Synthetic Undecidability of MSELL via FRACTRAN mechanised in Coq

Dominique Larchey-Wendling

FSCD 2021 July 22

Introduction

Motivations for studying MSELL

- MELL decidability
 - most important LL open decidability question
 - some proof attempts (Bimbo 2015)
 - later refuted (Strassburger 2019)
 - MELL encodes Petri nets reachability
- Petri nets, VASS reachability is decidable
 - major results from 80's (Mayr 1981, et al)
 - proof still revisted in the 2010's (Leroux)
 - non-elementary (Czerwinski et al 2019)
 - (possibly) Ackermann complete (Czerwinski 2021, Leroux 2021)
- MSELL simple extension of MELL
 - 3 modalities, one of them exponential
 - modalities interact in the promotion rule
- MSELL is undecidable (Chaudhuri 2018)
 - unlike ILL, proof does not use forking via &
 - instead exploits interaction of modalities

Approach and main focus of the talk

- The proof of Chaudhuri 2018
 - undecidability of (classical) MSELL
 - many-one reduction from two counters Minsky machines
 - completeness of the reduction via focussing
- Revisit the proof for (intuitionistic) IMSELL
 - compare with the ILL proof (CPP'19)
 - completeness via (trivial) phase semantics
- A synthetic framework for mechanized undecidability in Coq
 - need to add undecidability for two counters machines MMA02
 - we plug from the FRACTRAN seed instead of many counters machines
 - \blacktriangleright we introduce a sequent formulation of counter machines $MM_{\rm nd}$
- In this talk, we focus on:
 - \blacktriangleright comparing the reductions from $\mathsf{MM}_{\mathrm{nd}}$ to ILL vs. IMSELL
 - explain some details for the FRACTRAN to MMA02

A library for synthetic undecidability in Coq

https://github.com/uds-psl/coq-library-undecidability

Definition (Synthetic undecidability)

P undecidable := Halting problem reduces to P

- a decision problem $(X, P) : \Sigma(X : Type), X \to \mathbb{P}$
- Many-one reduction from (X, P) to (Y, Q)
 - computable function $f : X \to Y$ s.t. $\forall x, P x \leftrightarrow Q(f x)$
 - "computable" requirement replaced by "defined in CTT"
 - We write $P \leq Q$ when such reduction exists
- Coq terms are computable (axiom-free)
- Undecidability in Coq by many-one reductions
 - if P undecidable and $P \preceq Q$ then Q undecidable

Overview of the library of Undecidability (CoqPL'20)

- Y. Forster, DLW, A. Dudenhefner, F. Kunze, D. Kirst, G. Smolka ...
 ITP'18'19'21, CPP'19'20, FSCD'19'20'21, IJCAR'20, LICS'21
- Mechanizing undecidability for logics was my main initial motivation

Intuitionistic Linear Logic

Intuitionistic Linear Logic (ILL)

Intui. Multiplicative and Exponential LL (IMELL)

$$\begin{array}{cccc}
\hline A \vdash A & \hline \Gamma \vdash A \multimap B \\
\hline \Gamma \vdash A & B, \Delta \vdash C \\
\hline A \multimap B, \Gamma, \Delta \vdash C \\
\hline \hline H \vdash B & \text{promotion} \\
\hline \frac{|\Gamma \vdash B}{|\Gamma \vdash |B} & \text{promotion} \\
\hline \frac{A, \Gamma \vdash B}{|A, \Gamma \vdash B} & \text{dereliction} \\
\hline \frac{|A, \Gamma \vdash B}{|A, \Gamma \vdash B} & \text{Contr}
\end{array}$$

Intui. Mult. Sub-Exponential LL (IMSELL)

$$\frac{A, \Gamma \vdash B}{\Gamma \vdash A \multimap B} = \frac{A, \Gamma \vdash B}{\Gamma \vdash A \multimap B}$$

$$\frac{\Gamma \vdash A \qquad B, \Delta \vdash C}{A \multimap B, \Gamma, \Delta \vdash C}$$

$$\frac{I^* \Gamma \vdash B}{I^* \Gamma \vdash I^m B} \qquad m \preccurlyeq \star \qquad \qquad \frac{\Gamma \vdash B}{I^u A, \Gamma \vdash B} \quad u \in \mathcal{U}$$

$$\frac{A, \Gamma \vdash B}{I^m A, \Gamma \vdash B} \qquad \qquad \frac{I^u A, I^u A, \Gamma \vdash B}{I^u A, \Gamma \vdash B} \quad u \in \mathcal{U}$$

