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Decidability

A problem P : X — P is decidable if ...

Classically Fix a model of computation M:
there is a decider in M

For the cbv A-calculus  Fu: T.Vx: X. (ux> T A Px)V (ux F /A —Px)
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Decidability

A problem P : X — P is decidable if ...

Classically Fix a model of computation M:
there is a decider in M

For the cbv A-calculus  Fu: T.Vx: X. (ux> T A Px)V (ux F /A —Px)
Type Theory Jf: X = B. Vx: X. Px < fx = true

dependent version
(Coq, Agda, Lean, ...) ‘dec P:=Vx:X. {Px}—i—{ﬁPx}‘
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Undecidability

A problem P : X — P is undecidable if ...

Classically If there is no decider u in M
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Undecidability

A problem P : X — P is undecidable if ...

Classically If there is no decider u in M

For the cbv A-calculus —3u: T.Vx: X. (ux> T A Px)V (ux> F A —Px)

Type Theory —(Vx: —Px})

In reality: most proofs are by reduction

Definition (Synthetic undecidability)

P undecidable := Halting problem reduces to P
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The library

https://github.com/uds-psl/coq-library-undecidability

m Halting problems

» Turing machines

» Minsky machines

» p-recursive functions

» call-by-value lambda-calculus

m Post correspondence problem
m Provability in linear logic and first-order logic

m Solvability of Diophantine equations, including a formalisation of the
DPRM theorem
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https://github.com/uds-psl/coq-library-undecidability

Today

Overview over PCP and H10 as entry points
Exemplary undecidability proof for intuitionistic linear logic

Overview over the library and future work
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Post correspondence problem

From Wikipedia, the free encyclopedia

The Post correspondence problem is an undecidable decision problem that
was introduced by Emil Post in 1946.[1] Because it is simpler than the halting
problem and the Entscheidungsproblem it is often used in proofs of undecidability.
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PCPx

Na MLA y xuz 19/ c
19in M cy ofze LA Nan
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PCPx

m Symbols a, b, c: symbols of type X

uz HE . m Strings x, y, z: lists of symbols
ofze || LA Nan m Card x/y: pairs of strings

m Card set R: finite set of cards

Na MLA
19in M

Q<

MLA 19/ n Na n c y

M LA 19in Nan || cy m Stacks A: lists of cards
MLA19inNancy
MLA19inNancy
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PCPy
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19in
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MLA y xuz 19/ n
M cy ofze LA

Nan

19/ n Na n
LA 19in

Nan

MLA19inNancy
MLA19inNancy

Q<

m Symbols a, b, c: symbols of type X

m Strings x, y, z: lists of symbols

m Card x/y: pairs of strings

m Card set R: finite set of cards

m Stacks A: lists of cards

It:=e 12:=e

(x/y = Al

PCP(R)

= x(A!)

JACR AA[ANA = A

MLA 2019 — Mar 13
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PCP < BPCP
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PCP < BPCP

PCP is PCPy

BPCP is PCPp

f:N*— B*
f(ay...a,:N"):=170...1%0

Lift f to cards, card sets and stack by pointwise application
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PCP < BPCP

PCP is PCPy

BPCP is PCPp

f:N* = B*
f(ay...a,:N"):=170...1%0

Lift f to cards, card sets and stack by pointwise application

To prove: PCP R <+ BPCP(fR)
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PCP < BPCP

PCP is PCPy

BPCP is PCPp

f:N* = B*
f(ay...a,:N"):=170...1%0

Lift f to cards, card sets and stack by pointwise application

To prove: PCP R <+ BPCP(fR)
Define inverse function g, easy
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Hilbert's tenth problem, constraints version

c:constri=x+y=z | xxy=z | x=1

Ix+y=zl,=px+py=0pz
Ixxy=zl,:=px-py=pz
IIxil]]p::ple

H10c(L : L constr) :=3dp,Vc e L, [[c]]p
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Undecidability of Intuitionistic Linear Logic (CPP '19)
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Undecidability of Intuitionistic Linear Logic (CPP '19)

