# A constructive Coq library for the mechanisation of undecidability 

Yannick Forster and Dominique Larchey-Wendling

MLA 2019
March 13


## Decidability

A problem $P: X \rightarrow \mathbb{P}$ is decidable if $\ldots$

Classically
Fix a model of computation $M$ : there is a decider in $M$

For the cbv $\lambda$-calculus $\quad \exists u: \mathbf{T} . \forall x: X .(u \bar{x} \triangleright T \wedge P x) \vee(u \bar{x} \triangleright F \wedge \neg P x)$

## Decidability

A problem $P: X \rightarrow \mathbb{P}$ is decidable if $\ldots$

Classically
Fix a model of computation $M$ : there is a decider in $M$

For the cbv $\lambda$-calculus $\quad \exists u: \mathbf{T} . \forall x: X .(u \bar{x} \triangleright T \wedge P x) \vee(u \bar{x} \triangleright F \wedge \neg P x)$

Type Theory

$$
\exists f: X \rightarrow \mathbb{B} . \forall x: X . P x \leftrightarrow f x=\text { true }
$$

## Decidability

A problem $P: X \rightarrow \mathbb{P}$ is decidable if $\ldots$

Classically
Fix a model of computation $M$ : there is a decider in $M$

For the cbv $\lambda$-calculus $\quad \exists u: \mathbf{T} . \forall x: X .(u \bar{x} \triangleright T \wedge P x) \vee(u \bar{x} \triangleright F \wedge \neg P x)$

Type Theory $\exists f: X \rightarrow \mathbb{B} . \forall x: X . P x \leftrightarrow f x=$ true
dependent version
(Coq, Agda, Lean, ... )

$$
\operatorname{dec} P:=\forall x: X .\{P x\}+\{\neg P x\}
$$

## Undecidability

A problem $P: X \rightarrow \mathbb{P}$ is undecidable if $\ldots$

Classically
If there is no decider $u$ in $M$

## Undecidability

A problem $P: X \rightarrow \mathbb{P}$ is undecidable if $\ldots$

Classically

If there is no decider $u$ in $M$

For the cbv $\lambda$-calculus $\neg \exists u: \mathbf{T} . \forall x: X .(u \bar{x} \triangleright T \wedge P x) \vee(u \bar{x} \triangleright F \wedge \neg P x)$

## Undecidability

A problem $P: X \rightarrow \mathbb{P}$ is undecidable if $\ldots$

Classically
If there is no decider $u$ in $M$
For the cbv $\lambda$-calculus $\neg \exists u: \mathbf{T} . \forall x: X .(u \bar{x} \triangleright T \wedge P x) \vee(u \bar{x} \triangleright F \wedge \neg P x)$

Type Theory
$\neg(\forall x: X .\{P x\}+\{\neg P x\})$

## Undecidability

A problem $P: X \rightarrow \mathbb{P}$ is undecidable if $\ldots$

Classically
If there is no decider $u$ in $M$

For the cbv $\lambda$-calculus $\neg \exists u: \mathbf{T} . \forall x: X .(u \bar{x} \triangleright T \wedge P x) \vee(u \bar{x} \triangleright F \wedge \neg P x)$

Type Theory
$\neg(\forall x: X,\{P x\}+\{\neg P x\})$

## Undecidability

A problem $P: X \rightarrow \mathbb{P}$ is undecidable if $\ldots$

Classically If there is no decider $u$ in $M$

For the cbv $\lambda$-calculus $\neg \exists u: \mathbf{T} . \forall x: X .(u \bar{x} \triangleright T \wedge P x) \vee(u \bar{x} \triangleright F \wedge \neg P x)$

Type Theory


In reality: most proofs are by reduction

## Definition (Synthetic undecidability)

$P$ undecidable $:=$ Halting problem reduces to $P$

## The library

https://github.com/uds-psl/coq-library-undecidability

- Halting problems
- Turing machines
- Minsky machines
- $\mu$-recursive functions
- call-by-value lambda-calculus
- Post correspondence problem

■ Provability in linear logic and first-order logic

- Solvability of Diophantine equations, including a formalisation of the DPRM theorem


## Today

1 Overview over PCP and H10 as entry points
2 Exemplary undecidability proof for intuitionistic linear logic
3 Overview over the library and future work

## Post correspondence problem

From Wikipedia, the free encyclopedia
The Post correspondence problem is an undecidable decision problem that was introduced by Emil Post in 1946. ${ }^{[1]}$ Because it is simpler than the halting problem and the Entscheidungsproblem it is often used in proofs of undecidability.
$\mathrm{PCP}_{X}$

| Na | MLA | $y$ | xuz | 19i | , | c |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19in | M | cy | ofze | LA |  | Nan |

$P_{X}$

| $\frac{N a}{19 i n} \frac{M L A}{M}$ | $\frac{y}{c y}$ | $\frac{x u z}{\text { ofze }} \frac{19 i}{L A}$ | $\frac{n}{N}$ |
| :--- | :--- | :--- | :--- |

$\frac{M L A}{M}$
$P_{X}$

| $\frac{N a}{19 i n} \frac{M L A}{M} \frac{y}{c y} \frac{x u z}{o f z e} \frac{19 i}{L A}$ | $\frac{n}{N a n}$ |
| :---: | :---: | :---: | :---: |


| $\frac{M L A}{M}$ | $\frac{19 i}{L A}$ |
| :---: | :---: |

$P_{X}$

| $\frac{N a}{19 i n} \frac{M L A}{M} \frac{y}{c y} \frac{x u z}{o f z e} \frac{19 i}{L A}$ | $\frac{n}{N a n}$ |
| :---: | :---: | :---: | :---: |


| $\frac{M L A}{M}$ | $\frac{19 i}{L A}$ |
| :--- | :--- |

$\mathrm{PCP}_{X}$

| $\frac{N a}{19 i n} \frac{M L A}{M} \frac{y}{c y} \frac{x u z}{o f z e} \frac{19 i}{L A}$ | $\frac{n}{N a n}$ |
| :---: | :---: | :---: | :---: |


| $\frac{M L A}{M}$ | $\frac{19 i}{L A}$ |
| :--- | :--- |

$P_{X}$

| $\frac{N a}{19 i n}$ <br> $\frac{M L A}{M}$ <br> $\frac{y}{c y}$ <br> $\frac{M L A}{M}$ <br> $\frac{x u z}{\text { ofze }} \frac{19 i}{L A}$ <br> $-\frac{n}{L A}$ <br> $\frac{N a}{19 i n}$ |
| :--- |

$\mathrm{PCP}_{X}$

| $\frac{N a}{19 i n} \frac{M L A}{M} \frac{y}{c y} \frac{x u z}{o f z e} \frac{19 i}{L A}$ | $\frac{n}{N a n}$ |
| :---: | :---: | :---: | :---: |


| $\frac{M L A}{M}$ | $\frac{19 i}{L A}$ | $n$ | $\frac{N a}{19 i n}$ |
| :--- | :--- | :--- | :--- |

$\mathrm{PCP}_{X}$

| $\frac{N a}{19 i n}$ | $\frac{M L A}{M}$ | $\frac{y}{c y}$ | $\frac{x u z}{o f z e}$ |
| :---: | :---: | :---: | :---: |
| $\frac{19 i}{L A}$ | $\frac{n}{N a n}$ |  |  |
| $\frac{M L A}{M}$ | $\frac{c}{L A}$ | $\frac{n}{-}$ | $\frac{N a}{19 i n}$ |
|  | $\frac{n}{N a n}$ | $\frac{y}{c y}$ |  |


| $\frac{N a}{19 i n}$ | $\frac{M L A}{M}$ | $\frac{y}{c y}$ | $\frac{x u z}{\text { ofze }}$ |
| :---: | :---: | :---: | :---: |
| $\frac{19 i}{L A}$ | $\frac{n}{N a n}$ |  |  |
| $\frac{M L A}{M}$ | $\frac{19 i}{L A}$ | $\frac{n}{-} \frac{N a}{19 i n}$ | $\frac{n}{-} \frac{c}{N a n}$ |
| $\frac{y}{c y}$ |  |  |  |