IMSELL_{Λ} (the modal structure)

- Compared to ILL: multiplicatives only (no &, like IMELL)
- Compared to IMELL: modal rules are refined
 - Contr./Weak. limited to unbounded modalities
- Modal structure $\Lambda = (\Lambda, \preccurlyeq, \mathcal{U})$:
 - with a pre-order $\preccurlyeq : \Lambda \to \Lambda \to \mathbb{P}$
 - ▶ a sub-set of *unbounded* modalities $u \in U$, with $U : \Lambda \to \mathbb{P}$
 - \mathcal{U} is \preccurlyeq -upward closed

• Promotion: *interaction* between modalities $\star = \{k_1, \ldots, k_n\}$

$$\frac{\mathfrak{l}^{\star}\Gamma\vdash B}{\mathfrak{l}^{\star}\Gamma\vdash\mathfrak{l}^{m}B} \ m \preccurlyeq \star \quad \left\{\begin{array}{c} \frac{\mathfrak{l}^{k_{1}}A_{1},\ldots,\mathfrak{l}^{k_{n}}A_{n}\vdash B}{\mathfrak{l}^{k_{1}}A_{1},\ldots,\mathfrak{l}^{k_{n}}A_{n}\vdash\mathfrak{l}^{m}B} \ m \preccurlyeq k_{1},\ldots,k_{n}\right\}$$

• Uniform case $m = k_1 = \cdots = k_n$ same as (regular) promotion

$$\frac{!^m\Gamma \vdash B}{!^m\Gamma \vdash !^mB}$$

$\mathsf{IMSELL}_{\Lambda}$ and IMSELL_3 (undecidability)

- \blacksquare Decidability of IMSELL_{\Lambda} depending on Λ
- $\mathsf{IMSELL}_3 = \mathsf{IMSELL}_{\Lambda_3}$ is undecidable:

•
$$\Lambda_3 = \{a, b, \infty\}, \ \mathcal{U}_3 = \{\infty\}$$

- $a \preccurlyeq \infty$ and $b \preccurlyeq \infty$
- $a \not\preccurlyeq b$ and $b \not\preccurlyeq a$

- Also IMSELL Λ undecidable when Λ embeds Λ_3
- \blacksquare IMSELL_{\infty} is isomorphic to IMELL

•
$$\Lambda_{\infty} = \mathcal{U}_{\infty} = \{\infty\}$$

- IMSELL_A contains IMELL when $\mathcal{U} \neq \emptyset$
- IMSELL_A decidable?
 - ▶ yes if $\mathcal{U} = \emptyset$
 - IMELL \simeq IMSELL $_{\infty}$ is unknown
- Undecidability for IMSELL₃:
 - by many-one reduction from two-counters Minsky machines

Reducing Minsky machines to ILL and IMSELL₃

$MM_{\rm nd}\!\!:$ sequent style Minsky machines

- Σ finite list/set of instructions (STOP_n, INC_n, DEC_n, ZERO_n)
- Sequents: $\Sigma /\!\!/_n x \oplus y \vdash p$
- x/y values (in \mathbb{N}) of *two counters* α/β
- p, q, \ldots are labels (in e.g. \mathbb{N})
- Computation as proof-search, Halting as derivability