The Undecidability of Boolean BI through Phase Semantics (full version)

Q

Dominique Larchey-Wendling' and Didier Galmiche”
LORIA — CNRS' - UHP Nancy’ UMR 7503

BP 239, 54506 Vandceuvre-lés-Nancy, France 1)
{larchey, galmiche}@loria.fr \C/
N
Abstract Kripke semantics (corresponding to the labelled tableaux
system) define the same notion of validity.
We solve the open problem of the decidability of Boolean This situation evolved recently with two main families
BI logic (BBI), which can be considered as the core of sep-  of resulis. On the one hand. in the spirit of his work with

aration and spatial

For this, we define a complete  Calcagno on Classical Bl [2], Brotherston
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Undecidability of Intuitionistic Linear Logic (CPP '19)

The Undecidability of Boolean BI through Phase Semantics (full version) Verification of PCP-Related
Computational Reductions in Coq
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Abstract. We formally verify

several computational reductior
Abstract Kripke semantics (corresponding to the labelled tableaux cerning the Post corr('sl)ond(»n«' problem U"('l"’) using the proof assistant
system) define the same notion of validity. Coq. Our verification includes a reduction of the halting problem for Tur-
We solve the open problem of the decidability of Boolean This situation evolved recently with two main families ing machines to string rewriting, a reduction of string rewriting to PCP,
BI logic (BBI), which can be considered as the core of sep-  of results. On the one hand, in the spirit of his work with and rectuetions of PCP to the snerection problem and the palindome
aration and spatial logics. For this, we define a complete  Calcagno on Classical Bl [2], Brotherston provided a Dis- problem for context-free grammars.
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Abstract

We solve the open problem of the decidability of Boolean
BI logic (BBI), which can be considered as the core of sep-
aration and spatial For this, we define a complete
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Kripke semantics (corresponding to the labelled tableaux
system) define the same notion of validity.

This situation evolved recently with two main families
of results. On the one hand, in the spirit of his work with
Caleagno on Classical B [2), Brotherston provi
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Verification of PCP-Related
Computational Reductions in Coq

Yannick Forster(®), Edith Heiter, and Gert Smolka
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Abstract. We formally verify several computational n‘d}llum con-
cerning the Post correspondence problem (PCP) using the proof assistant
Coq. Our verification s a reduction of the halting problem for Tur-
ing machines to string re a reduction of string rewriting to PCP,
and reductions of PCP to the intersection problem and the palindrome
problem for context-free grammars.
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Abstract

We solve the open problem of the decidability of Boolean
BI logic (BBI), which can be considered as the core of sep-
aration and spatial For this, we define a complete
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Kripke semantics (corresponding to the labelled tableaux
system) define the same notion of validity.

This situation evolved recently with two main families
of results. On the one hand. in the spirt of his work with
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Abstract. We formally verify several computational n‘d}llum con-
cerning the Post correspondence problem (PCP) using the proof assistant
Coq. Our verification s a reduction of the halting problem for Tur-
ing machines to string re a reduction of string rewriting to PCP,
and reductions of PCP to the intersection problem and the palindrome
problem for context-free grammars.
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Low-level Code
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Code and subcode

m Given a type I of instructions

m Codes are N-indexed programs: (i, P = [po;...; pn_1]) of type Nx LT
i po; i+1:p1; i+n—1:pp_1;

m labels /..., i+ n—1 identify PC values inside the program

m Subcode relation (i, P) <sc (J, Q)
(i, P) < (. Q) == 3LR, /\{ /'Q_:jﬁ-TLP% R

instruction p occurs at pos. i in (j, Q): (i, [p]) <sc (J, Q)
“Sub-programs” are contiguous segments

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13 11



Small Step Semantics for Code

Instructions as state transformers

m
m states (/,v): i is PC value and v : C a configuration
m a step relation p // (i1, vi) = (i, v2)

