Hilbert's Tenth Problem in Coq

Dominique Larchey-Wendling and Yannick Forster

FSCD 2019 June 25

Introduction

Hilbert's Tenth Problem H10

lacksquare Diophantine equation = polynomial eq. over $\mathbb N$ (or $\mathbb Z$)

$$x^2 + 3z = yz + 2$$

■ H10 posed by David Hilbert in 1900:

"Man soll ein Verfahren angeben, nach welchem sich mittels einer endlichen Anzahl von Operationen entscheiden läßt, ob die Gleichung in ganzen Zahlen lösbar ist."

- Essentially asked for a decision procedure for solvability of Diophantine equations
- Typical decision problems with a negative answer:
 - does a given Turing machine halt? (Halt)
 - does a given register/Minsky machine halt? (MM)
 - ► the Post correspondence problem (PCP)
 - ▶ is there a proof/term for this formula/type (FOL, syst. F)?

What is so intriguing about H10?

- H10 simple to explain to mathematicians with no CS background
- Hilbert's challenge was hard to solve because of a negative answer:
 - required inventing a formal concept of "decision procedure"
 - ▶ algorithms characterized by computability theory (CT, 30-40's)
 - ▶ a general notion of computable, and thus non-computable

A short history of H10

- 1900 Posed by David Hilbert
- 1944 Emil Post "this begs for an unsolvability proof"
- 1950s Martin Davis' conjecture: "Every r.e. set is Diophantine"
- 1953 Davis: "Every r.e. set is Diophantine up to one bounded \forall "
- 1959 Davis and Putnam: "Every r.e. set is exponentially Diophantine"
- 1961 Julia Robinson: "Every r.e. set is Diophantine if there is at least one Diophantine relation with exponential growth"
- 1970 Yuri Matiyasevich: "The Fibonacci sequence exhibits exponential growth and is Diophantine."

Resulting in the Davis-Putnam-Robinson-Matiyasevich theorem proving Davis' conjecture.

A library for synthetic undecidability in Coq

https://github.com/uds-psl/coq-library-undecidability

Definition (Synthetic undecidability)

P undecidable := Halting problem reduces to P

- a decision problem $(X, P) : \Sigma(X : Type), X \to \mathbb{P}$
- Many-one reduction from (X, P) to (Y, Q)
 - ▶ computable function $f: X \to Y$ s.t. $\forall x, Px \leftrightarrow Q(fx)$
 - "computable" requirement replaced by "defined in CTT"
 - ▶ We write $P \leq Q$ when such reduction exists
- Coq terms are computable (axiom-free)
- Undecidability in Coq by many-one reductions
 - ► from a seed of undecidability Halt (single tape TM)
 - ▶ but also PCP (Forster&Heiter&Smolka, ITP 18)
 - BSM, MM, ILL (Forster&LW, CPP 19)
 - ► FOL (Forster&Kirst&Smolka, CPP 19) ...

Why add H10 to our library?

- MM halting already in our library (CPP 19)
- Stand-alone reduction from MM (Jones&Matijaseviĉ 84)
 - assuming only Matiyasevich theorem ($z = x^y$ Diophantine)
 - ► (Matiyasevich 2000) is a very detailed pen&paper proof
- H10 reduces to:
 - system F inhabitation (Dudenhefner&Rehof, TYPES 18)
 - second-order unification (Goldfarb 81)
- H10 allows for easy inter-reducibility proofs
 - enumerating Diophantine solutions is trivial to program
 - an easy way to strengthen Church's thesis
- The DPRM theorem:
 - Diophantine equations can encode any RE-predicate
- Another illustration of capabilities of modern proof assistants

Contribution

First complete mechanisation of H10 and the DPRM theorem

Refactorisation of the proof via FRACTRAN, easing both explanation and mechanisation

Today

- Overview of the reduction from Halt to H10, via FRACTRAN
- Basics of FRACTRAN vs. MM (Conway 87)
- 3 Details on Diophantine encoding of FRACTRAN
- 4 H10 and the DPRM theorem
- 5 Mechanized Diophantine relations
- 6 Some remarks on the Coq code
- 7 Related works
- 8 Overview over the library and future work