$$\begin{array}{c} \hline \hline \Sigma /\!/_{\mathbf{n}} \, 0 \oplus 0 \vdash p & \operatorname{STOP}_{\mathbf{n}} p \in \Sigma \\ \hline \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus y \vdash q & \operatorname{INC}_{\mathbf{n}} \alpha \, p \, q \in \Sigma & \begin{array}{c} \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus 1 \! + \! y \vdash q & \\ \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus y \vdash p & \end{array} & \operatorname{INC}_{\mathbf{n}} \alpha \, p \, q \in \Sigma & \begin{array}{c} \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus 1 \! + \! y \vdash q & \\ \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus y \vdash p & \end{array} & \operatorname{INC}_{\mathbf{n}} \beta \, p \, q \in \Sigma \\ \hline \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus y \vdash p & \end{array} & \begin{array}{c} \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus y \vdash p & \\ \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus y \vdash p & \end{array} & \operatorname{DEC}_{\mathbf{n}} \alpha \, p \, q \in \Sigma & \begin{array}{c} \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus y \vdash p & \\ \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus 1 \! + \! y \vdash p & \end{array} & \operatorname{DEC}_{\mathbf{n}} \beta \, p \, q \in \Sigma \\ \hline \hline \hline \Sigma /\!/_{\mathbf{n}} \, 0 \oplus y \vdash q & \\ \hline \Sigma /\!/_{\mathbf{n}} \, 0 \oplus y \vdash p & \end{array} & \operatorname{ZERO}_{\mathbf{n}} \alpha \, p \, q \in \Sigma & \begin{array}{c} \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus 0 \vdash q & \\ \hline \Sigma /\!/_{\mathbf{n}} \, x \oplus 0 \vdash p & \end{array} & \operatorname{ZERO}_{\mathbf{n}} \beta \, p \, q \in \Sigma \end{array}$$

Basics of the encoding of $\mathsf{MM}_{\mathrm{nd}}$ in $\mathsf{ILL}/\mathsf{IMSELL}_3$

Admissible rules in IMELL, IMSELL₃ and ILL

$$\frac{\Delta \vdash B}{!^{\infty}\Sigma, \Delta \vdash B} \text{ (gen. weak.)} \quad \frac{A, !^{\infty}\Sigma, \Delta \vdash B}{!^{\infty}\Sigma, \Delta \vdash B} A \in \Sigma \text{ (absorption)}$$

- We identify $!^{\infty}$ and !
 - IMELL is a fragment of both ILL and IMSELL₃
- \blacksquare From $\mathsf{MM}_{\mathrm{nd}}$ sequents to LL sequents

$$\Sigma /\!\!/_n x \oplus y \vdash p \qquad \rightsquigarrow \qquad !^{\infty} \overline{\Sigma}, x \overline{\alpha}, y \overline{\beta} \vdash \overline{p}$$

• We below denote $\Delta = x\overline{\alpha}, y\overline{\beta} = \underbrace{\overline{\alpha}, \dots, \overline{\alpha}}_{x \text{ times}}, \underbrace{\overline{\beta}, \dots, \overline{\beta}}_{y \text{ times}}$

• $\overline{\Sigma}$, $\overline{\alpha}$ and $\overline{\beta}$ depend on ILL vs. IMSELL₃

Increment INC $_{n}\,\alpha\,\textit{p}\,\textit{q}$ (already in IMELL)

$$\frac{\sum /\!\!/_{\mathbf{n}} \, 1 \! + \! x \oplus y \vdash q}{\sum /\!\!/_{\mathbf{n}} \, x \oplus y \vdash p} \ \texttt{INC}_{\mathbf{n}} \, \alpha \, p \, q \in \Sigma$$

$$\frac{\frac{!^{\infty}\overline{\Sigma}, \overline{\alpha}, \Delta \vdash \overline{q}}{!^{\infty}\overline{\Sigma}, \Delta \vdash \overline{\alpha} \multimap \overline{q}} \multimap \text{-right} \frac{\overline{p} \vdash \overline{p}}{\overline{p}}}{\frac{(\overline{\alpha} \multimap \overline{q}) \multimap \overline{p}, !^{\infty}\overline{\Sigma}, \Delta \vdash \overline{p}}{!^{\infty}\overline{\Sigma}, \Delta \vdash \overline{p}}} (\overline{\alpha} \multimap \overline{q}) \multimap \overline{p} \in \overline{\Sigma}}$$

