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/ Boolean /Classical Bunched Logics I \

e Separation Logic (SL) (Reynolds&O’Hearn 01)
— finite stacks of cells, A : Loc —+ Val

— C = A1l B models aggregation of cells into wider structures

e | BBl is the logical core of SL

e BBl connectives (Pym 02, Bl + {-—A — A})
— Boolean logic connectives: A, V, —, =, ...

— multiplicative connectives: *, —, |

e more connectives for CBI (Brotherston&Calcagno 09)

— multiplicative zero O, linear negation ~

\ — dualizing operator for Kripke semantics /
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Proof theory for BBI/CBII

Compared to (intuitionistic) Bl: much less satisfying situation
— Bl has Bunched sequent calculus (O’Hearn&Pym 99)

— with cut-elimination from its inception

— Bl is decidable (Galmiche et al. 05)

~

Hilbert system s/c for relational BBl (LW.&Galmiche 06, Yang)

Semantic tableaux s/c for (partial) monoidal BBI

— (unexpected) embedding of Bl into BBl (LW.&Galmiche 09)
Display calculi s/c for relational CBI (Brother.&Calcagno 09)

Display calculi s/c for relational BBI (Brotherston 09, 10)
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/ Kripke semantics of BBI/CBI (1)' \

e Non-deterministic(/relational) monoid (NDm) (M, o, €)
—o:MXxM-—P(M)and ec M
—for X, Y e P(M),| XoY ={2|TAzxe X,yeY,z ez oy}

— e€oz = {z} (neutrality), z oy = y o x (commutativity)
— zo(yoz)=(xoy) oz (associativity)
— (P(M), o,{€}) is a (usual) commutative monoid
— residuation: X oY ={z|z0X CY}
e Non-deterministic groupoid (NDg) (M, o, €, —, o)
— (M,o0,¢) is a NDm

\ — wezoy iff y= -2z (pseudo inverse) /
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/ Kripke semantics of BBI/CBI (ii)' \

e Boolean (pointwise) Kripke semantics extended by:

mirA+«B 1f da,bst. meaobandar+rAandb i B
mikA-=B iff Va,b (becaomandalrA)=>br+ B

m I | if m=c¢

e Moreover, forCBl: mir~A iff —- mrA mirO iff m+#oo

e Decision problems:
— checking a particular model (m I+ A), Calcagno et al. 01 (SL)

— validity in a particular interpretation (Ym,m + A)

— | univ. validity | w.r.t. class of models (YMVIFVYm,m I+ A) /
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/ Classes of models for BBI/CBII \

e Partial (deterministic) monoids/groupoids (Dm/Dg): z oy C {k}
e Total (deterministic) monoids/groupoids (Tm/Tg): z oy = {k}
e Groups (G): e = o0 and z o —z = {¢}

e GCTm C DmCNDmand GC Tg ¢ Dg C NDg

e Separation models are in Dm/Dg (Brotherston&Kanovich 10):
— RAM-domain model for BBI: (P¢(N), w, 0)
— RAM-domain model for CBI: (P¢/.(N),w,0,N\(-),N)

e Universal validity defines different logics:

BBlxyp € BBlp € BBlr € BBlg CBIxp € CBIp € GBIt € CBlg




/ Undecidability of BBI/ CBII \

e Minsky machines encoded in fragments of BBI/CBI

e BBl undecidable:
— for X € {NDm, Dm, Tm}, Larchey& Galmiche 10
— for X € {NDm, Dm, sep. models}, Brotherston&Kanovich 10

e CBIlx undecidable:
— for X € {NDg, Dg, sep. models}, Brotherston&Kanovich 10

e B.&K. 10 encoding needs indivisible units zoy =e=>z =y = ¢

e This paper:

— a proof/encoding covering all these cases

\ — also BBIlg /CBle undecidable (G has divisible units) /
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Overview of the encoding'

o ILL? 3, ~eBBl is a fragment of BBI/CBI

— Trivial phase semantics/Kripke semantics

Two counter Minsky machines in ILL(L,&,!:

— add 1, sub 1, zero test, two positive counters

— “negative” encoding acceptance (1, m,n) —* (0,0, 0)

— reachability (o, m,n) -»* (B, m’,n’) req. ®, ®, Kanovich 95
— Brotherston&Kanovich 10 uses double linear negation

— LW.&Galmiche 10 works with N X N, unsuitable for Z x Z

Faithfullness of the encoding:
— via N X N sem. (BBI), via Z x Z sem. (BBI/CBI)
— RAM-domain model bisimilar to N x N

~

/
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/ Kripke vs. Phase semantics for BBII

e Change of notation: m I+ A iff m € [A]

e The interpretation of multiplicative conjuction x

mirA«B iff da,bst.acb=mandarAandbr B
[A«B] = [A]<[B]

e Phase semantics for BBl (equiv. to Kripke sem.):

[L] =0 [Av B]=[Alv[B]

[T] =M [AAB] =[A]n[B]

[ = {e} [A* B] = [A] o [[B]
\ [-A] = M\[A] A~ B] = [A] —[B]

~

/




-

N

Phase semantics for ILL'

e Intuitionistic phase space (M, o,¢,(-)°, K):
— (M, o0,€) in NDm (usually Tm)
— (+)° is a closure operator with A° o B® C (A o B)® (stability)
— K sub-monoid of M: ee K and Ko K C K
— Kc{e)’N{fzeM|ze(zox)’)

e Phase interpretation of ILL operators:

[L]
[T

[1]

['Al

=
=M
= {e}”
= (K n[A])

[

[A® B]

[A® B
[A & B]
| = ([A] ° [B])’

A — B]

= ([Alv Bl
= [Aln[B]

= [A] -~ [B]

~

/

10



-

e Intuitionistic phase space (M, o,¢,(-)°, K):
— (+)° is the identity closure: A° = A

— and as a consequence K = {¢}

e Trivial phase interpretation of ILL operators:

[1] = 0 4@ B] =
[7] = M A& B] =
[1] = (e 4 B] =
[A]=0n[4]  [A—B]=]

ESRESIESES

Trivial phase semantics for ILLI

| — [B]

~
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ILL vs. BBI phase semantics'

Trivial phase sem. for ILL

Phase sem. for BBI

[L] =0

[Tl =M

[1] = {e}

['A] = {e} N [A]
[A® B] = [A]V[B]
[A& B = [A]
[A® B] = [A] - [B]
[A— B] = [4]

[L] =0
[Tl =M
[ = {e}

[t A Al = te} N [A]
[Av B]=[A]v[B]
AAB] = [4]
[Ax B] = [A] o [B]
[A~B] = [4]

1
| S—

D
3

~
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— replace A by IAA

e |LL undecidable but | not complete

— complete for trivial phase sem.

— undecidable (Minsky machines)

/ ILL as a fragment of BBI/CBII \

e Embedding ILL (with trivial phase sem.) into BBI/CBI
— replace 1/I, ®&/V, & /A, ®/*, —o /-

— sound and faithful for trivial phase semantics

w.r.t. trivial phase semantics

o The elementary fragment of ILL: ILL®, ; , (LW.&Galmiche 10)

— contains only !, —o and & (not @ or ®)

\o Elementary BBI (eBBI) corresponds to ILL?, ¢, (via embedding)/
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e Hlementary sequents: '¥,91,...,9x+d (g;,a,b, c,d variables)

~

The elementary fragment ILLQO,&,! of ILL

—In¥:|la—o(b—oc), (a—ob)—ocor (a&b)—oc

o Gill°, goal directed rules for ILL?, g ,:

2. 'Fa 12,A+Db
12,ara (A) 12, Arc a—(bocjeX
12,1 arb 2. 'Fa 12,1k D
S Tre (@b —ceX IS TFc

e Gill° and trivial phase semantics: s/c w.r.t. ILLQO’&,!