Overview of the reduction

From Halt to H10

$\mathsf{Halt} \preceq \mathsf{MM} \preceq \mathsf{FRACTRAN} \preceq \mathsf{DIO}_* \preceq \mathsf{H}10$

- Halt

 MM via PCP
 - ► Halt \(\preceq\) PCP via SRS (ITP 18)
 - ▶ PCP ≤ MM via Binary Stack Machines (CPP 19)
- MM ≺ FRACTRAN
 - following Conway (87)
 - removing self-loops from MM
- FRACTRAN ~ DIO_*
 - Diophantine admissibility of RT-closure
 - two results as black-boxes (implemented):
 - ★ Matiyasevich proof (2000) $(z = x^y)$
 - ★ Admissibility of ∀^{fin} (Matiyasevich 1997)
- Nice factorization of the quite monolithic proof of J&M84

Minsky machines and FRACTRAN

Minsky Machines (N valued register machines)

Example (transfers α to β in 3 instructions, γ_0 spare register)

$$q: \mathtt{DEC}\ \alpha\ (3+q) \qquad q+1: \mathtt{INC}\ \beta \qquad q+2: \mathtt{DEC}\ \gamma_0\ q$$

- n registers of value in \mathbb{N} for a fixed n
- state: $(PC, \vec{v}) \in \mathbb{N} \times \mathbb{N}^n$
- instructions: $\iota ::= INC \alpha \mid DEC \alpha p$
- programs: $(q, [\iota_0; ...; \iota_k]) \iff q : \iota_0; ...; q + k : \iota_k$
- Step semantics for INC and DEC (pseudo code)

INC
$$\alpha$$
: $\alpha \leftarrow \alpha + 1$; PC \leftarrow PC $+ 1$

DEC α p : if $\alpha = 0$ then PC \leftarrow p

if $\alpha > 0$ then $\alpha \leftarrow \alpha - 1$; PC \leftarrow PC $+ 1$

 $\blacksquare \ \, \mathsf{MM}(\mathit{n}, \mathfrak{M}, \vec{\mathit{v}}) := (1, \mathfrak{M}) \, /\!\!/_{\mathit{M}} \, (1, \vec{\mathit{v}}) \, \downarrow \quad \text{(termination in any state)}$

FRACTRAN (computing with fractions in \mathbb{Q}^+)

Example (FRACTRAN program: list of fractions)

$$\left(\frac{455}{33}, \frac{11}{13}, \frac{1}{11}, \frac{3}{7}, \frac{11}{2}, \frac{1}{3}\right)$$

- Program: list of $\mathbb{N} \times \mathbb{N}$; State: a single $x \in \mathbb{N}$
- Step relation is simple to describe
 - pick the first p/q s.t. $x \cdot p/q \in \mathbb{N}$, and this is the new state
 - inductively, characterized by two rules:

$$\frac{q \cdot y = p \cdot x}{(p/q :: Q) /\!/_F x \succ y} \qquad \frac{q \nmid p \cdot x \qquad Q /\!/_F x \succ y}{(p/q :: Q) /\!/_F x \succ y}$$

Termination predicate

$$Q /\!\!/_{E} s \downarrow := \exists x, \ Q /\!\!/_{E} s \succ^{*} x \land \forall y, \neg (Q /\!\!/_{E} x \succ y)$$

Decision problem:
$$|FRACTRAN(Q, s) := Q //_F s \downarrow$$

Conway's reduction from MM to FRACTRAN

- Distinct primes: $\mathfrak{p}_0, \mathfrak{p}_1, \ldots$ and $\mathfrak{q}_0, \mathfrak{q}_1, \ldots$
- Gödel coding of MM-states $\overline{(i,(x_0,\ldots,x_{n-1}))} := \mathfrak{p}_i\mathfrak{q}_0^{x_0}\ldots\mathfrak{q}_{n-1}^{x_{n-1}}$
- Fractional encoding of MM-instructions:

$$\overline{i: \mathtt{INC}\ \alpha} := [\mathfrak{p}_{i+1}\mathfrak{q}_{\alpha}/\mathfrak{p}_i] \quad \overline{i: \mathtt{DEC}\ \alpha\ j} := [\mathfrak{p}_{i+1}/\mathfrak{p}_i\mathfrak{q}_{\alpha}; \mathfrak{p}_j/\mathfrak{p}_i]$$

