An Alternative Direct Simulation of Minsky Machines into Classical Bunched Logics via Group Semantics

Dominique Larchey-Wendling TYPES team, LORIA - CNRS

Nancy, France

MFPS XXVI, Ottawa, Canada, May 2010.

Boolean/Classical Bunched Logics

- Separation Logic (SL) (Reynolds\&O'Hearn 01)
- finite stacks of cells, $A:$ Loc $\longrightarrow_{\mathrm{f}} \mathrm{Val}$
$-C=A \uplus B$ models aggregation of cells into wider structures
- BBI is the logical core of SL
- BBI connectives (Pym 02, $\mathrm{BI}+\{\neg \neg A \rightarrow A\}$)
- Boolean logic connectives: $\wedge, \vee, \rightarrow, \neg, \ldots$
- multiplicative connectives: $*,-*$, I
- more connectives for CBI (Brotherston\&Calcagno 09)
- multiplicative zero O, linear negation ~
- dualizing operator for Kripke semantics

Proof theory for BBI/CBI

- Compared to (intuitionistic) BI: much less satisfying situation
- BI has Bunched sequent calculus (O'Hearn\&Pym 99)
- with cut-elimination from its inception
- BI is decidable (Galmiche et al. 05)
- Hilbert system s/c for relational BBI (LW.\&Galmiche 06, Yang)
- Semantic tableaux s/c for (partial) monoidal BBI
- (unexpected) embedding of BI into BBI (LW.\&Galmiche 09)
- Display calculi s/c for relational CBI (Brother.\&Calcagno 09)
- Display calculi s/c for relational BBI (Brotherston 09, 10)

Kripke semantics of BBI/CBI (i)

- Non-deterministic(/relational) monoid (NDm) (M, \circ, ϵ)
$-\circ: M \times M \longrightarrow \mathcal{P}(M)$ and $\epsilon \in M$
- for $X, Y \in \mathcal{P}(M), X \circ Y=\{z \mid \exists x \in X, \exists y \in Y, z \in x \circ y\}$
$-\epsilon \circ x=\{x\}$ (neutrality), $x \circ y=y \circ x$ (commutativity)
$-x \circ(y \circ z)=(x \circ y) \circ z$ (associativity)
- $(\mathcal{P}(M), \circ,\{\epsilon\})$ is a (usual) commutative monoid
- residuation: $X \multimap Y=\{z \mid z \circ X \subseteq Y\}$
- Non-deterministic groupoid (NDg) $(M, \circ, \epsilon,-, \infty)$
- (M, \circ, ϵ) is a NDm
$-\infty \in x \circ y$ iff $y=-x$ (pseudo inverse)

Kripke semantics of BBI/CBI (ii)

- Boolean (pointwise) Kripke semantics extended by:

$$
\begin{array}{cll}
m \Vdash A * B & \text { iff } & \exists a, b \text { s.t. } m \in a \circ b \text { and } a \Vdash A \text { and } b \Vdash B \\
m \Vdash A * B & \text { iff } & \forall a, b \quad(b \in a \circ m \text { and } a \Vdash A) \Rightarrow b \Vdash B \\
m \Vdash I & \text { iff } & m=\epsilon
\end{array}
$$

- Moreover, for CBI: $m \Vdash \sim A$ iff $-m \nVdash A \quad m \Vdash$ O iff $m \neq \infty$
- Decision problems:
- checking a particular model $(m \Vdash A)$, Calcagno et al. 01 (SL)
- validity in a particular interpretation $(\forall m, m \Vdash A)$
- univ. validity w.r.t. class of models $(\forall \mathcal{M} \forall \Vdash \forall m, m \Vdash A)$