» instruction p at position i; transforms state (i, v1) into (i, v)

m extends to codes: (i, P) // (i1, v1) =" (i2, vo) means

» Code (i, P) transforms state (i1, v1) into (i, v»)
»

(i1, [p]) <sc (i, P) p // (ir,va) = (i, v2)

(i, P) J (i, vi) > (2, vo)

» Reflexive transitive closure: P /s =* s’

Y. Forster and D. Larchey-Wendling Coq library of undecidability

MLA 2019 — Mar 13
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Terminating computations and Big Step Semantics

m denote P for codes like (/, P) and s for states like (j, v)

m which termination condition:

> no instruction at j in P, computation is blocked (sufficient)
» P/ (,v)="sAoutj P implies n=0As=(j,v)

m Terminating computations
Pfs~(w) =P/)s*(j,w)Noutj P

m Termination

Pfsl :i=3s",P)s~s'

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13
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Contribution

PCP BPCP —*— BSM MM ellLL ILL
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BPCP < BSM
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Binary stack machines (BSM)

n stacks of Os and 1s (L B) for a fixed n
state of type (PC, V) € N x (LB)"
instructions (with « € [0,n—1] and b € B and p, g € N)

bsm_instr := POP « p q | PUSH « b

Step semantics for POP and PUSH (pseudo code)

POP x p q:

PUSH o b:

if « =[] then PC+ g
if c =0:p then x < 3; PC+ p
if « =1 then x + ; PC+ PC+1

X<+ b, PC+—PC+1

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13
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Binary stack machines (BSM)

n stacks of Os and 1s (L B) for a fixed n
state of type (PC, V) € N x (LB)"
instructions (with « € [0,n—1] and b € B and p, g € N)

bsm_instr := POP « p q | PUSH « b
Step semantics for POP and PUSH (pseudo code)

POP xp g: if x =] then PC<«+ g
if c =0:p then x < 3; PC+ p
if « =1 then x + ; PC+ PC+1

PUSHx b: &<+ b, PC«+—PC+1

BSM termination problem: ‘BSM(n, i,B,V):=(i,B) /] (i, \7’)”
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Binary stack machines (BSM)

m n stacks of Os and 1s (L B) for a fixed n
m state of type (PC, V) € N x (LB)"
m instructions (with « € [0,n—1] and b € B and p, g € N)

bsm_instr := POP « p q | PUSH « b
m Step semantics for POP and PUSH (pseudo code)

POP xp g: if x =] then PC<«+ g
if c =0:p then x < 3; PC+ p
if « =1 then x + ; PC+ PC+1

PUSHx b: &<+ b, PC«+—PC+1

m BSM termination problem: ‘BSM(n, i,B,V):=(i,B) /] (i, \7’)”

Example (emptying stack « in 3 instructions)

i:POP o i (i+3) i+1:PUSH « 0 i+2:POP o i

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13

14



BPCP < BSM

lterate all possible lists of card (indices)
Hard code every card as PUSH instructions

|
|
m Given a list of cards, compute top and bottom words in two stacks
|

Check for those two stacks equality
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BPCP < BSM

m lterate all possible lists of card (indices)

m Hard code every card as PUSH instructions

m Given a list of cards, compute top and bottom words in two stacks
m Check for those two stacks equality

Definition compare_stacks x y i p q :=
(x i %) [ POP x (4+i) (7+i) ;
(x 141 x) POP y q q ;

(x 2+i *) PUSH x Zero ; POP x i i ; (x JMP i *)
(* 4+i x) POP yiq ;
(* 5+i x) PUSH y Zero ; POP y q i ; (x JMP q *)
(* 7+i x) POP y qp ;
(* 8+i *) PUSH x Zero ; POP x q q 1. (x JMP q *)
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BPCP < BSM

lterate all possible lists of card (indices)

Hard code every card as PUSH instructions

Given a list of cards, compute top and bottom words in two stacks
Check for those two stacks equality

Definition compare_stacks x y i p q :=

(*

i
1+i
2+i
4+i
5+i
T+i
8+i

*)
*)
*)
*)
*)
*)
*)

[ POP x (4+i) (7+i) ;

POP y q q ;
PUSH x Zero ; POP x i i ; (x JMP i *)
POP y i q ;
PUSH y Zero ; POP y q i ; (x JMP q *)
POP y q p ;
PUSH x Zero ; POP x q q ]. (x JMP q *)

Lemma (Comparing two distinct stacks for identical content)

When x # y, for any stack configuration V, there exists j and w s.t.