- lacksquare and of MM: $\overline{(i,[\iota_0;\ldots;\iota_k])}:=\overline{i:\iota_0}+\cdots+\overline{i+k:\iota_k}$
- fails for i: DEC α i (self loops) because $\mathfrak{p}_i/\mathfrak{p}_i=1$
- So first remove self-loops using an extra 0-valued spare variable
 - every MM has an equivalent self-loop free MM
 - ▶ self-loops → unconditional jump to a length-2 cycle
- Simulate self-loop free MM with FRACTRAN

Theorem (Simulating MM with FRACTRAN)

For any n registers Minsky machine P, one can compute a FRACTRAN program Q s.t. $(1, P) /\!\!/_{M} (1, [x_1; \ldots; x_n]) \downarrow \leftrightarrow Q /\!\!/_{F} \mathfrak{p}_1 \mathfrak{q}_1^{x_1} \ldots \mathfrak{q}_n^{x_n} \downarrow$

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

```
\begin{array}{c} \textbf{0}: \ \mathsf{DEC} \ x_0 \ 2 \\ \\ 1: \ \mathsf{DEC} \ x_1 \ 0 \\ \\ 2: \\ \hline \\ \boxed{(\mathfrak{p}_0,\mathfrak{p}_1,\mathfrak{p}_2,\ldots) = (2,3,5,\ldots) \qquad (\mathfrak{q}_0,\mathfrak{q}_1,\ldots) = (7,11,\ldots)} \\ \\ \frac{3}{2\cdot 7} \ , \ \frac{5}{2} \end{array}
```

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

```
\begin{array}{c} 0: \ \mathsf{DEC} \ x_0 \ 2 \\ \hline 1: \ \mathsf{DEC} \ x_1 \ 0 \\ \hline 2: \\ \hline \\ (\mathfrak{p}_0,\mathfrak{p}_1,\mathfrak{p}_2,\ldots) = (2,3,5,\ldots) \qquad (\mathfrak{q}_0,\mathfrak{q}_1,\ldots) = (7,11,\ldots) \\ \hline \\ \frac{5}{3\cdot 11} \ , \ \frac{2}{3} \end{array}
```

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

$$\begin{array}{ll} \textbf{0: DEC} \; x_0 \; \textbf{2} \\ \textbf{1: DEC} \; x_1 \; 0 \\ \textbf{2:} \end{array} \qquad \begin{cases} x_0 = 3 \\ x_1 = 0 \\ \mathsf{PC} = 0 \end{cases} \\ \\ \boxed{ \left(\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \ldots \right) = (2, 3, 5, \ldots) } \qquad (\mathfrak{q}_0, \mathfrak{q}_1, \ldots) = (7, 11, \ldots) \\ \\ \frac{3}{2 \cdot 7} \; , \; \frac{5}{2} \; , \; \frac{5}{3 \cdot 11} \; , \; \frac{2}{3} \qquad \qquad s = 2^1 3^0 5^0 \; 7^3 11^0 \end{cases}$$

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

$$\begin{array}{ll} 0: \ \mathsf{DEC} \ x_0 \ 2 \\ 1: \ \mathsf{DEC} \ x_1 \ 0 \\ 2: \end{array} \qquad \begin{cases} x_0 = 2 \\ x_1 = 0 \\ \mathsf{PC} = 1 \end{cases} \\ \\ \boxed{ \begin{pmatrix} (\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \ldots) = (2, 3, 5, \ldots) \\ \frac{3}{2 \cdot 7} \ , \ \frac{5}{2} \ , \ \frac{5}{3 \cdot 11} \ , \ \frac{2}{3} \end{cases}} \qquad \qquad s = 2^0 3^1 5^0 \ 7^2 11^0 \end{array}$$

