
'

&

$

%

An Alternative Direct Simulation of Minsky

Machines into Classical Bunched Logics

via Group Semantics

Dominique Larchey-Wendling

TYPES team, LORIA { CNRS

Nancy, France

MFPS XXVI, Ottawa, Canada, May 2010.

1

'

&

$

%

Boolean/Classical Bunched Logics

� Separation Logic (SL) (Reynolds&O'Hearn 01)

– �nite stacks of cells, A : Loc −→f Val

– C = A |B models aggregation of cells into wider structures

� BBI is the logical core of SL

� BBI connectives (Pym 02, BI + {¬¬A→ A})

– Boolean logic connectives: ∧, ∨, →, ¬, . . .

– multiplicative connectives: ∗, −∗, I

� more connectives for CBI (Brotherston&Calcagno 09)

– multiplicative zero O, linear negation ∼

– dualizing operator for Kripke semantics

2

'

&

$

%

Proof theory for BBI/CBI

� Compared to (intuitionistic) BI: much less satisfying situation

– BI has Bunched sequent calculus (O'Hearn&Pym 99)

– with cut-elimination from its inception

– BI is decidable (Galmiche et al. 05)

� Hilbert system s/c for relational BBI (LW.&Galmiche 06, Yang)

� Semantic tableaux s/c for (partial) monoidal BBI

– (unexpected) embedding of BI into BBI (LW.&Galmiche 09)

� Display calculi s/c for relational CBI (Brother.&Calcagno 09)

� Display calculi s/c for relational BBI (Brotherston 09, 10)

3

'

&

$

%

Kripke semantics of BBI/CBI (i)

� Non-deterministic(/relational) monoid (NDm) (M; ◦; �)

– ◦ :M ×M −→P(M) and � ∈M

– for X;Y ∈ P(M), X ◦ Y = {z | ∃x ∈ X;∃y ∈ Y; z ∈ x ◦ y}

– � ◦ x = {x} (neutrality), x ◦ y = y ◦ x (commutativity)

– x ◦ (y ◦ z) = (x ◦ y) ◦ z (associativity)

– (P(M); ◦; {�}) is a (usual) commutative monoid

– residuation: X −−◦ Y = {z | z ◦X ⊆ Y }

� Non-deterministic groupoid (NDg) (M; ◦; �;−;∞)

– (M; ◦; �) is a NDm

– ∞ ∈ x ◦ y i� y = −x (pseudo inverse)

4

'

&

$

%

Kripke semantics of BBI/CBI (ii)

� Boolean (pointwise) Kripke semantics extended by:

m
 A ∗B i� ∃a; b s.t. m ∈ a ◦ b and a
 A and b
 B

m
 A −∗B i� ∀a; b (b ∈ a ◦m and a
 A)⇒ b
 B

m
 I i� m = �

� Moreover, for CBI: m
 ∼A i� −m 1 A m
 O i� m , ∞

� Decision problems:

– checking a particular model (m
 A), Calcagno et al. 01 (SL)

– validity in a particular interpretation (∀m;m
 A)

– univ. validity w.r.t. class of models (∀M∀
∀m;m
 A)

5

'

&

$

%

Classes of models for BBI/CBI

� Partial (deterministic) monoids/groupoids (Dm=Dg): x ◦ y ⊆ {k}

� Total (deterministic) monoids/groupoids (Tm=Tg): x ◦ y = {k}

� Groups (G): � = ∞ and x ◦ −x = {�}

� G (Tm (Dm (NDm and G (Tg (Dg (NDg

� Separation models are in Dm=Dg (Brotherston&Kanovich 10):

– RAM-domain model for BBI: (Pf(N);]; ∅)

– RAM-domain model for CBI: (Pf=c(N);]; ∅;N\(·);N)

� Universal validity de�nes di�erent logics:

BBIND (BBID (BBIT (BBIG CBIND (CBID (CBIT (CBIG

6

'

&

$

%

Undecidability of BBI/CBI

� Minsky machines encoded in fragments of BBI/CBI

� BBIX undecidable:

– for X ∈ {NDm;Dm;Tm}, Larchey&Galmiche 10

– for X ∈ {NDm;Dm; sep. models}, Brotherston&Kanovich 10

� CBIX undecidable:

– for X ∈ {NDg;Dg; sep. models}, Brotherston&Kanovich 10

� B.&K. 10 encoding needs indivisible units x ◦ y = �⇒ x = y = �

� This paper:

– a proof/encoding covering all these cases

– also BBIG/CBIG undecidable (G has divisible units)

7

'

&

$

%

Overview of the encoding

� ILL0(;&;! ' eBBI is a fragment of BBI/CBI

– Trivial phase semantics/Kripke semantics

� Two counter Minsky machines in ILL0(;&;!:

– add 1, sub 1, zero test, two positive counters

– \negative" encoding acceptance (1;m; n)→? (0; 0; 0)

– reachability (�;m;n)→? (�;m′; n′) req. �, �, Kanovich 95

– Brotherston&Kanovich 10 uses double linear negation

– LW.&Galmiche 10 works with N × N, unsuitable for Z × Z

� Faithfullness of the encoding:

– via N × N sem. (BBI), via Z × Z sem. (BBI/CBI)

– RAM-domain model bisimilar to N × N

8

'

&

$

%

Kripke vs. Phase semantics for BBI

� Change of notation: m
 A i� m ∈ [[A]]

� The interpretation of multiplicative conjuction ∗

m
 A ∗B i� ∃a; b s.t. a ◦ b = m and a
 A and b
 B

[[A ∗B]] = [[A]] ◦ [[B]]

� Phase semantics for BBI (equiv. to Kripke sem.):

[[⊥]] = ∅ [[A ∨B]] = [[A]] ∪ [[B]]

[[>]] =M [[A ∧B]] = [[A]] ∩ [[B]]

[[I]] = {�} [[A ∗B]] = [[A]] ◦ [[B]]

[[¬A]] =M\[[A]] [[A −∗B]] = [[A]] −−◦ [[B]]

9

'

&

$

%

Phase semantics for ILL

� Intuitionistic phase space (M; ◦; �; (·)�;K):

– (M; ◦; �) in NDm (usually Tm)

– (·)� is a closure operator with A� ◦B� ⊆ (A ◦B)� (stability)

– K sub-monoid of M : � ∈ K and K ◦K ⊆ K

– K ⊆ {�}� ∩ {x ∈M | x ∈ (x ◦ x)�}

� Phase interpretation of ILL operators:

[[⊥]] = ∅� [[A�B]] = ([[A]] ∪ [[B]])�

[[>]] =M [[A&B]] = [[A]] ∩ [[B]]

[[1]] = {�}� [[A�B]] = ([[A]] ◦ [[B]])�

[[!A]] = (K ∩ [[A]])� [[A(B]] = [[A]] −−◦ [[B]]

10

'

&

$

%

Trivial phase semantics for ILL

� Intuitionistic phase space (M; ◦; �; (·)�;K):

– (·)� is the identity closure: A� = A

– and as a consequence K = {�}

� Trivial phase interpretation of ILL operators:

[[⊥]] = ∅ [[A�B]] = [[A]] ∪ [[B]]

[[>]] =M [[A&B]] = [[A]] ∩ [[B]]

[[1]] = {�} [[A�B]] = [[A]] ◦ [[B]]

[[!A]] = {�} ∩ [[A]] [[A(B]] = [[A]] −−◦ [[B]]

11

'

&

$

%

ILL vs. BBI phase semantics

Trivial phase sem. for ILL Phase sem. for BBI

[[⊥]] = ∅

[[>]] =M

[[1]] = {�}

[[!A]] = {�} ∩ [[A]]

[[A�B]] = [[A]] ∪ [[B]]

[[A&B]] = [[A]] ∩ [[B]]

[[A�B]] = [[A]] ◦ [[B]]

[[A(B]] = [[A]] −−◦ [[B]]

[[⊥]] = ∅

[[>]] =M

[[I]] = {�}

[[I ∧ A]] = {�} ∩ [[A]]

[[A ∨B]] = [[A]] ∪ [[B]]

[[A ∧B]] = [[A]] ∩ [[B]]

[[A ∗B]] = [[A]] ◦ [[B]]

[[A −∗B]] = [[A]] −−◦ [[B]]

12

'

&

$

%

ILL as a fragment of BBI/CBI

� Embedding ILL (with trivial phase sem.) into BBI/CBI

– replace 1=I, �=∨, &=∧, �=∗, (=−∗

– replace !A by I ∧ A

– sound and faithful for trivial phase semantics

� ILL undecidable but not complete w.r.t. trivial phase semantics

� The elementary fragment of ILL: ILL0(;&;! (LW.&Galmiche 10)

– contains only !, (and & (not � or �)

– undecidable (Minsky machines)

– complete for trivial phase sem.

� Elementary BBI (eBBI) corresponds to ILL0(;&;! (via embedding)

13

'

&

$

%

The elementary fragment ILL0

(;&;!
of ILL

� Elementary sequents: ! �; g1; : : : ; gk ` d (gi; a; b; c; d variables)

– In �: a((b(c), (a(b)(c or (a& b)(c

� Gill0, goal directed rules for ILL0(;&;!:

! �; a ` a
〈Ax〉

! �;� ` a ! �;� ` b

! �;�;� ` c
a((b(c) ∈ �

!�;�; a ` b

! �;� ` c
(a(b)(c ∈ �

!�;� ` a ! �;� ` b

! �;� ` c
(a& b)(c ∈ �

� Gill0 and trivial phase semantics: s/c w.r.t. ILL0(;&;!