(i, compare_stacks x y p q i) // (i,V) = (j, W)

where j = p if VIx] = Vly] and j = q otherwise. For any o & {x, y} we have w[x] = V[a].

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13 15



Certified Low-Level Compiler
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Certified compilation (assumptions)

m model X (resp. Y): language + step semantics
m a simulation: x1:Cx - Cy — P

m a certified compiler from model X to model Y
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Certified compilation (assumptions)

model X (resp. Y): language + step semantics

a simulation: x: Cx - Cy — P
m a certified compiler from model X to model Y

m given a Single Instruction Compiler (SIC):

» transforms a single X instructions
> into a list of Y instructions
> needs a linker remapping PC values
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Certified compilation (assumptions)

model X (resp. Y): language + step semantics

a simulation: x: Cx - Cy — P

m a certified compiler from model X to model Y

m given a Single Instruction Compiler (SIC):

» transforms a single X instructions
> into a list of Y instructions
> needs a linker remapping PC values

m with the following assumptions:
» X has total step sem.; Y has deterministic step sem.

> length of SIC compiled instruction does not depend on linker

» SIC is sound with respect to <

Y. Forster and D. Larchey-Wendling Coq library of undecidability

MLA 2019 — Mar 13
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Certified compilation (results)
m INPUT: X program P and start target PC value j: N
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Certified compilation (results)

m INPUT: X program P and start target PC value j: N
m OUTPUT: a linker Ink and Y program Q
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Certified compilation (results)

m INPUT: X program P and start target PC value j: N
m OUTPUT: a linker Ink and Y program Q
m such that j = start Q = /nk(start P); Vi, out i P — Inki =end Q;

Lemma (Soundness)

vidawy AP/ x (ir, vi) ~ (i2, v2)
— E|W2, Vo DX Wap A Q //Y (/nk i1, Wl) > (Ink i2, W2)

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13
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Certified compilation (results)

m INPUT: X program P and start target PC value j: N
m OUTPUT: a linker Ink and Y program Q
m such that j = start Q = /nk(start P); Vi, out i P — Inki =end Q;

Lemma (Soundness)

vidawy AP/ x (ir, vi) ~ (i2, v2)
= E|W2, Vo X1 Wop A\ Q //y (lnk il, Wl) ~ (lnk i2, W2)

Lemma (Completeness)

vi X wyp A\ Q //Y (/nk i1, W1) ~ (jg, W2)
— dib v, wnix Wz/\i]D //X (il, Vl) ~ (ig, V2) /\jg = Ink is.

m Completeness essential for non-termination

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13

17



Contribution

PCP BPCP BSM —*— MM ellLL ILL

Y. Forster and D. Larchey-Wendling Coq library of undecidability



BSM < MM
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Minsky Machines (N valued register machines)

n registers of value in N for a fixed n
state: (PC,V) € N x N”
instructions (with « € [0,n—1] and p € N)

mm_instr := INC o |DEC x p
m Step semantics for INC and DEC (pseudo code)

INC o : x<+ «x+1,PC+PC+1

DEC x p: if « =0then PC+ p
if « >0then x < ax—1;PC«~PC+1
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Minsky Machines (N valued register machines)

n registers of value in N for a fixed n
state: (PC,V) € N x N”

instructions (with « € [0,n—1] and p € N)

mm_instr := INC o |DEC x p

m Step semantics for INC and DEC (pseudo code)