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

$$\begin{array}{c} \textbf{0: DEC} \; x_0 \; \textbf{2} \\ \textbf{1: DEC} \; x_1 \; 0 \\ \textbf{2:} \end{array} \qquad \begin{cases} x_0 = 2 \\ x_1 = 0 \\ \mathsf{PC} = 0 \end{cases} \\ \\ \hline \left((\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \ldots) = (2, 3, 5, \ldots) \quad (\mathfrak{q}_0, \mathfrak{q}_1, \ldots) = (7, 11, \ldots) \right] \\ \\ \frac{3}{2 \cdot 7} \; , \; \frac{5}{2} \; , \; \frac{5}{3 \cdot 11} \; , \; \frac{2}{3} \qquad \qquad s = 2^1 3^0 5^0 \; 7^2 11^0 \end{cases}$$

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

$$\begin{array}{ll} 0: \ \mathsf{DEC} \ x_0 \ 2 \\ \hline 1: \ \mathsf{DEC} \ x_1 \ 0 \\ 2: \end{array} \qquad \begin{cases} x_0 = 1 \\ x_1 = 0 \\ \mathsf{PC} = 1 \end{cases} \\ \\ \boxed{(\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \ldots) = (2, 3, 5, \ldots) \qquad (\mathfrak{q}_0, \mathfrak{q}_1, \ldots) = (7, 11, \ldots)} \\ \hline \frac{3}{2 \cdot 7} \ , \ \frac{5}{2} \ , \ \frac{5}{3 \cdot 11} \ , \ \frac{2}{3} \qquad \qquad s = 2^0 3^1 5^0 \ 7^1 11^0 \end{cases}$$

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

$$\begin{array}{c} \textbf{0: DEC} \; x_0 \; \textbf{2} \\ \textbf{1: DEC} \; x_1 \; 0 \\ \textbf{2:} \end{array} \qquad \begin{cases} x_0 = 1 \\ x_1 = 0 \\ \mathsf{PC} = 0 \end{cases} \\ \\ \hline \left(\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \ldots \right) = (2, 3, 5, \ldots) \qquad (\mathfrak{q}_0, \mathfrak{q}_1, \ldots) = (7, 11, \ldots) \\ \\ \hline \frac{3}{2 \cdot 7} \; , \; \frac{5}{2} \; , \; \frac{5}{3 \cdot 11} \; , \; \frac{2}{3} \qquad \qquad s = 2^1 3^0 5^0 \; 7^1 11^0 \end{cases}$$

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

$$\begin{array}{ll} 0: \ \mathsf{DEC} \ x_0 \ 2 \\ \hline 1: \ \mathsf{DEC} \ x_1 \ 0 \\ 2: \end{array} \qquad \begin{cases} x_0 = 0 \\ x_1 = 0 \\ \mathsf{PC} = 1 \end{cases} \\ \\ \boxed{ \begin{pmatrix} (\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \ldots) = (2, 3, 5, \ldots) \\ \hline \frac{3}{2 \cdot 7} \ , \ \frac{5}{2} \ , \ \frac{5}{3 \cdot 11} \ , \ \frac{2}{3} \end{cases}} \qquad s = 2^0 3^1 5^0 \ 7^0 11^0 \end{array}$$

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

$$\begin{array}{c} \textbf{0}: \ \mathsf{DEC} \ x_0 \ 2 \\ 1: \ \mathsf{DEC} \ x_1 \ 0 \\ 2: \end{array} \qquad \begin{cases} x_0 = 0 \\ x_1 = 0 \\ \mathsf{PC} = 0 \end{cases} \\ \\ \hline \left((\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \ldots) = (2, 3, 5, \ldots) \quad (\mathfrak{q}_0, \mathfrak{q}_1, \ldots) = (7, 11, \ldots) \right] \\ \\ \frac{3}{2 \cdot 7} \ , \ \frac{5}{2} \ , \ \frac{5}{3 \cdot 11} \ , \ \frac{2}{3} \qquad \qquad s = 2^1 3^0 5^0 \ 7^0 11^0 \\ \end{cases}$$