$\frac{\text { MLA19inNancy }}{\text { MLA19inNancy }}$

## $\mathrm{PCP}_{x}$

- Symbols $a, b, c$ : symbols of type $X$



## $\mathrm{PCP}_{X}$

- Symbols $a, b, c$ : symbols of type $X$

| $\frac{\mathrm{Na}}{19 \mathrm{in}}$ | $\frac{M L A}{M}$ | $\frac{y}{c y}$ | $\frac{x u z}{\text { ofze }}$ | $\frac{19 i}{L A}$ | $\underline{n}$ | $\frac{c}{N a n}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MLA | 19i | $n$ | Na | $n$ | $c$ |  |
| M | LA |  | 19in |  | Nan | cy |
| MLA19inNancy |  |  |  |  |  |  |
| MLA19inNancy |  |  |  |  |  |  |

■ Strings $x, y, z$ : lists of symbols

- Card $x / y$ : pairs of strings
- Card set $R$ : finite set of cards
- Stacks A: lists of cards

$$
\begin{gathered}
\square^{1}:=\epsilon \quad \square^{2}:=\epsilon \\
(x / y:: A)^{1}:=x\left(A^{1}\right) \quad(x / y:: A)^{2}:=y\left(A^{2}\right) \\
P C P(R):=\exists A \subseteq R . A \neq \square \wedge A^{1}=A^{2}
\end{gathered}
$$

## $\mathrm{PCP} \preceq \mathrm{BPCP}$

$\mathrm{PCP} \preceq \mathrm{BPCP}$

## PCP is $\mathrm{PCP}_{\mathbb{N}}$

## BPCP is $\mathrm{PCP}_{\mathbb{B}}$

## $\mathrm{PCP} \preceq \mathrm{BPCP}$

## PCP is $\mathrm{PCP}_{\mathbb{N}}$

$$
\mathrm{BPCP} \text { is } \mathrm{PCP}_{\mathbb{B}}
$$

$$
\begin{aligned}
f: \mathbb{N}^{*} & \rightarrow \mathbb{B}^{*} \\
f\left(a_{1} \ldots a_{n}: \mathbb{N}^{*}\right) & :=1^{a_{1}} 0 \ldots 1^{a_{n}} 0
\end{aligned}
$$

Lift $f$ to cards, card sets and stack by pointwise application

## $\mathrm{PCP} \preceq \mathrm{BPCP}$

## PCP is $\mathrm{PCP}_{\mathbb{N}}$

$$
\mathrm{BPCP} \text { is } \mathrm{PCP}_{\mathbb{B}}
$$

$$
\begin{aligned}
f: \mathbb{N}^{*} & \rightarrow \mathbb{B}^{*} \\
f\left(a_{1} \ldots a_{n}: \mathbb{N}^{*}\right) & :=1^{a_{1}} 0 \ldots 1^{a_{n}} 0
\end{aligned}
$$

Lift $f$ to cards, card sets and stack by pointwise application

$$
\text { To prove: } \quad \operatorname{PCP} R \quad \leftrightarrow \quad \operatorname{BPCP}(f R)
$$

## $\mathrm{PCP} \preceq \mathrm{BPCP}$

## PCP is $\mathrm{PCP}_{\mathbb{N}}$

$$
\mathrm{BPCP} \text { is } \mathrm{PCP}_{\mathbb{B}}
$$

$$
\begin{aligned}
f: \mathbb{N}^{*} & \rightarrow \mathbb{B}^{*} \\
f\left(a_{1} \ldots a_{n}: \mathbb{N}^{*}\right) & :=1^{a_{1}} 0 \ldots 1^{a_{n}} 0
\end{aligned}
$$

Lift $f$ to cards, card sets and stack by pointwise application

$$
\text { To prove: } \quad \mathrm{PCP} R \quad \leftrightarrow \quad \operatorname{BPCP}(f R)
$$

Define inverse function $g$, easy

## Hilbert's tenth problem, constraints version

$$
c: \text { constr }::=x \dot{+} y \doteq z|x \dot{\times} y \doteq z| x \doteq 1
$$

$$
\begin{aligned}
\llbracket x+y \doteq z \rrbracket_{\rho} & :=\rho x+\rho y=\rho z \\
\llbracket x \dot{x} y \doteq z \rrbracket_{\rho} & :=\rho x \cdot \rho y=\rho z \\
\llbracket x \doteq 1 \rrbracket_{\rho} & :=\rho x=1
\end{aligned}
$$

$\mathrm{H} 10 \mathrm{c}\left(L: \mathbb{L}\right.$ constr) $:=\exists \rho, \forall c \in L, \llbracket c \rrbracket_{\rho}$

## Undecidability of Intuitionistic Linear Logic (CPP '19)

## Undecidability of Intuitionistic Linear Logic (CPP '19)

The Undecidability of Boolean BI through Phase Semantics (full version)

Dominique Larchey-Wendling ${ }^{\dagger}$ and Didier Galmiche ${ }^{\dagger}$ LORIA - CNRS ${ }^{\dagger}$ - UHP Nancy ${ }^{\text {b }}$ UMR 7503 BP 239, 54506 Vandœuvre-lès-Nancy, France \{larchey, galmiche\}@loria.fr


## Abstract

We solve the open problem of the decidability of Boolean BI logic (BBI), which can be considered as the core of separation and spatial logics. For this, we define a complete

Kripke semantics (corresponding to the labelled tableaux system) define the same notion of validity.

This situation evolved recently with two main families of results. On the one hand, in the spirit of his work with Calcagno on Classical Bl [2], Brotherston provided a Dis-

## Undecidability of Intuitionistic Linear Logic (CPP '19)

## The Undecidability of Boolean BI through Phase Semantics (full version)

Dominique Larchey-Wendling ${ }^{\dagger}$ and Didier Galmiche ${ }^{b}$ LORIA - CNRS ${ }^{\dagger}$ - UHP Nancy ${ }^{\text {b }}$ UMR 7503 BP 239, 54506 Vandœuvre-lès-Nancy, France \{larchey, galmiche\}@loria.fr


## Abstract

We solve the open problem of the decidability of Boolean BI logic (BBI), which can be considered as the core of separation and spatial logics. For this, we define a complete

Kripke semantics (corresponding to the labelled tableaux system) define the same notion of validity.

This situation evolved recently with two main families of results. On the one hand, in the spirit of his work with Calcagno on Classical BI [2], Brotherston provided a Dis-

Verification of PCP-Related Computational Reductions in Coq

Yannick Forster ${ }^{(\boxtimes)}$, Edith Heiter, and Gert Smolka
Saarland University, Saarbrücken, Germany
\{forster, heiter, smolka\}eps.uni-saarland.de

Abstract. We formally verify several computational reductions concerning the Post correspondence problem (PCP) using the proof assistant Coq. Our verification includes a reduction of the halting problem for Turing machines to string rewriting, a reduction of string rewriting to PCP, and reductions of PCP to the intersection problem and the palindrome problem for context-free grammars.

## Undecidability of Intuitionistic Linear Logic (CPP '19)

## The Undecidability of Boolean BI through Phase Semantics (full version)

Dominique Larchey-Wendling ${ }^{\dagger}$ and Didier Galmiche ${ }{ }{ }$ LORIA - CNRS ${ }^{\dagger}$ - UHP Nancy ${ }^{\text {b }}$ UMR 7503 BP 239, 54506 Vandœuvre-lès-Nancy, France \{larchey, galmiche\}@loria.fr


## Abstract

We solve the open problem of the decidability of Boolean BI logic (BBI), which can be considered as the core of separation and spatial logics. For this, we define a complete

Kripke semantics (corresponding to the labelled tableaux system) define the same notion of validity.