Classes of models for $\mathrm{BBI} / \mathrm{CBI}$

- Partial (deterministic) monoids/groupoids (Dm/Dg): $x \circ y \subseteq\{k\}$
- Total (deterministic) monoids/groupoids (Tm/Tg): $x \circ y=\{k\}$
- Groups (G): $\epsilon=\infty$ and $x \circ-x=\{\epsilon\}$
- $\mathrm{G} \subsetneq \mathrm{Tm} \subsetneq \mathrm{Dm} \subsetneq \mathrm{NDm}$ and $\mathrm{G} \subsetneq \mathrm{Tg} \subsetneq \mathrm{Dg} \subsetneq \mathrm{NDg}$
- Separation models are in Dm/Dg (Brotherston\&Kanovich 10):
- RAM-domain model for BBI: $\left(\mathcal{P}_{\mathrm{f}}(\mathbb{N}), \uplus, \emptyset\right)$
- RAM-domain model for CBI: $\left(\mathcal{P}_{\mathrm{f} / \mathrm{c}}(\mathbb{N}), \uplus, \emptyset, \mathbb{N} \backslash(\cdot), \mathbb{N}\right)$
- Universal validity defines different logics:
$\mathrm{BBI}_{\mathrm{ND}} \subsetneq \mathrm{BBI}_{\mathrm{D}} \subsetneq \mathrm{BBI}_{\mathrm{T}} \subsetneq \mathrm{BBI}_{\mathrm{G}} \quad \mathrm{CBI}_{\mathrm{ND}} \subsetneq \mathrm{CBI}_{\mathrm{D}} \subsetneq \mathrm{CBI}_{\mathrm{T}} \subsetneq \mathrm{CBI}_{\mathrm{G}}$

Undecidability of $\mathrm{BBI} / \mathrm{CBI}$

- Minsky machines encoded in fragments of $\mathrm{BBI} / \mathrm{CBI}$
- BBI_{X} undecidable:
- for $X \in\{\mathrm{NDm}, \mathrm{Dm}, \mathrm{Tm}\}$, Larchey\&Galmiche 10
- for $X \in\{N D m, D m$, sep. models\}, Brotherston\&Kanovich 10
- CBI_{X} undecidable:
- for $X \in\{N D g, D g$, sep. models $\}$, Brotherston\&Kanovich 10
- B.\&K. 10 encoding needs indivisible units $x \circ y=\epsilon \Rightarrow x=y=\epsilon$
- This paper:
- a proof/encoding covering all these cases
- also $\mathrm{BBI}_{\mathrm{G}} / \mathrm{CBI}_{\mathrm{G}}$ undecidable (G has divisible units)

Overview of the encoding

- $I L L_{-0, \&,!}^{0} \simeq e B B I$ is a fragment of $\mathrm{BBI} / \mathrm{CBI}$
- Trivial phase semantics/Kripke semantics
- Two counter Minsky machines in $\mathrm{ILL}_{-0, \&,!}^{0}$:
- add 1, sub 1, zero test, two positive counters
- "negative" encoding acceptance $(1, m, n) \rightarrow^{\star}(0,0,0)$
- reachability $(\alpha, m, n) \rightarrow^{\star}\left(\beta, m^{\prime}, n^{\prime}\right)$ req. \oplus, \otimes, Kanovich 95
- Brotherston\&Kanovich 10 uses double linear negation
- LW.\&Galmiche 10 works with $\mathbb{N} \times \mathbb{N}$, unsuitable for $\mathbb{Z} \times \mathbb{Z}$
- Faithfullness of the encoding:
$-\operatorname{via} \mathbb{N} \times \mathbb{N}$ sem. (BBI), via $\mathbb{Z} \times \mathbb{Z}$ sem. (BBI/CBI)
- RAM-domain model bisimilar to $\mathbb{N} \times \mathbb{N}$

Kripke vs. Phase semantics for BBI

- Change of notation: $m \Vdash A$ iff $m \in \llbracket A \rrbracket$
- The interpretation of multiplicative conjuction *

$$
\begin{array}{cl}
m \Vdash A * B & \text { iff } \quad \exists a, b \text { s.t. } a \circ b=m \text { and } a \Vdash A \text { and } b \Vdash B \\
\llbracket A * B \rrbracket & =\llbracket A \rrbracket \circ \llbracket B \rrbracket
\end{array}
$$

- Phase semantics for BBI (equiv. to Kripke sem.):

$$
\left.\begin{array}{rlrl}
\llbracket \perp \rrbracket & =\emptyset & & \llbracket A \vee B \rrbracket
\end{array}=\llbracket A \rrbracket \cup \llbracket B \rrbracket\right]
$$