INC o : x<+ «x+1,PC+PC+1

DEC x p: if « =0then PC+ p

if « >0then x < ax—1;PC«~PC+1

m | MM(n, M, V)= (1,M) // (1, V) ~ (0,0)

(termination at zero)

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13
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Minsky Machines (N valued register machines)

n registers of value in N for a fixed n
state: (PC,V) € N x N”
instructions (with « € [0,n—1] and p € N)

mm_instr := INC o |DEC x p
m Step semantics for INC and DEC (pseudo code)

INC o : x<+ «x+1,PC+PC+1

DEC x p: if x =0 then PC<+ p
if « >0then x < ax—1;PC«~PC+1

m | MM(n, M, V) := (1, M) // (1,¥) ~ (0,0)| (termination at zero)

Example (transfers o« to 3 in 3 instructions, 'y spare register)

i :DEC o (34 1) i+1:INCf i+2:DEC yq i

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13 18



BSM < MM (simulating stacks)

m Simulation > between stacks (LB) and N

» stack 100010 simulated by 1 - 010001
» s2n/: N using: s2n{l:=1 s2n(b:z/l):=b+2-s2n/
» Vi< w iff for any «, s2n(v]a]) = wl]
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BSM < MM (simulating stacks)

m Simulation > between stacks (LB) and N

» stack 100010 simulated by 1 - 010001
» s2n/: N using: s2n{l:=1 s2n(b:z/l):=b+2-s2n/
> Vpaw iff for any «, s2n(V[a]) = wlx]

Definition mm_div2 :=
(* i %) [ DEC src (6+i) ;
(* 1+i *)  INC rem ;
(x 2+i *)  DEC src (i+6) ;
(¢ 3+i *) DEC rem (4+i) ;
(x 4+i *) INC quo ;
(* 5+i x) DEC rem i ].
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BSM < MM (simulating stacks)

m Simulation > between stacks (LB) and N
» stack 100010 simulated by 1 - 010001
» s2n/: N using: s2n{l:=1 s2n(b:z/l):=b+2-s2n/
> Vpaw iff for any «, s2n(V[a]) = wlx]
Definition mm_div2 :=

(x i %) [ DEC src (6+i) ;

(* 1+i *)  INC rem ;

(* 2+#i *¥)  DEC src (i+6) ;

(* 3+i *) DEC rem (4+i) ;

(x 4+i *) INC quo ;
(* 5+i x) DEC rem i ].

Lemma (Euclidian division by 2 of register src)

When quo # rem # src, b € {0,1} and k € N

vlquo] = 0 A\ V[rem] = 0 A\ V[src] = b+ 2.k
— (i,mm_div2) / (i, V) =* (6 + i, V[src := 0, quo := k, rem := b])
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BSM < MM (simulating instructions)

m We implement an instruction compiler (BSM SIC)
» simulating PUSH and POP operations
> using mm div2, mm mul2, ...
» we need two spare MM registers
> n stacks, 2 + n registers

Y. Forster and D. Larchey-Wendling Coq library of undecidability
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BSM < MM (simulating instructions)

m We implement an instruction compiler (BSM SIC)
» simulating PUSH and POP operations
> using mm div2, mm mul2, ...
» we need two spare MM registers
> n stacks, 2 + n registers
m As input for our certified low-level compiler

» from (i, P), a n stacks BSM-program
» we compute a 2 4 n registers MM-program bsm_mm
» which simulates termination

Y. Forster and D. Larchey-Wendling Coq library of undecidability

MLA 2019 — Mar 13

20



BSM < MM (simulating instructions)

m We implement an instruction compiler (BSM SIC)
» simulating PUSH and POP operations
> using mm div2, mm mul2, ...
» we need two spare MM registers
> n stacks, 2 + n registers

m As input for our certified low-level compiler

» from (i, P), a n stacks BSM-program
» we compute a 2 4 n registers MM-program bsm_mm
» which simulates termination