This situation evolved recently with two main families of results. On the one hand, in the spirit of his work with Calcagno on Classical BI [2], Brotherston provided a Dis-

## Verification of PCP-Related Computational Reductions in Coq

Yannick Forster ${ }^{(\boxtimes)}$, Edith Heiter, and Gert Smolka
Saarland University, Saarbrücken, Germany
\{forster, heiter, smolka\}eps.uni-saarland.de

Abstract. We formally verify several computational reductions concerning the Post correspondence problem (PCP) using the proof assistant Coq. Our verification includes a reduction of the halting problem for Turing machines to string rewriting, a reduction of string rewriting to PCP, and reductions of PCP to the intersection problem and the palindrome problem for context-free grammars.


## Undecidability of Intuitionistic Linear Logic (CPP '19)

## The Undecidability of Boolean BI through Phase Semantics (full version)

Dominique Larchey-Wendling ${ }^{\dagger}$ and Didier Galmiche ${ }{ }{ }$ LORIA - CNRS ${ }^{\dagger}$ - UHP Nancy ${ }^{\text {b }}$ UMR 7503 BP 239, 54506 Vandœuvre-lès-Nancy, France \{larchey, galmiche\}@loria.fr


## Abstract

We solve the open problem of the decidability of Boolean BI logic (BBI), which can be considered as the core of separation and spatial logics. For this, we define a complete

Kripke semantics (corresponding to the labelled tableaux system) define the same notion of validity.

This situation evolved recently with two main families of results. On the one hand, in the spirit of his work with Calcagno on Classical BI [2], Brotherston provided a Dis-

## Verification of PCP-Related Computational Reductions in Coq

Yannick Forster ${ }^{(\boxtimes)}$, Edith Heiter, and Gert Smolka
Saarland University, Saarbrücken, Germany
\{forster, heiter, smolka\}eps.uni-saarland.de

Abstract. We formally verify several computational reductions concerning the Post correspondence problem (PCP) using the proof assistant Coq. Our verification includes a reduction of the halting problem for Turing machines to string rewriting, a reduction of string rewriting to PCP, and reductions of PCP to the intersection problem and the palindrome problem for context-free grammars.


## Low-level Code

## Code and subcode

- Given a type $\mathbb{I}$ of instructions

■ Codes are $\mathbb{N}$-indexed programs: $\left(i, P=\left[\rho_{0} ; \ldots ; \rho_{n-1}\right]\right)$ of type $\mathbb{N} \times \mathbb{L} \mathbb{I}$

$$
i: \rho_{0} ; \quad i+1: \rho_{1} ; \quad \ldots \quad i+n-1: \rho_{n-1}
$$

■ labels $i, \ldots, i+n-1$ identify PC values inside the program

- Subcode relation $(i, P)<_{s c}(j, Q)$

$$
(i, P)<_{\mathrm{sc}}(j, Q):=\exists L R, \wedge\left\{\begin{array}{l}
Q=L+P+R \\
i=j+|L|
\end{array}\right.
$$

- instruction $\rho$ occurs at pos. $i$ in $(j, Q):(i,[\rho])<_{s c}(j, Q)$

■ "Sub-programs" are contiguous segments

## Small Step Semantics for Code

■ Instructions as state transformers
■ states $(i, v): i$ is PC value and $v: \mathbb{C}$ a configuration
■ a step relation $\rho / /\left(i_{1}, v_{1}\right) \succ\left(i_{2}, v_{2}\right)$

- instruction $\rho$ at position $i_{1}$ transforms state $\left(i_{1}, v_{1}\right)$ into $\left(i_{2}, v_{2}\right)$

■ extends to codes: $(i, P) / /\left(i_{1}, v_{1}\right) \succ^{n}\left(i_{2}, v_{2}\right)$ means

- Code ( $i, P$ ) transforms state ( $i_{1}, v_{1}$ ) into ( $i_{2}, v_{2}$ )

$$
\frac{\left(i_{1},[\rho]\right)<_{\mathrm{sc}}(i, P) \quad \rho / /\left(i_{1}, v_{1}\right) \succ\left(i_{2}, v_{2}\right)}{(i, P) / /\left(i_{1}, v_{1}\right) \succ\left(i_{2}, v_{2}\right)}
$$

- Reflexive transitive closure: $\mathcal{P} / / s \succ^{*} s^{\prime}$


## Terminating computations and Big Step Semantics

■ denote $\mathcal{P}$ for codes like ( $i, P$ ) and $s$ for states like $(j, v)$

- which termination condition: out $j \mathcal{P}$
- no instruction at $j$ in $\mathcal{P}$, computation is blocked (sufficient)
- $\mathcal{P} / /(j, v) \succ^{n} s \wedge$ out $j \mathcal{P}$ implies $n=0 \wedge s=(j, v)$
- Terminating computations

$$
\mathcal{P} / / s \rightsquigarrow(j, w):=\mathcal{P} / / s \succ^{*}(j, w) \wedge \text { out } j \mathcal{P}
$$

- Termination

$$
\mathcal{P} / / s \downarrow:=\exists s^{\prime}, \mathcal{P} / / s \rightsquigarrow s^{\prime}
$$

## Contribution

$P C P \longrightarrow B P C P \longrightarrow B M \longrightarrow M M \longrightarrow I L L \longrightarrow$

## BPCP $\preceq \mathrm{BSM}$

## Binary stack machines (BSM)

■ $n$ stacks of 0 s and $1 \mathrm{~s}(\mathbb{L} \mathbb{B})$ for a fixed $n$
■ state of type $(\mathrm{PC}, \vec{v}) \in \mathbb{N} \times(\mathbb{L} \mathbb{B})^{n}$
■ instructions (with $\alpha \in[0, n-1]$ and $b \in \mathbb{B}$ and $p, q \in \mathbb{N}$ )

$$
\text { bsm_instr ::= POP } \alpha p q \mid \text { PUSH } \alpha b
$$

■ Step semantics for POP and PUSH (pseudo code)
POP $\alpha p q$ : if $\alpha=\square$ then $\mathrm{PC} \leftarrow q$

$$
\begin{aligned}
& \text { if } \alpha=0:: \beta \text { then } \alpha \leftarrow \beta ; P C \leftarrow p \\
& \text { if } \alpha=1:: \beta \text { then } \alpha \leftarrow \beta ; P C \leftarrow P C+1
\end{aligned}
$$

PUSH $\alpha b: \quad \alpha \leftarrow b:: \alpha$; PC $\leftarrow \mathrm{PC}+1$

## Binary stack machines (BSM)

■ $n$ stacks of 0 s and $1 \mathrm{~s}(\mathbb{L} \mathbb{B})$ for a fixed $n$

- state of type $(\mathrm{PC}, \vec{v}) \in \mathbb{N} \times(\mathbb{L} \mathbb{B})^{n}$

■ instructions (with $\alpha \in[0, n-1]$ and $b \in \mathbb{B}$ and $p, q \in \mathbb{N}$ )

$$
\text { bsm_instr ::= POP } \alpha p q \mid \text { PUSH } \alpha b
$$

■ Step semantics for POP and PUSH (pseudo code)

$$
\operatorname{POP} \propto p q: \quad \text { if } \alpha=\square \text { then } \mathrm{PC} \leftarrow q
$$

$$
\begin{aligned}
& \text { if } \alpha=0:: \beta \text { then } \alpha \leftarrow \beta ; \mathrm{PC} \leftarrow p \\
& \text { if } \alpha=1:: \beta \text { then } \alpha \leftarrow \beta ; \mathrm{PC} \leftarrow \mathrm{PC}+1
\end{aligned}
$$