Phase semantics for ILL

- Intuitionistic phase space $\left(M, \circ, \epsilon,(\cdot)^{\diamond}, K\right)$:
- (M, \circ, ϵ) in NDm (usually Tm)
$-(\cdot)^{\diamond}$ is a closure operator with $A^{\triangleright} \circ B^{\diamond} \subseteq(A \circ B)^{\triangleright}$ (stability)
- K sub-monoid of $M: \epsilon \in K$ and $K \circ K \subseteq K$
$-K \subseteq\{\epsilon\}^{\diamond} \cap\left\{x \in M \mid x \in(x \circ x)^{\diamond}\right\}$
- Phase interpretation of ILL operators:

$$
\left.\left.\begin{array}{rlrl}
\llbracket \perp \rrbracket & =\emptyset^{\circ} & \llbracket A \oplus B \rrbracket & =(\llbracket A \rrbracket \cup \llbracket B \rrbracket)^{\circ} \\
\llbracket \top \rrbracket & =M & & \llbracket A \& B \rrbracket
\end{array}\right)=\llbracket A \rrbracket \cap \llbracket B \rrbracket\right]
$$

Trivial phase semantics for ILL

- Intuitionistic phase space $\left(M, \circ, \epsilon,(\cdot)^{\circ}, K\right)$:
- $(\cdot)^{\circ}$ is the identity closure: $A^{\circ}=A$
- and as a consequence $K=\{\epsilon\}$
- Trivial phase interpretation of ILL operators:

$$
\begin{array}{rlrl}
\llbracket \perp \rrbracket & =\emptyset & & \llbracket A \oplus B \rrbracket \\
\llbracket \uparrow \rrbracket A \rrbracket \cup \llbracket B \rrbracket \\
\llbracket \top & =M & & \llbracket A \& B \rrbracket \\
\llbracket 1 \rrbracket & =\{\epsilon\} & & \llbracket A \otimes B \rrbracket \cap \llbracket B \rrbracket \\
\llbracket!A \rrbracket & =\{\epsilon\} \cap \llbracket A \rrbracket & & \llbracket A \multimap B \rrbracket
\end{array}
$$

ILL vs. BBI phase semantics

Trivial phase sem. for ILL
$\llbracket \perp \rrbracket=\emptyset$
$\llbracket \uparrow \rrbracket=M$
$\llbracket 1 \rrbracket=\{\epsilon\}$
$\llbracket!A \rrbracket=\{\epsilon\} \cap \llbracket A \rrbracket$
$\llbracket A \oplus B \rrbracket=\llbracket A \rrbracket \cup \llbracket B \rrbracket$
$\llbracket A \& B \rrbracket=\llbracket A \rrbracket \cap \llbracket B \rrbracket$
$\llbracket A \otimes B \rrbracket=\llbracket A \rrbracket \circ \llbracket B \rrbracket$
$\llbracket A \multimap B \rrbracket=\llbracket A \rrbracket \multimap \llbracket B \rrbracket$

Phase sem. for BBI
$\llbracket \perp \rrbracket=\emptyset$
$\llbracket \top \rrbracket=M$
$\llbracket 1 \rrbracket=\{\epsilon\}$
$\llbracket \mid \wedge A \rrbracket=\{\epsilon\} \cap \llbracket A \rrbracket$
$\llbracket A \vee B \rrbracket=\llbracket A \rrbracket \cup \llbracket B \rrbracket$
$\llbracket A \wedge B \rrbracket=\llbracket A \rrbracket \cap \llbracket B \rrbracket$
$\llbracket A * B \rrbracket=\llbracket A \rrbracket \circ \llbracket B \rrbracket$
$\llbracket A * B \rrbracket=\llbracket A \rrbracket \multimap \llbracket B \rrbracket$

ILL as a fragment of BBI/CBI

- Embedding ILL (with trivial phase sem.) into BBI/CBI
- replace $1 / I, \oplus / \vee, \& / \wedge, \otimes / *, \multimap / *$
- replace $!A$ by $I \wedge A$
- sound and faithful for trivial phase semantics
- ILL undecidable but not complete w.r.t. trivial phase semantics
- The elementary fragment of ILL: $\mathrm{ILL}_{-\infty, \&,!}^{0}$ (LW.\&Galmiche 10)
- contains only !, \rightarrow and \& (not \oplus or \otimes)
- undecidable (Minsky machines)
- complete for trivial phase sem.
- Elementary BBI (eBBI) corresponds to $\mathrm{ILL}_{-\infty, \&,!}^{0}$ (via embedding)