Lemma (BSM termination simulated by MM termination)

for any v € N”,

(i,P) /) (i,7)L <+ (1,bsmmm) // (1,0:0:w) ~ (0,0)

where W = vec_map s2n vV

Y. Forster and D. Larchey-Wendling Coq library of undecidability
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Contribution

PCP BPCP BSM MM —*— elll —>— ILL
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MM < ellL < ILL
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Intuitionistic Linear Logic

Definition (S sequent calculus for the (!, —o, &) fragment)

'-A AARB

lid] [cut]
AF A I'AFB
rA-B T8 r'-B IIALAF-B
TMAEB ' ° 1rFiB - T,1AFB I 1AFB
I AFC I BFC A T+B

1 2 &

I A&BF C [&,] rA& B\ C [&] rrAxg | &A
'’FA A BFC I A-B
(] —og]

FTAA-BFC @ Y TrA-B

m ILL(T, A) := provable(T'F A)

m the reduction for MM occurs in the elLL sub-fragment

Y. Forster and D. Larchey-Wendling Coq library of undecidability
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Elementary ILL (elLL)

m Elementary sequents: 'Z,g1,...,gktd (g, a, b, ¢, d variables)
m X contains commands:

» (a—o b) —o c, correponding to INC

» a—o (b—oc), correponding to DEC

» (a& b) —o ¢, correponding to FORK
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Elementary ILL (elLL)

m Elementary sequents: 'Z,g1,...,gktd (g, a, b, ¢, d variables)
m X contains commands:

» (a—o b) —o ¢, correponding to INC
» a—o (b—oc), correponding to DEC
» (a& b) —o ¢, correponding to FORK

Definition (GejL goal directed rules for ellLL)

I, TFa X AFDb

—— (Ax) a—o(b—oc)eclX
1Y, aka 12T, Akc
1Y aTkEb 1 TkFa X TEb
——————— (a—ob)—oceX (a& b) —oce X
1Y Tkc IXTkc
IR BT i
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Elementary ILL (elLL)

m Elementary sequents: 'Z,g1,...,gktd (g, a, b, ¢, d variables)
m X contains commands:

» (a—o b) —o ¢, correponding to INC
» a—o (b—oc), correponding to DEC
» (a& b) —o ¢, correponding to FORK

Definition (GejL goal directed rules for ellLL)

I5,T+a 15,AFb
— (A9 ao(boc)ex
'L, afF a 5,1 Ak c
1%,a,TFb I$,Ta 15,TFb
—_— a——o —oCEc a —oCc
b T &b T
1L, TFc 1L,k

m Sound and complete w.r.t. Sy | for elLL sequents

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13

22



Elementary ILL (elLL)

m Elementary sequents: 'Z,g1,...,gktd (g, a, b, ¢, d variables)
m X contains commands:
» (a—o b) —o ¢, correponding to INC
» a—o (b—oc), correponding to DEC
» (a& b) —o ¢, correponding to FORK
Definition (GejL goal directed rules for ellLL)

I, TFa X AFDb

— (Ax) a—o(b—oc)el
1Y, aka I T,AFc
1Y aTkEb 1> THa X TEDb
———— (a—ob)—oceX (a& b) —oceX
I1XTkc IXTkc

m Sound and complete w.r.t. Sy | for elLL sequents

m Trivial Phase Semantics (commutative monoid, closure is identity)
> S||_|_ and Ge||_|_ sound for TPS

m The reduction elLL < ILL is the identity map
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Encoding Minsky machines in elLL

m Given M as a list of MM instructions
» for every register i € [0, n— 1] in M, two logical variables x; and X;
» for every position/state (PC = i) in M, a variable g;

{X0| CRCI |Xn71} H—J {Y()v LR :Ynfl} H:J {qOI ql: . }
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Encoding Minsky machines in elLL
m Given M as a list of MM instructions
» for every register i € [0, n— 1] in M, two logical variables x; and X;
» for every position/state (PC = i) in M, a variable g;