– Gill0 is strongly sound, hence sound w.r.t. any class of models

– complete w.r.t. Tm, NDm, Dm (LW.&G. 10), w.r.t. Dg, NDg

– but completeness unknown w.r.t. Tg and G

14

'

&

$

%

Encoding acceptance of two counters MM

� Build a sequent ! �; ax; by ` qi

– a and b represents the two counters

– q0; : : : ql represents the l+ 1 positions of the MM

– instructions encoding in �, a and b never in goal position

– acceptance as (universal) validity:

(i; x; y)→? (0; 0; 0) i� ! �; ax; by ` qi univ. valid

� Introduce v s.t. ! �; ax; by ` v i� x = 0 (resp. u/y)

– � contains b((v(v) and (a(a)(v (zero test on x)

– � contains a((u(u) and (a(a)(u (zero test on y)

� ! �; a0; b0 ` q0, hence � contains (a(a)(q0 (ground case)

15

'

&

$

%

Encoding add 1 to a (soundness)

� \add 1" instruction: i : a := a + 1 ; goto j

� Operational semantics: (i; x; y)→ (j; x+ 1; y)→? (0; 0; 0)

� Recursively built Gill0 proof to establish univ. validity:

: : :

! �; ax; a; by ` qj
(a(qj)(qi ∈ �

!�; ax; by ` qi

16

'

&

$

%

Encoding sub 1/zero test on a (soundness) (i)

� \sub 1/zero t.": i : if a = 0 then goto j else a := a − 1 ; goto k

� Case x = 0

� Operational semantics: (i; 0; y)→ (j; 0; y)→? (0; 0; 0)

� Corresponding Gill0 proof:

z.t. on x

! �; by ` v

: : :

! �; by ` qj
(v & qj)(qi ∈ �

!�; by ` qi

17

'

&

$

%

Encoding sub 1/zero test on a (soundness) (ii)

� \sub 1/zero t.": i : if a = 0 then goto j else a := a − 1 ; goto k

� Case x+ 1 > 0

� Operational semantics: (i; x+ 1; y)→ (k; x; y)→? (0; 0; 0)

� Corresponding Gill0 proof:

〈Ax〉
! �; a ` a

: : :

! �; ax; by ` qk
a((qk(qi) ∈ �

!�; a; ax; by ` qi

18

'

&

$

%

Summary of the encoding and soundness

� Start with � =

a((u(u); b((v(v);

(a(a)(u; (a(a)(v; (a(a)(q0


� For instruction i : a := a + 1 ; goto j

– add
{
(a(qj)(qi

}
to �

� For instruction i : if a = 0 then goto j else a := a − 1 ; goto k

– add
{
(v & qj)(qi; a((qk(qi)

}
to �

� Soundness theorem:

if (i; x; y)→? (0; 0; 0) then !�; ax; by ` qi has a Gill0-proof

� as a consequence, ! �; ax; by ` qi is univ. valid

19

'

&

$

%

Completeness of the encoding (summary)

� Let us suppose ! �; ax; by ` qi is univ. valid, � = �1; : : : ; �r

� By trivial phase interpretation in N × N (class Tm)

[[a]] = {(1; 0)} [[b]] = {(0; 1)} [[u]] = N × {0} [[v]] = {0} × N

[[qi]] = {(x; y) ∈ N × N | (i; x; y)→? (0; 0; 0)}

� We will show (0; 0) ∈ [[�i]] for any i (completeness Lemma)

� By universal validity of ! �; ax; by ` qi, we derive:

[[!�1]] ◦ · · · ◦ [[!�r]] ◦ [[a]] ◦ · · · ◦ [[a]] ◦ [[b]] ◦ · · · ◦ [[b]] ⊆ [[qi]]

� Hence {(0; 0)} ◦ · · · ◦ {(0; 0)} ◦ {(x; 0)} ◦ {(0; y)} ⊆ [[qi]]

� Thus (x; y) ∈ [[qi]], and as a consequence (i; x; y)→? (0; 0; 0)

20

'

&

$

%

Inside the proof of the Completeness Lemma

� Case of instruction i : a := a + 1 ; goto j

� � contains (a(qj)(qi

� Completeness Lemma condition: (0; 0) ∈ [[(a(qj)(qi]]

� Interpreted by [[a]] −−◦ [[qj]] ⊆ [[qi]]