PUSH $\alpha b: \quad \alpha \leftarrow b:: \alpha$; PC $\leftarrow \mathrm{PC}+1$
■ BSM termination problem: $\operatorname{BSM}(n, i, \mathcal{B}, \vec{v}):=(i, \mathcal{B}) / /(i, \vec{v}) \downarrow$

## Binary stack machines (BSM)

■ $n$ stacks of 0 s and $1 \mathrm{~s}(\mathbb{L} \mathbb{B})$ for a fixed $n$

- state of type $(\mathrm{PC}, \vec{v}) \in \mathbb{N} \times(\mathbb{L} \mathbb{B})^{n}$

■ instructions (with $\alpha \in[0, n-1]$ and $b \in \mathbb{B}$ and $p, q \in \mathbb{N}$ )

$$
\text { bsm_instr }::=\text { POP } \alpha p q \mid \text { PUSH } \alpha b
$$

■ Step semantics for POP and PUSH (pseudo code)

$$
\operatorname{POP} \propto p q: \quad \text { if } \alpha=\square \text { then } \mathrm{PC} \leftarrow q
$$

$$
\begin{aligned}
& \text { if } \alpha=0:: \beta \text { then } \alpha \leftarrow \beta ; P C \leftarrow p \\
& \text { if } \alpha=1:: \beta \text { then } \alpha \leftarrow \beta ; P C \leftarrow P C+1
\end{aligned}
$$

PUSH $\alpha b: \quad \alpha \leftarrow b:: \alpha$; PC $\leftarrow \mathrm{PC}+1$
■ BSM termination problem: $\operatorname{BSM}(n, i, \mathcal{B}, \vec{v}):=(i, \mathcal{B}) / /(i, \vec{v}) \downarrow$
Example (emptying stack $\alpha$ in 3 instructions)

$$
i: \operatorname{POP} \propto i(i+3) \quad i+1: \text { PUSH } \propto 0 \quad i+2: \operatorname{POP} \propto i i
$$

## $\mathrm{BPCP} \preceq \mathrm{BSM}$

- Iterate all possible lists of card (indices)
- Hard code every card as PUSH instructions
- Given a list of cards, compute top and bottom words in two stacks

■ Check for those two stacks equality

## $\mathrm{BPCP} \preceq \mathrm{BSM}$

- Iterate all possible lists of card (indices)

■ Hard code every card as PUSH instructions

- Given a list of cards, compute top and bottom words in two stacks
- Check for those two stacks equality

```
Definition compare_stacks x y i p q :=
    (* i *) [ POP x (4+i) (7+i) ;
    (* 1+i *) POP y q q ;
    (* 2+i *) PUSH x Zero ; POP x i i ; (* JMP i *)
    (* 4+i *) POP y i q ;
    (* 5+i *) PUSH y Zero ; POP y q i ; (* JMP q *)
    (* 7+i *) POP y q p ;
    (* 8+i *) PUSH x Zero ; POP x q q ]. (* JMP q *)
```


## $\mathrm{BPCP} \preceq \mathrm{BSM}$

- Iterate all possible lists of card (indices)

■ Hard code every card as PUSH instructions

- Given a list of cards, compute top and bottom words in two stacks
- Check for those two stacks equality

```
Definition compare_stacks x y i p q :=
    (* i *) [ POP x (4+i) (7+i) ;
    (* 1+i *) POP y q q ;
    (* 2+i *) PUSH x Zero ; POP x i i ; (* JMP i *)
    (* 4+i *) POP y i q ;
    (* 5+i *) PUSH y Zero ; POP y q i ; (* JMP q *)
    (* 7+i *) POP y q p ;
    (* 8+i *) PUSH x Zero ; POP x q q ]. (* JMP q *)
```


## Lemma (Comparing two distinct stacks for identical content)

When $x \neq y$, for any stack configuration $\vec{v}$, there exists $j$ and $\vec{w}$ s.t.

$$
(i, \text { compare_stacks } x \text { y } p q i) / /(i, \vec{v}) \succ^{*}(j, \vec{w})
$$

where $j=p$ if $\vec{v}[x]=\vec{v}[y]$ and $j=q$ otherwise. For any $\alpha \notin\{x, y\}$ we have $\vec{w}[\alpha]=\vec{v}[\alpha]$.

## Certified Low-Level Compiler

## Certified compilation (assumptions)

■ model $X$ (resp. $Y$ ): language + step semantics
■ a simulation: $\bowtie: \mathbb{C}_{X} \rightarrow \mathbb{C}_{Y} \rightarrow \mathbb{P}$

- a certified compiler from model $X$ to model $Y$


## Certified compilation (assumptions)

■ model $X$ (resp. $Y$ ): language + step semantics
■ a simulation: $\bowtie: \mathbb{C}_{X} \rightarrow \mathbb{C}_{Y} \rightarrow \mathbb{P}$

- a certified compiler from model $X$ to model $Y$
- given a Single Instruction Compiler (SIC):
- transforms a single $X$ instructions
- into a list of $Y$ instructions
- needs a linker remapping PC values


## Certified compilation (assumptions)

■ model $X$ (resp. $Y$ ): language + step semantics
■ a simulation: $\bowtie: \mathbb{C}_{X} \rightarrow \mathbb{C}_{Y} \rightarrow \mathbb{P}$

- a certified compiler from model $X$ to model $Y$
- given a Single Instruction Compiler (SIC):
- transforms a single $X$ instructions
- into a list of $Y$ instructions
- needs a linker remapping PC values

■ with the following assumptions:

- $X$ has total step sem.; $Y$ has deterministic step sem.
- length of SIC compiled instruction does not depend on linker
- SIC is sound with respect to $\bowtie$


## Certified compilation (results)

■ INPUT: $X$ program $\mathcal{P}$ and start target PC value $j: \mathbb{N}$

## Certified compilation (results)

■ INPUT: $X$ program $\mathcal{P}$ and start target PC value $j: \mathbb{N}$
■ OUTPUT: a linker Ink and $Y$ program $Q$

## Certified compilation (results)

■ INPUT: $X$ program $\mathcal{P}$ and start target PC value $j: \mathbb{N}$
■ OUTPUT: a linker Ink and $Y$ program $Q$
$■$ such that $j=\operatorname{start} \mathcal{Q}=\ln k(\operatorname{start} \mathcal{P}) ; \forall i$, out $i \mathcal{P} \rightarrow \operatorname{Ink} i=$ end $\mathcal{Q}$;

## Lemma (Soundness)

$$
\begin{aligned}
& v_{1} \bowtie w_{1} \wedge \mathcal{P} / / X\left(i_{1}, v_{1}\right) \rightsquigarrow\left(i_{2}, v_{2}\right) \\
\rightarrow \exists w_{2}, & v_{2} \bowtie w_{2} \wedge Q / /{ }_{Y}\left(\text { Ink } i_{1}, w_{1}\right) \rightsquigarrow\left(\text { Ink } i_{2}, w_{2}\right)
\end{aligned}
$$

## Certified compilation (results)

■ INPUT: $X$ program $\mathcal{P}$ and start target PC value $j: \mathbb{N}$

- OUTPUT: a linker Ink and $Y$ program $Q$
$■$ such that $j=\operatorname{start} \mathcal{Q}=\operatorname{Ink}(\operatorname{start} \mathcal{P}) ; \forall i$, out $i \mathcal{P} \rightarrow \operatorname{Ink} i=$ end $\mathcal{Q}$;


## Lemma (Soundness)

$$
\begin{aligned}
& v_{1} \bowtie w_{1} \wedge \mathcal{P} / / X\left(i_{1}, v_{1}\right) \rightsquigarrow\left(i_{2}, v_{2}\right) \\
\rightarrow \exists w_{2}, & v_{2} \bowtie w_{2} \wedge Q / / Y\left(\text { Ink } i_{1}, w_{1}\right) \rightsquigarrow\left(\text { Ink } i_{2}, w_{2}\right)
\end{aligned}
$$