- A small nullifying MM program
 - two DEC instructions starting at 0:
 - \triangleright x_0 is nullified, x_1 zero-valued spare register

$$\begin{array}{ll} 0: \ \mathsf{DEC} \ x_0 \ 2 \\ 1: \ \mathsf{DEC} \ x_1 \ 0 \\ \hline 2: \end{array} \qquad \begin{cases} x_0 = 0 \\ x_1 = 0 \\ \mathsf{PC} = 2 \end{cases} \\ \\ \boxed{ \left(\mathfrak{p}_0, \mathfrak{p}_1, \mathfrak{p}_2, \ldots \right) = \left(2, 3, 5, \ldots \right) } \qquad \left(\mathfrak{q}_0, \mathfrak{q}_1, \ldots \right) = \left(7, 11, \ldots \right) } \\ \\ \frac{3}{2 \cdot 7} \ , \ \frac{5}{2} \ , \ \frac{5}{3 \cdot 11} \ , \ \frac{2}{3} \qquad \qquad s = 2^0 3^0 5^1 \ 7^0 11^0 \end{cases}$$

FRACTRAN termination is Diophantine

- FRACTRAN step relation is Diophantine:
 - $[] /\!/_F x \succ y \leftrightarrow \text{False}$
- FRACTRAN halted at predicate is Diophantine:
 - ▶ $\forall y, \neg([] //_F x \succ y) \leftrightarrow \text{True}$
 - $\qquad \forall y, \neg (p/q :: Q /\!/_F x \succ y) \quad \leftrightarrow \quad q \nmid p \cdot x \land \quad \forall y, \neg (Q /\!/_F x \succ y)$
- FRACTRAN halting is Diophantine

$$Q /\!/_{F} s \downarrow \leftrightarrow \exists x, (Q /\!/_{F} s \succ^{*} x) \land \forall y, \neg (Q /\!/_{F} x \succ y)$$

- What closure properties do we need?
 - ▶ under polynomial equations (!)
 - under "does not divide" (Euclidean division)
 - under finitary conjunctions and disjunctions, existential quantification
 - ▶ under RT-closure (this one is hard!)

Hilbert's Tenth Problem

Theorem (H10)

The solvability of a Diophantine equation is undecidable

- MM halting is undecidable
 - by reduction from Halt via PCP
- FRACTRAN halting is undecidable
 - by reduction from MM
- FRACTRAN halting has a Diophantine representation
 - ightharpoonup Given (Q, s) a FRACTRAN program and an initial state
 - ▶ compute a polynomial equation which has a solution iff $Q /\!/_F s \downarrow$
- a solver for H10 would decide FRACTRAN halting

The DPRM theorem

Theorem (DPRM)

MM-recognisable predicates are Diophantine

■ $R : \mathbb{N}^n \to \mathbb{P}$ is recognised by some MM P with (n+m) registers:

$$R \ \vec{v} \leftrightarrow (1, P) /\!\!/_{M} (1, \vec{v} +\!\!\!+ \vec{0}) \downarrow$$

P is equivalent to FRACTRAN Q:

$$(1, P) /\!\!/_{M} (1, [v_1; \ldots; v_n] + \vec{0}) \downarrow \leftrightarrow Q /\!\!/_{F} \mathfrak{p}_1 \mathfrak{q}_1^{v_1} \ldots \mathfrak{q}_n^{v_n} \downarrow$$

- $[s; v_1; \ldots; v_n] \mapsto s = \mathfrak{p}_1 \mathfrak{q}_1^{v_1} \ldots \mathfrak{q}_n^{v_n}$ is Diophantine
 - by induction on n, using Matiyasevich thm. ($z = x^y$ is Diophantine)
- FRACTRAN halting $s \mapsto Q /\!/_{E} s \downarrow$ is Diophantine

