \sqsubseteq), then for any $F \in \mathrm{BI}$ and $m \in \mathcal{L}^{\sqsubseteq}$

$$
m \Vdash_{\sqsubseteq} F \quad \text { iff } \quad m \Vdash_{\sim} F^{\circ}
$$

- Relates (in)validity but not provability

Faithfully embedding BI into BBI

- Let $\mathrm{H}=(\mathrm{L} \wedge \mathrm{K}) \wedge((\mathrm{T} *(\mathrm{~L} * \mathrm{~L} \rightarrow \mathrm{~L})) \wedge(\mathrm{T} *(\mathrm{~K} * \mathrm{~K} \rightarrow \mathrm{~K})))$
- $G \mapsto(\mathrm{I} \wedge \mathrm{H}) \rightarrow G^{\circ}$ is faithful:
- if G is invalid in BI then it has a basic counter-model $(L, \sqsubseteq): \varepsilon \nVdash \sqsubseteq G$
- let (K, \sim) be a representation of (L, \sqsubseteq)
- then $\varepsilon \nVdash \sim(\mathrm{I} \wedge \mathrm{H}) \rightarrow G^{\circ}(\sim$ is a BBI-counter-model $)$
- $G \mapsto(\mathrm{I} \wedge \mathrm{H}) \rightarrow G^{\circ}$ is sound:
- step-by-step transformation of BI-tableaux in BBI-tableaux
- BI-expansions mapped into BBI-expansions
- closure of BBI-branches with $I \wedge H$
- $G \mapsto(\mathrm{I} \wedge \mathrm{H}) \rightarrow G^{\circ}$ is a faithful embedding BI into BBI (MSCS 09)

Some remarks about the embedding

- Obtained by the study of counter-model generated by proof-search
- labelled tableaux well-suited for this task
- common framework for BI and BBI
- Not expected (counter-intuitive):
- IL faithfully embeds CL (double negation, Gödel)
- Boolean BI faithfully embeds (intuitionistic) BI
- the embedding in the reverse direction
- BBI into BI (BI decidable, BBI not decidable ?)

Conclusion and perspectives

- Achievements:
- complete tableaux with constraints method for BBI
- properties of proof-search generated BBI constraints
- expressivity properties for BI and BBI , embedding
- algorithmic solution to BBI constraints solving (to come)
- Perspectives:
- implement constraint solving for proof-search in BBI
- towards undecidability of BBI (Display Logic)
- provide intuitive understanding of invertible resources