{X0| L ’anl} &J {Y()v L 1yn71} H:J {qOI ql: . }

m a computation M // (i, V) ~ (0, 0) is represented by ! Zy; Ay b g
» where if V= (pg,...,pn_1) then Ay = po.X0, ..., Pr_1-Xn—1
» the commands in Xy are determined by instructions in M

= {(g0 — q0) — qo}

U {XB_O(Yoc_O?oc)-(Yoc_oycx)_OYoA“75[5E[Ovn_]-]}
U {(xa =0 @i+1) —0qi | i : INC o € M}

U {(X« & qj) — qi, xa —0 (gi+1—q;) | i : DEC & j € M}

DN
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Encoding Minsky machines in elLL
m Given M as a list of MM instructions
» for every register i € [0, n— 1] in M, two logical variables x; and X;
» for every position/state (PC = i) in M, a variable g;

{XO| L anfl}&J{}()l L 1yn71}w{q01 ql: . }

m a computation M // (i, V) ~ (0, 0) is represented by ! Zy; Ay b g
» where if V= (pg,...,pn_1) then Ay = po.X0, ..., Pr_1-Xn—1
» the commands in Xy are determined by instructions in M

= {(g0 — q0) — qo}

U {XB_O(Yoc_O?oc)-(Yoc_oycx)_OYoA“75[5E[Ovn_]-]}
U {(xa =0 @i+1) —0qi | i : INC o € M}

U {(X« & qj) — qi, xa —0 (gi+1—q;) | i : DEC & j € M}

DN

Theorem (Simulating MM termination at zero with Gy entailment)

M/ (i,7)~ (0,00 & Iy, Apt g
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Encoding Minsky machines in elLL
m Given M as a list of MM instructions
» for every register i € [0, n— 1] in M, two logical variables x; and X;
» for every position/state (PC = i) in M, a variable g;

{XO| L anfl}&J{}()l L 1yn71}w{q01 ql: . }

m a computation M // (i, V) ~ (0, 0) is represented by ! Zy; Ay b g
» where if V= (pg,...,pn_1) then Ay = po.X0, ..., Pr_1-Xn—1
» the commands in Xy are determined by instructions in M

= {(g0 — q0) — qo}

U {XB_O(Yoc_O?oc)-(Yoc_oycx)_OYoA“75[5E[Ovn_]-]}
U {(xa =0 @i+1) —0qi | i : INC o € M}

U {(X« & qj) — qi, xa —0 (gi+1—q;) | i : DEC & j € M}

DN

Theorem (Simulating MM termination at zero with Gy entailment)

M/ (i,7)~ (0,00 & Iy, Apt g

m Hence the reduction MM < ellLL
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MM to elLL, (continued)

Increment:

. X+ x+1 —
i: INCxeM ) X x, At gy
PC i+l 7 T (x—gji1) =g € L)
1L Al g;

Y. Forster and D. Larchey-Wendling Coq library of undecidability



MM to elLL, (continued)

m Decrement

i: DEC x jEM if x =0 then PC < j

m corresponds to two proofs x > 0 and x = 0:

(Ax)

Y, xFx LA g
!Z,X,Al—q;

x —o (qit1—°

i A
!Z,AI—Y( ) 12, Ak g

IS, Al g;

Y. Forster and D. Larchey-Wendling Coq library of undecidability

else x+x—1;PC«+i+1

qi) € L)

(X& q) — q; € L)
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Zero test x € A in ellLL

m ! Z; A X provable iff x € A
m Proof for y, A with y # x:

— (A¥) —_
X yky 1Z,AFX
X, y,AFX

(y o (x —X) €X)

m Proof for empty context A = {):
(Ax)

(X —oXx) —Xx€X)

1Y XX
12, 0Fx

Y. Forster and D. Larchey-Wendling Coq library of undecidability



Full reduction

Theorem
M: (i, V) —* (0,0) = 1 Zo, Ay gj
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Full reduction

Theorem
M: (i, 7) —* (0,0) = ! T, Ag kg

other direction by soundness of TPS ([A] : N” — P):