(a&b) oceX

— Gill° is strongly sound, hence sound w.r.t. any class of models

— complete w.r.t. Tm, NDm, Dm (LW.&G. 10), w.r.t. Dg, NDg
\ — but completeness unknown w.r.t. Tg and G /
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/ Encoding acceptance of two counters MMI \

e Build a sequent !>, a*,bY +q;
— a and b represents the two counters
— do, .- . q; represents the [ + 1 positions of the MM
— 1nstructions encoding in X, a and b never in goal position

— acceptance as (universal) validity:

(¢2,z,y) »* (0,0,0) iff !'X,a% b¥+q; univ. valid

e Introducevs.t. !%,a%,b¥rviffz =0 (resp. u/y)
— ¥ contains b — (v —ovVv) and (a—oa) ov (zero test on z)

— ¥ contains a — (Uu—ou) and (a—oa) -ou (zero test on y)

\o 133,a% b° + qg, hence ¥ contains (a — a) — qg (ground case) /
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Encoding add 1 to a (soundness) I

e “add 1” instruction: |2 : a:=a+ 1 ; gotoy

e Operational semantics: (z,z,y) = (5,2 + 1,y) —* (0,0,0)

e Recursively built Gill® proof to establish univ. validity:

13, a%, a,b? FQ;

(a—oQqj) oq;€X
12,a%, by +q;
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Encoding sub 1/zero test on a (soundness) (i) I

“sub 1/zero t.”: |7 : if a = 0 then goto j else a:=a—-1; goto k

Casez =0
Operational semantics: (z,0,y) — (7,0,y) —* (0,0,0)
Corresponding Gill° proof:

z.t.on

12,bY v 12,0Y+q;

(v&qj)—oqieZ}
13, bY +q;
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Encoding sub 1/zero test on a (soundness) (ii)'

o “sub 1/zerot.”: |¢: if a = 0 then goto 7 elsea:=a—-1; goto k

e Casez+1>0
e Operational semantics: (z,z + 1,y) — (k,z,y) —»* (0,0,0)

e Corresponding Gill® proof:

(Ax)
12,ara 13:,a%,bY +qg
a—o(Qr—0Q;) €X

12,a,a%,bY+q;

N /
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/ Summary of the encoding and soundness' \

, a—o (u—ou),b—o(v—-ov),
e Start with X =
(a—oa)—ou,(a—a)—ov,(a—wa)—oqg
e For instructionz: a:=a+1; gotoy
— add {(a —Q;) — qi} to &
e For instruction z : if a = 0 then goto y elsea:=a—-1; goto &
— add {(v& ;) — qi,a — (g — )} to T

e Soundness theorem:

if (7,z,y) —»* (0,0,0) then ! &, a*,bY + g; has a Gill°-proof

\o as a consequence, !>, a%,bY + g; 1s univ. valid /
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/ Completeness of the encoding (summary) I \

e Let us suppose !X, a*,bY +q; 1s univ. valid, ¥ = o4,...,0,

e By trivial phase interpretation in N X N (class Tm)

la] = {(1,0)} [ob] ={(0,1)} [u] =Nx{0} [v]={0}xN
[a:] = {(z,y) e NXN| (¢, z,y) =* (0,0,0)}

e We will show | (0,0) € [o;] | for any ¢ (completeness Lemma)

e By universal validity of !X, a*, bY + q;, we derive:
['o1]o---o[tor]ofa]o---ofa]ofb]o---ofb] <a]

o I—Ience {(01 O)} ©---0 {(07 O)} O {("E7 O)} O {(07 y)} - [[qz]]
\o Thus (z,y) € [9;], and as a consequence (z,z,y) —* (0,0,0) /
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Inside the proof of the Completeness Lemma'

e Case of instructionz: a:=a+ 1 ; goto 7

e Y contains (a—q;) —oq;

e Completeness Lemma condition: (0,0) € [(a — CIj) —o ;]

e Interpreted by [a] — [a;] <€ [a:]

e Translates into Vz,y (z,v)+ (1,0) € [a;] = (z,v) € [a:]
e Thus Yz,y (7,z+1,y) »*(0,0,0) = (¢,z,y) —* (0,0,0)
e This is exactly the operational semantics of “add 1 to a”