The elementary fragment ILL $_{-0, \mathrm{k},!}^{0}$ of ILL

- Elementary sequents: $!\Sigma, g_{1}, \ldots, g_{k} \vdash d \quad\left(g_{i}, a, b, c, d\right.$ variables $)$
$-\operatorname{In} \Sigma: a \multimap(b \multimap c),(a \multimap b) \multimap c$ or $(a \& b) \multimap c$
- Gill ${ }^{0}$, goal directed rules for $\mathrm{ILL}_{-0, \&,!}^{0}$:

$$
\begin{array}{ll}
\frac{!\Sigma, \Gamma \vdash a!!\Sigma, \Delta \vdash b}{!\Sigma, a \vdash a}\langle\mathrm{Ax}\rangle & \frac{!\Sigma, \Gamma, \Delta \vdash c}{} \rightarrow(b \multimap c) \in \Sigma \\
\frac{!\Sigma, \Gamma, a \vdash b}{!\Sigma, \Gamma \vdash c}(a \multimap b) \multimap c \in \Sigma & \frac{!\Sigma, \Gamma \vdash a \quad!\Sigma, \Gamma \vdash b}{!\Sigma, \Gamma \vdash c}(a \& b) \multimap c \in \Sigma
\end{array}
$$

- Gill ${ }^{0}$ and trivial phase semantics: s/c w.r.t. $\mathrm{ILL}_{-0, \&,!}^{0}$
- Gill ${ }^{0}$ is strongly sound, hence sound w.r.t. any class of models
- complete w.r.t. Tm, NDm, Dm (LW.\&G. 10), w.r.t. Dg, NDg
- but completeness unknown w.r.t. Tg and G

Encoding acceptance of two counters MM

- Build a sequent $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{a}_{i}$
- a and b represents the two counters
- $\mathrm{q}_{0}, \ldots \mathrm{q}_{l}$ represents the $l+1$ positions of the MM
- instructions encoding in Σ, a and b never in goal position
- acceptance as (universal) validity:

$$
(i, x, y) \rightarrow^{\star}(0,0,0) \quad \text { iff } \quad!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i} \text { univ. valid }
$$

- Introduce v s.t. $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y}+\mathrm{v}$ iff $x=0 \quad$ (resp. u / y)
$-\Sigma$ contains $\mathrm{b} \multimap(\mathrm{v} \multimap \mathrm{v})$ and $(\mathrm{a} \multimap \mathrm{a}) \multimap \mathrm{v} \quad$ (zero test on $x)$
$-\Sigma$ contains $a \multimap(u \multimap u)$ and $(a \multimap a) \multimap u \quad$ (zero test on $y)$
- $!\Sigma, a^{0}, b^{0} \vdash q_{0}$, hence Σ contains $(a \multimap a) \multimap q_{0}$ (ground case)

Encoding add 1 to a (soundness)

- "add 1 " instruction: i : a $:=\mathrm{a}+1$; goto j
- Operational semantics: $(i, x, y) \rightarrow(j, x+1, y) \rightarrow^{\star}(0,0,0)$
- Recursively built Gill ${ }^{0}$ proof to establish univ. validity:

$$
\frac{\cdots}{!\Sigma, \mathrm{a}^{x}, \mathrm{a}, \mathrm{~b}^{y}+\mathrm{q}_{j}} \frac{!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y}+\mathrm{q}_{i}}{}\left(\mathrm{a} \multimap \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i} \in \Sigma
$$

Encoding sub $1 /$ zero test on a (soundness) (i)

- "sub $1 /$ zero t.": i : if $\mathrm{a}=0$ then goto j else $\mathrm{a}:=\mathrm{a}-1$; goto k
- Case $x=0$
- Operational semantics: $(i, 0, y) \rightarrow(j, 0, y) \rightarrow^{\star}(0,0,0)$
- Corresponding Gill ${ }^{0}$ proof:

$$
\frac{\frac{\text { z.t. on } x}{!\Sigma, \mathrm{b}^{y}+\mathrm{v}} \frac{\cdots}{!\Sigma, \mathrm{b}^{y}+\mathrm{q}_{j}}}{!\Sigma, \mathrm{b}^{y}+\mathrm{q}_{i}}
$$