Mechanized Diophantine relations

How to deal smoothly with Diophantine relations

- Diophantine Logic: an expressive language for Diophantine relations
 - ▶ not only polynomial equations, but also \land , \lor , \exists
 - automated recognition of Diophantine shapes
 - ▶ possibility to expand the shapes: $x \nmid y$, $z = x^y$, \forall^{fin}
 - privileged tool for establishing Diophantineness
- Elementary Diophantine constraints:
 - ▶ list of $u \doteq n \mid u \doteq v \mid u \doteq x_i \mid u \doteq v \dotplus w \mid u \doteq v \times w$
 - ▶ $u, v, w = \text{existential variables}, x_i \dots = \text{parameters}, n : \mathbb{N} = \text{constant}$
 - nice intermediate layer, e.g. 2nd-ord. unification or system F
- Single Diophantine Equation: $p \doteq q$
 - p and q are polynomials with variables, constants and parameters
 - ▶ H10 is the special case with no parameter
- Conversion from Diophantine Logic ¬¬ Single Diophantine Equation

Diophantine Logic, syntax and semantics (DIO_FORM)

Example (De Bruijn encoding for bound variables)

$$\exists y$$
, $(y=0 \land \exists z$, $y=z+1) \iff \dot\exists (x_0 \doteq 0 \land \dot\exists (x_1 \doteq x_0 \dotplus 1))$

■ De Bruijn syntax with $V = \{x_0, x_1, \ldots\} \simeq \mathbb{N}$

$$\mathbb{D}_{\text{expr}} : p, q ::= x_i \in V \mid n \in \mathbb{N} \mid p + q \mid p \times q$$

$$\mathbb{D}_{\text{form}} : A, B ::= p = q \mid A \wedge B \mid A \vee B \mid \exists A$$

■ Semantics with $\nu: V \to \mathbb{N}$

$$[\![x_i]\!]_{\mathcal{V}} := \mathcal{V} x_i \quad [\![n]\!]_{\mathcal{V}} := n \quad [\![p \dotplus q]\!]_{\mathcal{V}} := [\![p]\!]_{\mathcal{V}} + [\![q]\!]_{\mathcal{V}} \quad \dots$$

$$[\![A \dot{\wedge} B]\!]_{\mathcal{V}} := [\![A]\!]_{\mathcal{V}} \wedge [\![B]\!]_{\mathcal{V}} \qquad [\![p \doteq q]\!]_{\mathcal{V}} := [\![p]\!]_{\mathcal{V}} = [\![q]\!]_{\mathcal{V}}$$

$$[\![A \dot{\vee} B]\!]_{\mathcal{V}} := [\![A]\!]_{\mathcal{V}} \vee [\![B]\!]_{\mathcal{V}} \qquad [\![\dot{\exists} A]\!]_{\mathcal{V}} := \exists n : \mathbb{N}, [\![A]\!]_{n \cdot \mathcal{V}}$$

with $n \cdot v(x_0) := n$ and $n \cdot v(x_{1+i}) := v x_i$ (De Bruijn extension)

Diophantine polynomials and relations

Definition (Sub-types of $(V \to \mathbb{N}) \to \mathbb{N}$ and $(V \to \mathbb{N}) \to \mathbb{P}$)

$$\begin{array}{ll} \mathbb{D}_{\mathrm{P}} \ f \ := \ \sum p : \mathbb{D}_{\mathrm{expr}}, \left(\forall \nu, \llbracket p \rrbracket_{\nu} = f_{\nu} \right) & \text{for } f : (\mathsf{V} \to \mathbb{N}) \to \mathbb{N} \\ \mathbb{D}_{\mathrm{R}} \ R \ := \ \sum A : \mathbb{D}_{\mathrm{form}}, \left(\forall \nu, \llbracket A \rrbracket_{\nu} \leftrightarrow R \ \nu \right) & \text{for } R : (\mathsf{V} \to \mathbb{N}) \to \mathbb{P} \end{array}$$

lacktriangle closure properties for $\mathbb{D}_P/\mathbb{D}_R$: provided $\mathbb{D}_P f$ and $\mathbb{D}_P g$ we have