N /
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4 D

Consequences of the encoding of MMI

e We obtain an encoding suitable for classes NDm, Dm and Tm
— NXNeTm C Dm € NDm
— obtain for undecidability of ILL(_)O,&,!, BBIyp, BBIp and BBIr
— but not for BBlz or CBlx

e What about an interpretation in Z X Z (class G) 7

e Why not consider NXN CZXZ
— with the same trivial phase interpretation as before ?

— does this interpretation satisfy the completeness Lemma ?

— i.e. (0,0) € [o] for any 0 € &
- y /
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e Case of instruction 2z : a:=a+ 1 ; goto 3

e > contains (a —Qq;) —Q;

e Completeness Lemma condition: (0,0) € [(a —- q;) — q;]
e Interpreted by [a] — [[a;] < [a:]

e ie. Y2,y (5,z+1,y) »*(0,0,0) = (z,z,v) —* (0,0,0)
e this is not the operational semantics of “add 1 to a”

— there i1s a problem when z = -1

e Solution: change condition into: for any z,y

((:z:,y) e NxNand (7,z+1,y) =~ (0,0, O)) = (¢,z,y) =~ (0,0,

N

/ Completeness Lemma (revisited for Z x Z) I \
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/ Completeness Lemma (revisited) (cont.)' \

Introduction of a variable k interpreted by [k] = N x N

(z,v) € N XN thus becomes (z,y) € [K]

Op. sem. of “add 1 to @” encoded as (0,0) € [(k& (a < q;)) — q;]

Formula (k & (a — q;)) — g; not in ILL?, ; , replaced by two:
(k& q?) — q;, (@ —~ q;) — o]

with [of] = {(z,y) € ZxZ| (7,2 + 1,y) »* (0,0,0)}

Also add the three following formulae to X:

fa— (k—k),b—o (k—k), (a—a) -kl

/
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/ Conclusion and perspectives' \

e Modified encoding suitable for class G and thus, all classes.
— Zx7Ze€GC X, for any X € {Tm,Dm, NDm, Tg, Dg, NDg}
— obtain for undecidability of ILL(L,&,!, BBlx, CBlx for any X

e What about decidability of BBI/CBI restricted to N/Z 7
— l-counter MM are decidable (Bouajjani et al. 99)

e What about an interpretation in the RAM-domain model ?
— (P:(N), w, 0) belongs to the class of separation models
— P¢(N) bisimulates N x N
— P%/c(N) bisimulates N x N U {co}

N
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/Bisimulation vs. Kripke/phase semantics of BBI I\

e (M,o,¢) and (N,e,e) two ND monoids

e Bisimulation relation ~ C M x N:
— checks ~ C {(e,e)} U M\{e} X N\{e} and

(VaObamHa’Ob’am’a~a’andb~b’

, Va'eb  om’daocbaoma~a and b~ b
m~m =
Vobeagomdb ea’em’ a~a’ andb~ b

Yo ea’ em’dbeaoma~a andb~ b

e if m ~m’ then for any F of BBI, |m € [F] iff m’ € [F]’
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Bisimulating N x N in $;(N) I

o (P:(N),w,0) and (NxN,+,(0,0)) are two ND monoids

e Let N=EwWO (e.g. even/odd numbers)

o For X € P¢(N), let ¢(X) = (card(X NE), card(X N Q))

e ¢:P¢(N) — N XN is a projection (surjective)

o p CPr(N)x (N xXxN) is a bisimulation

e Use ¢ to transform the N X N model into a P¢(N) model
— simply define [x]" = go_l([[x]])

e Also Ps/.(N) bisimilar to N x N U {co} (RAM-domain for CBI)
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