Encoding sub $1 /$ zero test on a (soundness) (ii)

- "sub 1 /zero t.": i : if $\mathrm{a}=0$ then goto j else $\mathrm{a}:=\mathrm{a}-1$; goto k
- Case $x+1>0$
- Operational semantics: $(i, x+1, y) \rightarrow(k, x, y) \rightarrow^{\star}(0,0,0)$
- Corresponding Gill ${ }^{0}$ proof:

Summary of the encoding and soundness

- Start with $\Sigma=\left\{\begin{array}{l}a \multimap(u \multimap u), b \multimap(v \multimap v), \\ (a \multimap a) \multimap u,(a \multimap a) \multimap v,(a \multimap a) \multimap q_{0}\end{array}\right\}$
- For instruction $i: \mathrm{a}:=\mathrm{a}+1$; goto j
$-\operatorname{add}\left\{\left(\mathrm{a} \multimap \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i}\right\}$ to Σ
- For instruction i : if $\mathrm{a}=0$ then goto j else $\mathrm{a}:=\mathrm{a}-1$; goto k
$-\operatorname{add}\left\{\left(v \& \mathrm{q}_{j}\right) \multimap \mathrm{a}_{i}, \mathrm{a} \multimap\left(\mathrm{q}_{k} \multimap \mathrm{q}_{i}\right)\right\}$ to Σ
- Soundness theorem:

$$
\text { if }(i, x, y) \rightarrow^{\star}(0,0,0) \text { then }!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i} \text { has a Gill }{ }^{0} \text {-proof }
$$

- as a consequence, $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}$ is univ. valid

Completeness of the encoding (summary)

- Let us suppose $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}$ is univ. valid, $\Sigma=\sigma_{1}, \ldots, \sigma_{r}$
- By trivial phase interpretation in $\mathbb{N} \times \mathbb{N}$ (class Tm$)$

$$
\begin{gathered}
\llbracket \mathrm{a} \rrbracket=\{(1,0)\} \quad \llbracket \mathrm{b} \rrbracket=\{(0,1)\} \quad \llbracket \mathrm{u} \rrbracket=\mathbb{N} \times\{0\} \quad \llbracket \mathrm{v} \rrbracket=\{0\} \times \mathbb{N} \\
\llbracket \mathrm{q}_{i} \rrbracket=\left\{(x, y) \in \mathbb{N} \times \mathbb{N} \mid(i, x, y) \rightarrow^{\star}(0,0,0)\right\}
\end{gathered}
$$

- We will show $(0,0) \in \llbracket \sigma_{i} \rrbracket$ for any i (completeness Lemma)
- By universal validity of $!\Sigma, \mathrm{a}^{x}, \mathrm{~b}^{y} \vdash \mathrm{q}_{i}$, we derive:

$$
\llbracket!\sigma_{1} \rrbracket \circ \cdots \circ \llbracket!\sigma_{r} \rrbracket \circ \llbracket \mathrm{a} \rrbracket \circ \cdots \circ \llbracket \mathrm{a} \rrbracket \circ \llbracket \mathrm{~b} \rrbracket \circ \cdots \circ \llbracket \mathrm{~b} \rrbracket \subseteq \llbracket \mathrm{q}_{i} \rrbracket
$$

- Hence $\{(0,0)\} \circ \cdots \circ\{(0,0)\} \circ\{(x, 0)\} \circ\{(0, y)\} \subseteq \llbracket q_{i} \rrbracket$
- Thus $(x, y) \in \llbracket \mathrm{q}_{i} \rrbracket$, and as a consequence $(i, x, y) \rightarrow^{\star}(0,0,0)$

Inside the proof of the Completeness Lemma

- Case of instruction $i: \mathrm{a}:=\mathrm{a}+1$; goto j
- Σ contains $\left(\mathrm{a} \multimap \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i}$
- Completeness Lemma condition: $(0,0) \in \llbracket\left(a \multimap q_{j}\right) \multimap \mathrm{q}_{i} \rrbracket$
- Interpreted by $\quad \llbracket \mathrm{a} \rrbracket \multimap \llbracket \mathrm{q}_{j} \rrbracket \subseteq \llbracket \mathrm{q}_{i} \rrbracket$
- Translates into $\quad \forall x, y \quad(x, y)+(1,0) \in \llbracket \mathrm{q}_{j} \rrbracket \Rightarrow(x, y) \in \llbracket \mathrm{q}_{i} \rrbracket$
- Thus $\forall x, y \quad(j, x+1, y) \rightarrow^{\star}(0,0,0) \Rightarrow(i, x, y) \rightarrow^{\star}(0,0,0)$
- This is exactly the operational semantics of "add 1 to a"