$$\begin{split} \mathbb{D}_{\mathrm{P}} \left(\lambda \nu. \nu \, x_{i} \right) \quad \mathbb{D}_{\mathrm{P}} \left(\lambda \nu. n \right) \quad \mathbb{D}_{\mathrm{P}} \left(\lambda \nu. f_{\nu} + g_{\nu} \right) \quad \mathbb{D}_{\mathrm{P}} \left(\lambda \nu. f_{\nu} \times g_{\nu} \right) \\ \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. \mathsf{True} \right) \quad \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. \mathsf{False} \right) \quad \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. f_{\nu} = g_{\nu} \right) \\ \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. f_{\nu} \leqslant g_{\nu} \right) \quad \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. f_{\nu} \leqslant g_{\nu} \right) \quad \mathbb{D}_{\mathrm{R}} \left(\lambda \nu. f_{\nu} \neq g_{\nu} \right) \end{split}$$

 $\blacksquare \text{ for } \mathbb{D}_{\mathrm{R}} \text{: for } R, \mathcal{S} : (\mathsf{V} \to \mathbb{N}) \to \mathbb{P} \text{ and } \mathcal{T} : \mathbb{N} \to (\mathsf{V} \to \mathbb{N}) \to \mathbb{P} \text{ we have }$

 $\mathbb{D}_{R} R \to \mathbb{D}_{R} S \to \mathbb{D}_{R} (\lambda \nu. R \nu \wedge S \nu)$

$$\mathbb{D}_{R} R \to \mathbb{D}_{R} S \to \mathbb{D}_{R}(\lambda \nu.R \nu \vee S \nu)
(\forall \nu, S \nu \leftrightarrow R \nu) \to \mathbb{D}_{R} R \to \mathbb{D}_{R} S
\mathbb{D}_{R}(\lambda \nu.T (\nu x_{0}) (\lambda x_{i}.\nu x_{1+i})) \to \mathbb{D}_{R}(\lambda \nu.\exists u, T u \nu)$$

Recognizing more Diophantine shapes

Example (Does not divide is a Diophantine shape)

$$\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{R}} (\lambda \nu. f_{\nu} \nmid g_{\nu})$$

- Apply closure properties recursively
- Add the example as hint for the auto tactic

Theorem (Exponential (Matiyasevich 1970), proof from (Mat. 2000))

$$\mathbb{D}_{\mathrm{P}} f o \mathbb{D}_{\mathrm{P}} g o \mathbb{D}_{\mathrm{P}} h o \mathbb{D}_{\mathrm{R}} (\lambda \nu. f_{\nu} = g_{\nu}^{h_{\nu}})$$

Theorem (\forall^{fin} , proof from (Matiyasevich 1997))

$$\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. T (\nu x_0) \ (\lambda x_i. \nu x_{1+i}) \big) \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. \forall u, u < f_{\nu} \to T u \ \nu \big)$$

Add both theorems to the hint database

RT-closure is a Diophantine shape

Theorem (iterations of a binary Diophantine relation)

With
$$f, g, i : (V \to \mathbb{N}) \to \mathbb{N}$$
 and $R : \mathbb{N} \to \mathbb{N} \to \mathbb{P}$

$$\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{P}} i \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R \ (\nu \, x_1) \ (\nu \, x_0) \big) \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R^{i_{\nu}} \, f_{\nu} \, g_{\nu} \big)$$

- Encode *R*-chains of length *i* in the digits of *c* in base *q*
- lacksquare is_d c q n $d := d < q \land \exists a \, b, \ c = (a \cdot q + d) \ q^n \ + b \land b < q^n$
- is_s R c q i :=

$$\forall \textit{n, n} < \textit{i} \rightarrow \exists \textit{u} \, \textit{v, is_d} \, \textit{c} \, \textit{q} \, \textit{n} \, \textit{u} \, \land \, \text{is_d} \, \textit{c} \, \textit{q} \, (1 + \textit{n}) \, \, \textit{v} \, \land \, \textit{R} \, \, \textit{u} \, \, \textit{v}$$

■ $R^i u v \leftrightarrow \exists q c$, is_s $R c q i \land is_d c q 0 u \land is_d c q i v$

Corollary (reflexive and transitive closure is a Diophantine shape)