## Lemma (Completeness)

$$
\begin{aligned}
& v_{1} \bowtie w_{1} \wedge Q / / Y\left(\ln k i_{1}, w_{1}\right) \rightsquigarrow\left(j_{2}, w_{2}\right) \\
\rightarrow \exists i_{2} v_{2}, & v_{2} \bowtie w_{2} \wedge \mathcal{P} / / X\left(i_{1}, v_{1}\right) \rightsquigarrow\left(i_{2}, v_{2}\right) \wedge j_{2}=\operatorname{Ink} i_{2} .
\end{aligned}
$$

■ Completeness essential for non-termination

## Contribution

$P C P \longrightarrow B P C P \longrightarrow B S M \xrightarrow{3} M M \longrightarrow$ ILL $\longrightarrow I L L$

## $\mathrm{BSM} \preceq \mathrm{MM}$

## Minsky Machines ( $\mathbb{N}$ valued register machines)

- $n$ registers of value in $\mathbb{N}$ for a fixed $n$
- state: $(\mathrm{PC}, \vec{v}) \in \mathbb{N} \times \mathbb{N}^{n}$
- instructions (with $\alpha \in[0, n-1]$ and $p \in \mathbb{N}$ )

$$
\text { mm_instr }::=\text { INC } \alpha \mid \text { DEC } \alpha p
$$

- Step semantics for INC and DEC (pseudo code)

$$
\begin{array}{ll}
\text { INC } \alpha: & \alpha \leftarrow \alpha+1 ; \mathrm{PC} \leftarrow \mathrm{PC}+1 \\
\text { DEC } \alpha p: & \text { if } \alpha=0 \text { then } \mathrm{PC} \leftarrow p \\
& \text { if } \alpha>0 \text { then } \alpha \leftarrow \alpha-1 ; \mathrm{PC} \leftarrow \mathrm{PC}+1
\end{array}
$$

## Minsky Machines ( $\mathbb{N}$ valued register machines)

- $n$ registers of value in $\mathbb{N}$ for a fixed $n$
- state: $(\mathrm{PC}, \vec{v}) \in \mathbb{N} \times \mathbb{N}^{n}$
- instructions (with $\alpha \in[0, n-1]$ and $p \in \mathbb{N}$ )

$$
\text { mm_instr }::=\text { INC } \alpha \mid \text { DEC } \alpha p
$$

- Step semantics for INC and DEC (pseudo code)

$$
\begin{array}{ll}
\text { INC } \alpha: & \alpha \leftarrow \alpha+1 ; \mathrm{PC} \leftarrow \mathrm{PC}+1 \\
\text { DEC } \alpha p: & \text { if } \alpha=0 \text { then } \mathrm{PC} \leftarrow p \\
& \text { if } \alpha>0 \text { then } \alpha \leftarrow \alpha-1 ; \mathrm{PC} \leftarrow \mathrm{PC}+1
\end{array}
$$

- $M M(n, \mathcal{M}, \vec{v}):=(1, \mathcal{M}) / /(1, \vec{v}) \rightsquigarrow(0, \overrightarrow{0}) \quad$ (termination at zero)


## Minsky Machines ( $\mathbb{N}$ valued register machines)

- $n$ registers of value in $\mathbb{N}$ for a fixed $n$
- state: $(\mathrm{PC}, \vec{v}) \in \mathbb{N} \times \mathbb{N}^{n}$
- instructions (with $\alpha \in[0, n-1]$ and $p \in \mathbb{N}$ )

$$
\text { mm_instr }::=\text { INC } \alpha \mid \text { DEC } \alpha p
$$

- Step semantics for INC and DEC (pseudo code)

$$
\begin{array}{ll}
\text { INC } \alpha: & \alpha \leftarrow \alpha+1 ; \mathrm{PC} \leftarrow \mathrm{PC}+1 \\
\text { DEC } \alpha p: & \text { if } \alpha=0 \text { then } \mathrm{PC} \leftarrow p \\
& \text { if } \alpha>0 \text { then } \alpha \leftarrow \alpha-1 ; \mathrm{PC} \leftarrow \mathrm{PC}+1
\end{array}
$$

- $M M(n, \mathcal{M}, \vec{v}):=(1, \mathcal{M}) / /(1, \vec{v}) \rightsquigarrow(0, \overrightarrow{0}) \quad$ (termination at zero)

Example (transfers $\alpha$ to $\beta$ in 3 instructions, $\gamma_{0}$ spare register)
$i: \operatorname{DEC} \alpha(3+i) \quad i+1:$ INC $\beta \quad i+2:$ DEC $\gamma_{0} i$

## BSM $\preceq \mathrm{MM}$ (simulating stacks)

■ Simulation $\bowtie$ between stacks $(\mathbb{L} \mathbb{B})$ and $\mathbb{N}$

- stack 100010 simulated by $1 \cdot 010001$
- $\operatorname{s2n} /: \mathbb{N}$ using: $\quad \operatorname{s2n}[:=1 \quad \operatorname{s2n}(b:: /):=b+2 \cdot \mathrm{~s} 2 \mathrm{n} /$
- $\vec{v} \bowtie \vec{w}$ iff for any $\alpha, \operatorname{s2n}(\vec{v}[\alpha])=\vec{w}[\alpha]$


## BSM $\preceq \mathrm{MM}$ (simulating stacks)

■ Simulation $\bowtie$ between stacks $(\mathbb{L} \mathbb{B})$ and $\mathbb{N}$

- stack 100010 simulated by $1 \cdot 010001$
- $\operatorname{s2n} /: \mathbb{N}$ using: $\quad \operatorname{s2n}[:=1 \quad \operatorname{s2n}(b:: /):=b+2 \cdot \mathrm{~s} 2 \mathrm{n} /$
- $\vec{v} \bowtie \vec{w}$ iff for any $\alpha, \operatorname{s2n}(\vec{v}[\alpha])=\vec{w}[\alpha]$

```
Definition mm_div2 :=
    (* i *) [ DEC src (6+i) ;
    (* 1+i *) INC rem ;
    (* 2+i *) DEC src (i+6) ;
    (* 3+i *) DEC rem (4+i) ;
    (* 4+i *) INC quo ;
    (* 5+i *) DEC rem i ].
```


## BSM $\preceq \mathrm{MM}$ (simulating stacks)

■ Simulation $\bowtie$ between stacks $(\mathbb{L} \mathbb{B})$ and $\mathbb{N}$

- stack 100010 simulated by $1 \cdot 010001$
- $\operatorname{s2n} /: \mathbb{N}$ using: $\quad \operatorname{s2n}[:=1 \quad \operatorname{s2n}(b:: /):=b+2 \cdot \mathrm{~s} 2 \mathrm{n} /$
- $\vec{v} \bowtie \vec{w}$ iff for any $\alpha, \operatorname{s2n}(\vec{v}[\alpha])=\vec{w}[\alpha]$

Definition mm_div2 :=

```
    (* i *) [ DEC src (6+i) ;
    (* 1+i *) INC rem ;
    (* 2+i *) DEC src (i+6) ;
    (* 3+i *) DEC rem (4+i) ;
    (* 4+i *) INC quo ;
    (* 5+i *) DEC rem i ].
```

Lemma (Euclidian division by 2 of register src)
When quo $\neq \mathrm{rem} \neq \mathrm{src}, b \in\{0,1\}$ and $k \in \mathbb{N}$

$$
\begin{gathered}
\vec{v}[\text { quo }]=0 \wedge \vec{v}[\mathrm{rem}]=0 \wedge \vec{v}[\mathrm{src}]=b+2 . k \\
\rightarrow(i, \mathrm{~mm} \text { _div2 }) / /(i, \vec{v}) \succ^{*}(6+i, \vec{v}[\mathrm{src}:=0, \text { quo }:=k, \text { rem }:=b])
\end{gathered}
$$