(i.e. v, = dx,)

IxX] Vv & v=1.x
[X] V &< v, =0
[q]l Vv < M: (i,v) —* (0,0)

Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13
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Wrap-up of this chain of reduction

Reductions:
PCP to BPCP: trivial binary encoding
BPCP to BSM: verified exhaustive search

BSM to MM: certified compiler between low-level languages

MM to elLL: elegant encoding of computational model in logics
elLL to ILL: faithfull embedding
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Low verification overhead
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Wrap-up of this chain of reduction

Reductions:
PCP to BPCP: trivial binary encoding
BPCP to BSM: verified exhaustive search

BSM to MM: certified compiler between low-level languages

MM to elLL: elegant encoding of computational model in logics
elLL to ILL: faithfull embedding

Low verification overhead

(compared to detailed paper proofs)
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A library of undecidable problems in Coq

H10C H10
\
U rec. DIOSWI\NGLE
|
sTM MM DIO_ELEM
SJ(R BlM DIOIOGIC
| |
MPCP MMg FRACTRAN
/
PCP MM2
FOL ILL
Y. Forster and D. Larchey-Wendling Coq library of undecidability MLA 2019 — Mar 13
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A library of undecidable problems in Coq

/\

2oUnif WCBV +—— H10C H10
\
nE‘T%/I L rec. <—— DIO_jI\NGLE
| |
sTM MlM DIO_ELEM
SJ'R BlM DIO_IOGIC
| |
3oUnif ¢+— MI;CP MMg FRACTRAN
PCP MM2
F6L ILL
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A library of undecidable problems in Coq

T

2oUnif WCBV +—— H10C H10 Ng?7:A

()

NEA?7:A mTM

| |

SSTS +—— sTM
Tiling «— SR

3oUnif «+—— MPCP

Tag systems «—— PCP

FOL

Y. Forster and D. Larchey-Wendling

~_ 1

i rec. <—— DIO_SINGLE

| |

MM DIO_ELEM
BSM DIO_LOGIC
MMo FRACTRAN

MM2 ——— Sys F sub.

T

ILL MELL3
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Papers

m Hilbert's Tenth Problem in Coq. Dominique Larchey-Wendling and
Yannick Forster. Technical report (2019).

m Certified Undecidability of Intuitionistic Linear Logic via Binary Stack
Machines and Minsky Machines. Yannick Forster and Dominique
Larchey-Wendling. CPP '109.

m On Synthetic Undecidability in Coq, with an Application to the
Entscheidungsproblem. Yannick Forster, Dominik Kirst, and Gert
Smolka. CPP '19.

m Verification of PCP-Related Computational Reductions in Coq.
Yannick Forster, Edith Heiter, and Gert Smolka. ITP 2018.

m Call-by-Value Lambda Calculus as a Model of Computation in Coq.
Yannick Forster and Gert Smolka. Journal of Automated Reasoning
(2018)
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Conclusion

More future work:

m Realisability model of the calculus of inductive constructions
witnessing (the propositional version) of excluded middle

m Automated translation of Coq function definitions into a concrete
model of computation (e.g. call-by-value lambda calculus)
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Conclusion

More future work:

m Realisability model of the calculus of inductive constructions
witnessing (the propositional version) of excluded middle

Automated translation of Coq function definitions into a concrete
model of computation (e.g. call-by-value lambda calculus)

A constructive library of undecidable problems

Exemplary undecidability proof for provability in linear logic

Enabling loads of future work. Attach your own undecidable problems!
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Conclusion

More future work:

m Realisability model of the calculus of inductive constructions
witnessing (the propositional version) of excluded middle

Automated translation of Coq function definitions into a concrete
model of computation (e.g. call-by-value lambda calculus)

m A constructive library of undecidable problems
m Exemplary undecidability proof for provability in linear logic
m Enabling loads of future work. Attach your own undecidable problems!

https://github.com/uds-psl/coq-library-undecidability

Questions?
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