With f, g:
$$(V \to \mathbb{N}) \to \mathbb{N}$$
 and $R: \mathbb{N} \to \mathbb{N} \to \mathbb{P}$

$$\mathbb{D}_{\mathrm{P}} f \to \mathbb{D}_{\mathrm{P}} g \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R \ (\nu \, x_1) \ (\nu \, x_0) \big) \to \mathbb{D}_{\mathrm{R}} \big(\lambda \nu. R^* \, f_{\nu} \, g_{\nu} \big)$$

Elementary Diophantine constraints (DIO_ELEM)

- list of \mathbb{D}_{cstr} : $u \doteq n \mid u \doteq v \mid u \doteq x_i \mid u \doteq v \dotplus w \mid u \doteq v \times w$
- $lackbox{ } \phi: \mathsf{U} \to \mathbb{N}$ for variables and $\nu: \mathsf{V} \to \mathbb{N}$ for parameters

$$\ldots \quad \llbracket u \doteq x_i \rrbracket_{\nu}^{\varphi} := \varphi \ u = \nu \, x_i \quad \ldots$$

- lacksquare representation of $A:\mathbb{D}_{\mathrm{form}}$ into $(\mathfrak{r},\mathcal{E}):\mathsf{U}\times\mathbb{L}\,\mathbb{D}_{\mathrm{cstr}}$
 - \triangleright \mathcal{E} is always satisfiable (for any ν)
 - $(\mathfrak{r} \doteq 0) :: \mathcal{E}$ is satisfiable at ν iff $[\![A]\!]_{\nu}$
 - encode $\dot{\wedge}$ with $\dot{+}$ and $\dot{\vee}$ with $\dot{\times}$
 - ▶ encode ∃ with a De Bruijn extension
 - encode $p \doteq q$ following the syntax tree

Theorem (Diophantine logic to elementary Diophantine constraints)

For $A: \mathbb{D}_{form}$ one can compute $\mathcal{E}: \mathbb{L} \mathbb{D}_{cstr}$ such that $[\![A]\!]_{\mathbf{v}} \leftrightarrow \exists \phi$, $[\![\mathcal{E}]\!]_{\mathbf{v}}^{\phi}$

 \blacksquare length of $\mathcal E$ linearly bounded by the size of A

Single Diophantine Equation (DIO_SINGLE)

Lemma (Convexity identity)

$$\sum_{i=1}^{n} 2p_i q_i = \sum_{i=1}^{n} p_i^2 + q_i^2 \leftrightarrow p_1 = q_1 \land \dots \land p_n = q_n$$

- list of elementary constraints → single Diophantine equation
- the size is linear in the length, the degree is at most 4

Theorem (Diophantine relations as polynomial equations)

For any Diophantine relation one can compute an equivalent single Diophantine equation.

- lacksquare the size is linearly bounded by the size of the witness in $\mathbb{D}_{\mathrm{form}}$
- the degree is at most 4

Code and related works

The Coq code

included in the library of undecidable problems:

https://github.com/uds-psl/coq-library-undecidability

also a "frozen" version hyperlinked with the paper:

- devel. of significant size but not unreasonnable
- 12k loc addition to the library
 - ▶ 3k loc for Matiyasevich's results $(z = x^y)$ and \forall fin)
 - 5k loc the Diophantine, FRACTRAN, H10 and the DPRM
 - 4k loc addition to shared libs
- automation in Diophantineness proofs helped a lot
 - expanding Diophantine shape hints as they get proved

Related work

- Matiyasevich theorem in Lean (Carneiro 2018)
 - ▶ no link with computational models
- results about Pell's equation in Mizar (Pak 2017)
 - ▶ some basic results about Diophantine relations (Pak 2018)
- the DPRM in Isabelle (Stock et al. 2018-...)
 - ▶ still unfinished: https://gitlab.com/hilbert-10/dprm

Features of interactive proof assistants used

- 1 Interactive construction of (computable) functions in proof scripts
- 2 Basic automation providing proof search using hints
- 3 Automation for goals involving numbers over rings

Conclusion

Contributions and future work