## BSM $\preceq \mathrm{MM}$ (simulating instructions)

- We implement an instruction compiler (BSM SIC)
- simulating PUSH and POP operations
- using mm_div2, mm_mul2, ...
- we need two spare MM registers
- $n$ stacks, $2+n$ registers


## BSM $\preceq \mathrm{MM}$ (simulating instructions)

- We implement an instruction compiler (BSM SIC)
- simulating PUSH and POP operations
- using mm_div2, mm_mul2,...
- we need two spare MM registers
- $n$ stacks, $2+n$ registers

■ As input for our certified low-level compiler

- from ( $i, P$ ), a $n$ stacks BSM-program
- we compute a $2+n$ registers MM-program bsm_mm
- which simulates termination


## BSM $\preceq \mathrm{MM}$ (simulating instructions)

- We implement an instruction compiler (BSM SIC)
- simulating PUSH and POP operations
- using mm_div2, mm_mul2,...
- we need two spare MM registers
- $n$ stacks, $2+n$ registers

■ As input for our certified low-level compiler

- from ( $i, P$ ), a $n$ stacks BSM-program
- we compute a $2+n$ registers MM-program bsm_mm
- which simulates termination


## Lemma (BSM termination simulated by MM termination)

for any $\vec{v} \in \mathbb{N}^{n}$,

$$
(i, P) / /(i, \vec{v}) \downarrow \quad \leftrightarrow \quad\left(1, \mathrm{bsm} \_\mathrm{mm}\right) / /(1,0:: 0:: \vec{w}) \rightsquigarrow(0, \overrightarrow{0})
$$

where $\vec{w}=$ vec_map $\operatorname{s} 2 \mathrm{n} \vec{v}$

## Contribution

$$
P C P \longrightarrow B P C P \longrightarrow B S M \longrightarrow M M \xrightarrow{4} \text { eILL } \xrightarrow{5} I L L
$$

## $\mathrm{MM} \preceq \mathrm{elLL} \preceq \mathrm{ILL}$

## Intuitionistic Linear Logic

## Definition ( $\mathrm{S}_{\text {ILL }}$ sequent calculus for the $(!, \multimap, \&)$ fragment)

$$
\begin{gathered}
\frac{A \vdash A}{A \vdash d]} \frac{\Gamma \vdash A A, \Delta \vdash B}{\Gamma, \Delta \vdash B}[\mathrm{cut}] \\
\frac{\Gamma, A \vdash B}{\Gamma,!A \vdash B}\left[!_{L}\right] \frac{!\Gamma \vdash B}{!\Gamma \vdash!B}\left[!_{R}\right] \frac{\Gamma \vdash B}{\Gamma,!A \vdash B}[\mathrm{w}] \frac{\Gamma,!A,!A \vdash B}{\Gamma,!A \vdash B}[\mathrm{c}] \\
\frac{\Gamma, A \vdash C}{\Gamma, A \& B \vdash C}\left[\& L_{L}^{1}\right] \frac{\Gamma, B \vdash C}{\Gamma, A \& B \vdash C}\left[\&_{L}^{2}\right] \frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \& B}\left[\&_{R}\right] \\
\frac{\Gamma \vdash A \quad \Delta, B \vdash C}{\Gamma, \Delta, A \multimap B \vdash C}\left[\multimap \odot_{L}\right] \frac{\Gamma, A \vdash B}{\Gamma \vdash A \multimap B}\left[\odot_{R}\right]
\end{gathered}
$$

■ ILL $(\Gamma, A):=$ provable $(\Gamma \vdash A)$

- the reduction for MM occurs in the eILL sub-fragment


## Elementary ILL (eILL)

■ Elementary sequents: ! $\Sigma, g_{1}, \ldots, g_{k} \vdash d \quad\left(g_{i}, a, b, c, d\right.$ variables $)$
■ $\Sigma$ contains commands:

- $(a \multimap b) \multimap c$, correponding to INC
- $a \multimap(b \multimap c)$, correponding to DEC
- $(a \& b) \multimap c$, correponding to FORK


## Elementary ILL (eILL)

■ Elementary sequents: ! $\Sigma, g_{1}, \ldots, g_{k} \vdash d \quad\left(g_{i}, a, b, c, d\right.$ variables $)$
■ $\Sigma$ contains commands:

- $(a \multimap b) \multimap c$, correponding to INC
- $a \multimap(b \multimap c)$, correponding to DEC
- $(a \& b) \multimap c$, correponding to FORK

Definition ( $\mathrm{G}_{\text {elLL }}$ goal directed rules for elLL)

$$
\begin{array}{cl}
\frac{!\Sigma, \Gamma \vdash a!\Sigma, \Delta \vdash b}{!\Sigma, a \vdash a}\langle A x\rangle & \frac{\square \check{\prime}, \Gamma, \Delta \vdash c}{}(b \multimap c) \in \Sigma \\
\frac{!\Sigma, a, \Gamma \vdash b}{!\Sigma, \Gamma \vdash c}(a \multimap b) \multimap c \in \Sigma & \frac{!\Sigma, \Gamma \vdash a!\Sigma, \Gamma \vdash b}{!\Sigma, \Gamma \vdash c}(a \& b) \multimap c \in \Sigma
\end{array}
$$

## Elementary ILL (elLL)

■ Elementary sequents: ! $\Sigma, g_{1}, \ldots, g_{k} \vdash d \quad\left(g_{i}, a, b, c, d\right.$ variables $)$
■ $\Sigma$ contains commands:

- $(a \multimap b) \multimap c$, correponding to INC
- $a \multimap(b \multimap c)$, correponding to DEC
- $(a \& b) \multimap c$, correponding to FORK

Definition ( $\mathrm{G}_{\text {elLL }}$ goal directed rules for elLL)

$$
\begin{aligned}
& \overline{!\Sigma, a \vdash a}\langle A \times\rangle \\
& \frac{!\Sigma, \Gamma \vdash a \quad!\Sigma, \Delta \vdash b}{!\Sigma, \Gamma, \Delta \vdash c} a \multimap(b \multimap c) \in \Sigma \\
& \frac{!\Sigma, a, \Gamma \vdash b}{!\Sigma, \Gamma \vdash c} \quad(a \multimap b) \multimap c \in \Sigma \quad \frac{!\Sigma, \Gamma \vdash a \quad!\Sigma, \Gamma \vdash b}{!\Sigma, \Gamma \vdash c} \quad(a \& b) \multimap c \in \Sigma
\end{aligned}
$$

■ Sound and complete w.r.t. SILL for eILL sequents

## Elementary ILL (eILL)

■ Elementary sequents: ! $\Sigma, g_{1}, \ldots, g_{k} \vdash d \quad\left(g_{i}, a, b, c, d\right.$ variables $)$
■ $\Sigma$ contains commands:

- $(a \multimap b) \multimap c$, correponding to INC
- $a \multimap(b \multimap c)$, correponding to DEC
- $(a \& b) \multimap c$, correponding to FORK

Definition ( $\mathrm{G}_{\text {elLL }}$ goal directed rules for eILL)

$$
\begin{array}{cl}
\frac{!\Sigma, \Gamma \vdash a!\Sigma, \Delta \vdash b}{!\Sigma, a \vdash a}\langle A x\rangle & \frac{\square \amalg(b \multimap c) \in \Sigma}{!\Sigma, \Gamma \vdash c} \\
\frac{!\Sigma, a, \Gamma \vdash b}{!\Sigma, \Gamma \vdash c}(a \multimap b) \multimap c \in \Sigma & \frac{!\Sigma, \Gamma \vdash a!\Sigma, \Gamma \vdash b}{!\Sigma, \Gamma \vdash c}(a \& b) \multimap c \in \Sigma
\end{array}
$$