� Translates into ∀x; y (x; y) + (1; 0) ∈ [[qj]]⇒ (x; y) ∈ [[qi]]

� Thus ∀x; y (j; x+ 1; y)→? (0; 0; 0)⇒ (i; x; y)→? (0; 0; 0)

� This is exactly the operational semantics of \add 1 to a"

21

'

&

$

%

Consequences of the encoding of MM

� We obtain an encoding suitable for classes NDm, Dm and Tm

– N × N ∈ Tm ⊆ Dm ⊆ NDm

– obtain for undecidability of ILL0(;&;!, BBIND, BBID and BBIT

– but not for BBIG or CBIX

� What about an interpretation in Z × Z (class G) ?

� Why not consider N × N ⊂ Z × Z

– with the same trivial phase interpretation as before ?

– does this interpretation satisfy the completeness Lemma ?

– i.e. (0; 0) ∈ [[�]] for any � ∈ �

22

'

&

$

%

Completeness Lemma (revisited for Z × Z)

� Case of instruction i : a := a + 1 ; goto j

� � contains (a(qj)(qi

� Completeness Lemma condition: (0; 0) ∈ [[(a(qj)(qi]]

� Interpreted by [[a]] −−◦ [[qj]] ⊆ [[qi]]

� i.e. ∀x; y (j; x+ 1; y)→? (0; 0; 0)⇒ (i; x; y)→? (0; 0; 0)

� this is not the operational semantics of \add 1 to a"

– there is a problem when x = −1

� Solution: change condition into: for any x; y(
(x; y) ∈ N ×N and (j; x+ 1; y)→? (0; 0; 0)

)
⇒ (i; x; y)→? (0; 0; 0)

23

'

&

$

%

Completeness Lemma (revisited) (cont.)

� Introduction of a variable k interpreted by [[k]] = N × N

� (x; y) ∈ N × N thus becomes (x; y) ∈ [[k]]

� Op. sem. of \add 1 to a" encoded as (0; 0) ∈ [[(k& (a(qj))(qi]]

� Formula (k & (a(qj))(qi not in ILL0(;&;! replaced by two:{
(k & qa

j)(qi; (a(qj)(qa
j

}
� with [[qa

j
]] = {(x; y) ∈ Z × Z | (j; x+ 1; y)→? (0; 0; 0)}

� Also add the three following formulae to �:{
a((k(k); b((k(k); (a(a)(k

}
24

'

&

$

%

Conclusion and perspectives

� Modi�ed encoding suitable for class G and thus, all classes.

– Z × Z ∈ G ⊆ X, for any X ∈ {Tm;Dm;NDm;Tg;Dg;NDg}

– obtain for undecidability of ILL0(;&;!, BBIX , CBIX for any X

� What about decidability of BBI/CBI restricted to N/Z ?

– 1-counter MM are decidable (Bouajjani et al. 99)

� What about an interpretation in the RAM-domain model ?

– (Pf(N);]; ∅) belongs to the class of separation models

– Pf(N) bisimulates N × N

– Pf=c(N) bisimulates N × N ∪ {∞}

25

'

&

$

%

Bisimulation vs. Kripke/phase semantics of BBI

� (M; ◦; �) and (N; •; e) two ND monoids

� Bisimulation relation ∼ ⊆M ×N :

– checks ∼ ⊆ {(�; e)} ∪M\{�} ×N\{e} and

m ∼ m′ ⇒



∀a ◦ b 3 m∃a′ • b′ 3 m′ a ∼ a′ and b ∼ b′

∀a′ • b′ 3 m′ ∃a ◦ b 3 m a ∼ a′ and b ∼ b′

∀b ∈ a ◦m∃b′ ∈ a′ •m′ a ∼ a′ and b ∼ b′

∀b′ ∈ a′ •m′ ∃b ∈ a ◦m a ∼ a′ and b ∼ b′

� if m ∼ m′ then for any F of BBI, m ∈ [[F]] i� m′ ∈ [[F]]′

26

'

&

$

%

Bisimulating N × N in Pf(N)

� (Pf(N);]; ∅) and (N × N;+; (0; 0)) are two ND monoids

� Let N = E] O (e.g. even/odd numbers)

� For X ∈ Pf(N), let '(X) = (card(X ∩ E); card(X ∩ O))

� ' : Pf(N) −→ N × N is a projection (surjective)

� ' ⊆ Pf(N) × (N × N) is a bisimulation

� Use ' to transform the N × N model into a Pf(N) model

– simply de�ne [[x]]′ = '−1
(
[[x]]

)
� Also Pf=c(N) bisimilar to N × N ∪ {∞} (RAM-domain for CBI)

27