Consequences of the encoding of MM

- We obtain an encoding suitable for classes NDm, Dm and Tm
$-\mathbb{N} \times \mathbb{N} \in \mathrm{Tm} \subseteq \mathrm{Dm} \subseteq \mathrm{NDm}$
- obtain for undecidability of $\mathrm{ILL}_{-0, \&,!}^{0}, \mathrm{BBI}_{\mathrm{ND}}, \mathrm{BBI}_{\mathrm{D}}$ and $\mathrm{BBI}_{\mathrm{T}}$
- but not for $\mathrm{BBI}_{\mathrm{G}}$ or CBI_{X}
- What about an interpretation in $\mathbb{Z} \times \mathbb{Z}$ (class $G)$?
- Why not consider $\mathbb{N} \times \mathbb{N} \subset \mathbb{Z} \times \mathbb{Z}$
- with the same trivial phase interpretation as before?
- does this interpretation satisfy the completeness Lemma?
- i.e. $(0,0) \in \llbracket \sigma \rrbracket$ for any $\sigma \in \Sigma$

Completeness Lemma (revisited for $\mathbb{Z} \times \mathbb{Z}$)

- Case of instruction $i: \mathrm{a}:=\mathrm{a}+1$; goto j
- Σ contains $\left(\mathrm{a} \multimap \mathrm{q}_{j}\right) \multimap \mathrm{q}_{i}$
- Completeness Lemma condition: $(0,0) \in \llbracket\left(a \multimap q_{j}\right) \multimap \mathrm{q}_{i} \rrbracket$
- Interpreted by $\llbracket \mathrm{a} \rrbracket \multimap \llbracket \mathrm{q}_{j} \rrbracket \subseteq \llbracket \mathrm{q}_{i} \rrbracket$
- i.e. $\forall x, y \quad(j, x+1, y) \rightarrow^{\star}(0,0,0) \Rightarrow(i, x, y) \rightarrow^{\star}(0,0,0)$
- this is not the operational semantics of "add 1 to a"
- there is a problem when $x=-1$
- Solution: change condition into: for any x, y

$$
\left((x, y) \in \mathbb{N} \times \mathbb{N} \text { and }(j, x+1, y) \rightarrow^{\star}(0,0,0)\right) \Rightarrow(i, x, y) \rightarrow^{\star}(0,0,0)
$$

Completeness Lemma (revisited) (cont.)

- Introduction of a variable k interpreted by $\llbracket k \rrbracket=\mathbb{N} \times \mathbb{N}$
- $(x, y) \in \mathbb{N} \times \mathbb{N}$ thus becomes $(x, y) \in \llbracket \mathrm{k} \rrbracket$
- Op. sem. of "add 1 to a" encoded as $(0,0) \in \llbracket\left(k \&\left(a \multimap q_{j}\right)\right) \multimap q_{i} \rrbracket$
- Formula $\left(k \&\left(a \multimap q_{j}\right)\right) \rightarrow \mathrm{q}_{i}$ not in $\mathrm{ILL}_{-0, \&,!}^{0}$ replaced by two:

$$
\left\{\left(\mathrm{k} \& \mathrm{q}_{j}^{\mathrm{a}}\right) \multimap \mathrm{q}_{i},\left(\mathrm{a} \multimap \mathrm{q}_{j}\right) \multimap \mathrm{q}_{j}^{\mathrm{a}}\right\}
$$

- with $\llbracket \mathrm{q}_{j}^{\mathrm{a}} \rrbracket=\left\{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid(j, x+1, y) \rightarrow^{\star}(0,0,0)\right\}$
- Also add the three following formulae to Σ :

$$
\{a \multimap(k \multimap k), b \multimap(k \multimap k),(a \multimap a) \multimap k\}
$$