■ Sound and complete w.r.t. $\mathrm{S}_{\text {ILL }}$ for eILL sequents

- Trivial Phase Semantics (commutative monoid, closure is identity)
- SILL and GellL sound for TPS
- The reduction elLL $\preceq$ ILL is the identity map


## Encoding Minsky machines in elLL

- Given $\mathcal{M}$ as a list of MM instructions
- for every register $i \in[0, n-1]$ in $\mathcal{M}$, two logical variables $x_{i}$ and $\bar{x}_{i}$
- for every position/state $(\mathrm{PC}=i)$ in $\mathcal{M}$, a variable $q_{i}$

$$
\left\{x_{0}, \ldots, x_{n-1}\right\} \uplus\left\{\bar{x}_{0}, \ldots, \bar{x}_{n-1}\right\} \uplus\left\{q_{0}, q_{1}, \ldots\right\}
$$

## Encoding Minsky machines in elLL

- Given $\mathcal{M}$ as a list of MM instructions
- for every register $i \in[0, n-1]$ in $\mathcal{M}$, two logical variables $x_{i}$ and $\bar{x}_{i}$
- for every position/state $(\mathrm{PC}=i)$ in $\mathcal{M}$, a variable $q_{i}$

$$
\left\{x_{0}, \ldots, x_{n-1}\right\} \uplus\left\{\bar{x}_{0}, \ldots, \bar{x}_{n-1}\right\} \uplus\left\{q_{0}, q_{1}, \ldots\right\}
$$

- a computation $\mathcal{M} / /(i, \vec{v}) \rightsquigarrow(0, \overrightarrow{0})$ is represented by ! $\Sigma_{\mathcal{M}} ; \Delta_{\vec{v}} \vdash q_{i}$
- where if $\vec{v}=\left(p_{0}, \ldots, p_{n-1}\right)$ then $\Delta_{\vec{v}}=p_{0} \cdot x_{0}, \ldots, p_{n-1} \cdot x_{n-1}$
- the commands in $\Sigma_{\mathcal{M}}$ are determined by instructions in $\mathcal{M}$

$$
\begin{aligned}
\Sigma_{\mathcal{M}} & =\left\{\left(q_{0} \multimap q_{0}\right) \multimap q_{0}\right\} \\
& \cup\left\{x_{\beta} \multimap\left(\bar{x}_{\alpha} \multimap \bar{x}_{\alpha}\right),\left(\bar{x}_{\alpha} \multimap \bar{x}_{\alpha}\right) \multimap \bar{x}_{\alpha} \mid \alpha \neq \beta \in[0, n-1]\right\} \\
& \cup\left\{\left(x_{\alpha} \multimap q_{i+1}\right) \multimap q_{i} \mid i: \operatorname{INC} \alpha \in \mathcal{M}\right\} \\
& \cup\left\{\left(\bar{x}_{\alpha} \& q_{j}\right) \multimap q_{i}, x_{\alpha} \multimap\left(q_{i+1} \multimap q_{i}\right) \mid i: \operatorname{DEC} \alpha j \in \mathcal{M}\right\}
\end{aligned}
$$

## Encoding Minsky machines in elLL

- Given $\mathcal{M}$ as a list of MM instructions
- for every register $i \in[0, n-1]$ in $\mathcal{M}$, two logical variables $x_{i}$ and $\bar{x}_{i}$
- for every position/state $(\mathrm{PC}=i)$ in $\mathcal{M}$, a variable $q_{i}$

$$
\left\{x_{0}, \ldots, x_{n-1}\right\} \uplus\left\{\bar{x}_{0}, \ldots, \bar{x}_{n-1}\right\} \uplus\left\{q_{0}, q_{1}, \ldots\right\}
$$

- a computation $\mathcal{M} / /(i, \vec{v}) \rightsquigarrow(0, \overrightarrow{0})$ is represented by ! $\Sigma_{\mathcal{M}} ; \Delta_{\vec{v}} \vdash q_{i}$
- where if $\vec{v}=\left(p_{0}, \ldots, p_{n-1}\right)$ then $\Delta_{\vec{v}}=p_{0} \cdot x_{0}, \ldots, p_{n-1} \cdot x_{n-1}$
- the commands in $\Sigma_{\mathcal{M}}$ are determined by instructions in $\mathcal{M}$

$$
\begin{aligned}
\Sigma_{\mathcal{M}} & =\left\{\left(q_{0} \multimap q_{0}\right) \multimap q_{0}\right\} \\
& \cup\left\{x_{\beta} \multimap\left(\bar{x}_{\alpha} \multimap \bar{x}_{\alpha}\right),\left(\bar{x}_{\alpha} \multimap \bar{x}_{\alpha}\right) \multimap \bar{x}_{\alpha} \mid \alpha \neq \beta \in[0, n-1]\right\} \\
& \cup\left\{\left(x_{\alpha} \multimap q_{i+1}\right) \multimap q_{i} \mid i: \operatorname{INC} \alpha \in \mathcal{M}\right\} \\
& \cup\left\{\left(\bar{x}_{\alpha} \& q_{j}\right) \multimap q_{i}, x_{\alpha} \multimap\left(q_{i+1} \multimap q_{i}\right) \mid i: \text { DEC } \alpha j \in \mathcal{M}\right\}
\end{aligned}
$$

Theorem (Simulating MM termination at zero with $\mathrm{G}_{\mathrm{elLL}}$ entailment)

$$
\mathcal{M} / /(i, \vec{v}) \rightsquigarrow(0, \overrightarrow{0}) \quad \leftrightarrow \quad!\Sigma_{\mathcal{M}}, \Delta_{\vec{v}} \vdash q_{i}
$$

## Encoding Minsky machines in elLL

- Given $\mathcal{M}$ as a list of MM instructions
- for every register $i \in[0, n-1]$ in $\mathcal{M}$, two logical variables $x_{i}$ and $\bar{x}_{i}$
- for every position/state $(\mathrm{PC}=i)$ in $\mathcal{M}$, a variable $q_{i}$

$$
\left\{x_{0}, \ldots, x_{n-1}\right\} \uplus\left\{\bar{x}_{0}, \ldots, \bar{x}_{n-1}\right\} \uplus\left\{q_{0}, q_{1}, \ldots\right\}
$$

- a computation $\mathcal{M} / /(i, \vec{v}) \rightsquigarrow(0, \overrightarrow{0})$ is represented by ! $\Sigma_{\mathcal{M}} ; \Delta_{\vec{v}} \vdash q_{i}$
- where if $\vec{v}=\left(p_{0}, \ldots, p_{n-1}\right)$ then $\Delta_{\vec{v}}=p_{0} \cdot x_{0}, \ldots, p_{n-1} \cdot x_{n-1}$
- the commands in $\Sigma_{\mathcal{M}}$ are determined by instructions in $\mathcal{M}$

$$
\begin{aligned}
\Sigma_{\mathcal{M}} & =\left\{\left(q_{0} \multimap q_{0}\right) \multimap q_{0}\right\} \\
& \cup\left\{x_{\beta} \multimap\left(\bar{x}_{\alpha} \multimap \bar{x}_{\alpha}\right),\left(\bar{x}_{\alpha} \multimap \bar{x}_{\alpha}\right) \multimap \bar{x}_{\alpha} \mid \alpha \neq \beta \in[0, n-1]\right\} \\
& \cup\left\{\left(x_{\alpha} \multimap q_{i+1}\right) \multimap q_{i} \mid i: \operatorname{INC} \alpha \in \mathcal{M}\right\} \\
& \cup\left\{\left(\bar{x}_{\alpha} \& q_{j}\right) \multimap q_{i}, x_{\alpha} \multimap\left(q_{i+1} \multimap q_{i}\right) \mid i: \operatorname{DEC} \alpha j \in \mathcal{M}\right\}
\end{aligned}
$$