Conclusion and perspectives

- Modified encoding suitable for class G and thus, all classes.
$-\mathbb{Z} \times \mathbb{Z} \in \mathrm{G} \subseteq X$, for any $X \in\{\mathrm{Tm}, \mathrm{Dm}, \mathrm{NDm}, \mathrm{Tg}, \mathrm{Dg}, \mathrm{NDg}\}$
- obtain for undecidability of $\mathrm{ILL}_{-\infty, \&,!}^{0}, \mathrm{BBI}_{X}, \mathrm{CBI}_{X}$ for any X
- What about decidability of $\mathrm{BBI} / \mathrm{CBI}$ restricted to \mathbb{N} / \mathbb{Z} ?
- 1-counter MM are decidable (Bouajjani et al. 99)
- What about an interpretation in the RAM-domain model ?
- $\left(\mathcal{P}_{\mathrm{f}}(\mathbb{N}), \uplus, \emptyset\right)$ belongs to the class of separation models
- $\mathcal{P}_{\mathrm{f}}(\mathbb{N})$ bisimulates $\mathbb{N} \times \mathbb{N}$
- $\mathcal{P}_{\mathrm{f} / \mathrm{c}}(\mathbb{N})$ bisimulates $\mathbb{N} \times \mathbb{N} \cup\{\infty\}$

Bisimulation vs. Kripke/phase semantics of BBI

- (M, \circ, ϵ) and (N, \bullet, e) two ND monoids
- Bisimulation relation $\sim \subseteq M \times N$:
- checks $\sim \subseteq\{(\epsilon, \mathrm{e})\} \cup M \backslash\{\epsilon\} \times N \backslash\{\mathrm{e}\}$ and

$$
m \sim m^{\prime} \Rightarrow\left\{\begin{array}{l}
\forall a \circ b \ni m \exists a^{\prime} \bullet b^{\prime} \ni m^{\prime} a \sim a^{\prime} \text { and } b \sim b^{\prime} \\
\forall a^{\prime} \bullet b^{\prime} \ni m^{\prime} \exists a \circ b \ni m a \sim a^{\prime} \text { and } b \sim b^{\prime} \\
\forall b \in a \circ m \exists b^{\prime} \in a^{\prime} \bullet m^{\prime} a \sim a^{\prime} \text { and } b \sim b^{\prime} \\
\forall b^{\prime} \in a^{\prime} \bullet m^{\prime} \exists b \in a \circ m a \sim a^{\prime} \text { and } b \sim b^{\prime}
\end{array}\right.
$$

- if $m \sim m^{\prime}$ then for any F of BBI, $m \in \llbracket F \rrbracket$ iff $m^{\prime} \in \llbracket F \rrbracket^{\prime}$

Bisimulating $\mathbb{N} \times \mathbb{N}$ in $\mathcal{P}_{\mathrm{f}}(\mathbb{N})$

- $\left(\mathcal{P}_{\mathrm{f}}(\mathbb{N}), \uplus, \emptyset\right)$ and $(\mathbb{N} \times \mathbb{N},+,(0,0))$ are two ND monoids
- Let $\mathbb{N}=\mathbb{E} \uplus \mathbb{O}$ (e.g. even/odd numbers)
- For $X \in \mathcal{P}_{\mathrm{f}}(\mathbb{N})$, let $\varphi(X)=(\operatorname{card}(X \cap \mathbb{E}), \operatorname{card}(X \cap \mathbb{O}))$
- $\varphi: \mathcal{P}_{\mathrm{f}}(\mathbb{N}) \longrightarrow \mathbb{N} \times \mathbb{N}$ is a projection (surjective)
- $\varphi \subseteq \mathcal{P}_{\mathrm{f}}(\mathbb{N}) \times(\mathbb{N} \times \mathbb{N})$ is a bisimulation
- Use φ to transform the $\mathbb{N} \times \mathbb{N}$ model into a $\mathcal{P}_{\mathrm{f}}(\mathbb{N})$ model
- simply define $\llbracket \mathrm{x} \rrbracket^{\prime}=\varphi^{-1}(\llbracket \mathrm{x} \rrbracket)$
- Also $\mathcal{P}_{\mathrm{f} / \mathrm{c}}(\mathbb{N})$ bisimilar to $\mathbb{N} \times \mathbb{N} \cup\{\infty\}$ (RAM-domain for CBI)