Theorem (Simulating MM termination at zero with $\mathrm{G}_{\mathrm{elLL}}$ entailment)

$$
\mathcal{M} / /(i, \vec{v}) \rightsquigarrow(0, \overrightarrow{0}) \quad \leftrightarrow \quad!\Sigma_{\mathcal{M}}, \Delta_{\vec{v}} \vdash q_{i}
$$

■ Hence the reduction $\mathrm{MM} \preceq$ elLL

## MM to eILL, (continued)

Increment:

$i: \operatorname{INC} x \in \mathcal{M} \left\lvert\,$| $x \leftarrow x+1$ |  |
| :--- | :--- |
| $\mathrm{PC} \leftarrow i+1$ | $\frac{\cdots}{!\Sigma, x, \Delta \vdash q_{i+1}}$ |
| $!\Sigma, \Delta \vdash q_{i}$ |  |$\left(\left(x \multimap q_{i+1}\right) \multimap q_{i} \in \Sigma\right)\right.$

## MM to eILL, (continued)

- Decrement

$$
\begin{array}{l|l}
i: \operatorname{DEC} x j \in \mathcal{M} & \text { if } x=0 \text { then } \mathrm{PC} \leftarrow j \\
\text { else } x \leftarrow x-1 ; \mathrm{PC} \leftarrow i+1
\end{array}
$$

- corresponds to two proofs $x>0$ and $x=0$ :

$$
\begin{aligned}
& \frac{\overline{!\Sigma, x \vdash x}(\mathrm{Ax}) \frac{\cdots}{!\Sigma, \Delta \vdash q_{i+1}}}{!\Sigma, x, \Delta \vdash q_{i}}\left(x \multimap\left(q_{i+1} \multimap q_{i}\right) \in \Sigma\right) \\
& \frac{\frac{\cdots}{!\Sigma, \Delta \vdash \bar{x}}(x \notin \Delta) \frac{\cdots}{!\Sigma, \Delta \vdash q_{j}}}{!\Sigma, \Delta \vdash q_{i}}\left(\left(\bar{x} \& q_{j}\right) \multimap q_{i} \in \Sigma\right)
\end{aligned}
$$

## Zero test $x \notin \Delta$ in elLL

■! $\Sigma ; \Delta \vdash \bar{x}$ provable iff $x \notin \Delta$

- Proof for $y, \Delta$ with $y \neq x$ :

$$
\frac{\overline{!\Sigma, y \vdash y}(\mathrm{Ax}) \overline{!\Sigma, \Delta \vdash \bar{x}}}{!\Sigma, y, \Delta \vdash \bar{x}}(y \multimap(\bar{x} \multimap \bar{x}) \in \Sigma)
$$

- Proof for empty context $\Delta=\emptyset$ :

$$
\frac{\overline{!\Sigma, \bar{x} \vdash \bar{x}}(\mathrm{Ax})}{!\Sigma, \emptyset \vdash \bar{x}}((\bar{x} \multimap \bar{x}) \multimap \bar{x} \in \Sigma)
$$

## Full reduction

Theorem
$\mathcal{M}:(i, \vec{v}) \longrightarrow{ }^{*}(0, \overrightarrow{0}) \Rightarrow!\Sigma_{\mathcal{M}}, \Delta_{\vec{v}} \vdash q_{i}$

## Full reduction

## Theorem

$\mathcal{M}:(i, \vec{v}) \longrightarrow^{*}(0, \overrightarrow{0}) \Rightarrow!\Sigma_{\mathcal{M}}, \Delta_{\vec{v}} \vdash q_{i}$
other direction by soundness of $\operatorname{TPS}\left(\llbracket A \rrbracket: \mathbb{N}^{n} \rightarrow \mathbb{P}\right)$ :

$$
\left.\begin{array}{l}
\llbracket x \rrbracket \vec{v} \Longleftrightarrow \vec{v}=1 . x \\
\llbracket \bar{x} \rrbracket \vec{v} \Longleftrightarrow \vec{v}_{x}=0 \\
\llbracket q i \rrbracket \vec{v} \Longleftrightarrow \vec{M}:(i, \vec{v}) \longrightarrow \longrightarrow^{*}(0, \overrightarrow{0})
\end{array} \quad \quad \text { (i.e. } \vec{v}_{y}=\delta_{x, y}\right)
$$

## Wrap-up of this chain of reduction

## Reductions:

■ PCP to BPCP: trivial binary encoding
■ BPCP to BSM: verified exhaustive search
■ BSM to MM: certified compiler between low-level languages

- MM to elLL: elegant encoding of computational model in logics

■ elLL to ILL: faithfull embedding

## Wrap-up of this chain of reduction

## Reductions:

■ PCP to BPCP: trivial binary encoding
■ BPCP to BSM: verified exhaustive search
■ BSM to MM: certified compiler between low-level languages

- MM to elLL: elegant encoding of computational model in logics

■ elLL to ILL: faithfull embedding

Low verification overhead

## Wrap-up of this chain of reduction

## Reductions:

■ PCP to BPCP: trivial binary encoding

- BPCP to BSM: verified exhaustive search

■ BSM to MM: certified compiler between low-level languages

- MM to elLL: elegant encoding of computational model in logics

■ elLL to ILL: faithfull embedding

Low verification overhead
(compared to detailed paper proofs)

## A library of undecidable problems in Coq



## A library of undecidable problems in Coq



## A library of undecidable problems in Coq



## Papers

- Hilbert's Tenth Problem in Coq. Dominique Larchey-Wendling and Yannick Forster. Technical report (2019).
■ Certified Undecidability of Intuitionistic Linear Logic via Binary Stack Machines and Minsky Machines. Yannick Forster and Dominique Larchey-Wendling. CPP '19.
■ On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem. Yannick Forster, Dominik Kirst, and Gert Smolka. CPP '19.
■ Verification of PCP-Related Computational Reductions in Coq. Yannick Forster, Edith Heiter, and Gert Smolka. ITP 2018.
- Call-by-Value Lambda Calculus as a Model of Computation in Coq. Yannick Forster and Gert Smolka. Journal of Automated Reasoning (2018)


## Conclusion

More future work:

- Realisability model of the calculus of inductive constructions witnessing (the propositional version) of excluded middle
- Automated translation of Coq function definitions into a concrete model of computation (e.g. call-by-value lambda calculus)


## Conclusion

More future work:
■ Realisability model of the calculus of inductive constructions witnessing (the propositional version) of excluded middle

- Automated translation of Coq function definitions into a concrete model of computation (e.g. call-by-value lambda calculus)
- A constructive library of undecidable problems
- Exemplary undecidability proof for provability in linear logic
- Enabling loads of future work. Attach your own undecidable problems!


## Conclusion

More future work:
■ Realisability model of the calculus of inductive constructions witnessing (the propositional version) of excluded middle

- Automated translation of Coq function definitions into a concrete model of computation (e.g. call-by-value lambda calculus)
- A constructive library of undecidable problems
- Exemplary undecidability proof for provability in linear logic
- Enabling loads of future work. Attach your own undecidable problems!
https://github.com/uds-psl/coq-library-undecidability


## Conclusion

More future work:
■ Realisability model of the calculus of inductive constructions witnessing (the propositional version) of excluded middle

- Automated translation of Coq function definitions into a concrete model of computation (e.g. call-by-value lambda calculus)
- A constructive library of undecidable problems
- Exemplary undecidability proof for provability in linear logic
- Enabling loads of future work. Attach your own undecidable problems!
https://github.com/uds-psl/coq-library-undecidability


## Questions?