Decrement DEC_n $\alpha p q$ (already in IMELL)

$$\frac{\Sigma \mathop{/\!\!/}_{\operatorname{n}} x \oplus y \vdash q}{\sum \mathop{/\!\!/}_{\operatorname{n}} 1 + x \oplus y \vdash p} \ \operatorname{DEC}_{\operatorname{n}} \alpha \, p \, q \in \Sigma$$

$$\frac{\overline{\overline{\alpha} \vdash \overline{\alpha}} \quad \frac{!^{\infty} \overline{\Sigma}, \Delta \vdash \overline{q} \quad \overline{\overline{p} \vdash \overline{p}}}{\overline{\overline{q} \multimap \overline{p}}, !^{\infty} \overline{\Sigma}, \Delta \vdash \overline{p}} \multimap -\text{left}}{\overline{\overline{\alpha} \multimap (\overline{q} \multimap \overline{p}), !^{\infty} \overline{\Sigma}, \overline{\alpha}, \Delta \vdash \overline{p}}} \xrightarrow{-\infty -\text{left}} \overline{\overline{\alpha} \multimap (\overline{q} \multimap \overline{p})} \in \overline{\Sigma}$$

Stop instruction $\text{STOP}_n p$ (already in IMELL)

$$\overline{\Sigma /\!\!/_{\mathrm{n}} \, 0 \oplus 0 \vdash p} \, \operatorname{STOP}_{\mathrm{n}} p \in \Sigma$$

$$\frac{\overline{p} \vdash \overline{p}}{\vdash \overline{p} \multimap \overline{p}} \multimap \operatorname{-right} \frac{\overline{p} \vdash \overline{p}}{\overline{p} \vdash \overline{p}} \multimap \operatorname{-left} \\ \frac{\overline{(\overline{p} \multimap \overline{p})} \multimap \overline{p} \vdash \overline{p}}{\underbrace{(\overline{p} \multimap \overline{p}) \multimap \overline{p}, !^{\infty} \overline{\Sigma} \vdash \overline{p}} \operatorname{gen. weak.} \\ \frac{\overline{(\overline{p} \multimap \overline{p})} \multimap \overline{p}, !^{\infty} \overline{\Sigma} \vdash \overline{p}}{\underbrace{!^{\infty} \overline{\Sigma}, \emptyset \vdash \overline{p}}} (\overline{p} \multimap \overline{p}) \multimap \overline{p} \in \overline{\Sigma}$$

The conditional jump ZERO_n $\alpha p q$ (part 1, ILL only)

$$\frac{\Sigma /\!/_{\mathrm{n}} \, \mathbf{0} \oplus \mathbf{y} \vdash \mathbf{q}}{\Sigma /\!/_{\mathrm{n}} \, \mathbf{0} \oplus \mathbf{y} \vdash \mathbf{p}} \, \, \operatorname{ZERO}_{\mathrm{n}} \alpha \, \mathbf{p} \, \mathbf{q} \in \Sigma$$

$$\frac{\overline{\underline{\operatorname{zero test on } \overline{\alpha}}}}{\underbrace{\frac{!^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash \underline{\alpha}}{\underline{\nabla}\overline{\Sigma}, y\overline{\beta} \vdash \overline{q}}}_{\underbrace{\frac{!^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash \underline{\alpha} \& \overline{q}}{\underline{\alpha} \& \overline{q}}} \underbrace{\frac{!^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash \underline{\alpha} \& \overline{q}}{\underline{\alpha} \& \overline{q}) \multimap \overline{p}, !^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash \overline{p}}}_{\underbrace{\frac{(\underline{\alpha} \& \overline{q}) \multimap \overline{p}, !^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash \overline{p}}{\underline{\beta} \vdash \overline{p}}}} \underbrace{(\underline{\alpha} \& \overline{q}) \multimap \overline{p} \in \overline{\Sigma}}$$

• $\underline{\alpha}$ and β are fresh variables

• $\underline{\alpha}$ implements a zero test of $\overline{\alpha}$, i.e. $x = {}^{?} 0$

The zero test on $\overline{\alpha}$ (part 2, already in IMELL)

$$\frac{ \begin{array}{c} \displaystyle \frac{\underline{\alpha} \vdash \underline{\alpha}}{\vdash \underline{\alpha} \multimap \underline{\alpha}} \multimap \mathsf{-right} & \displaystyle \frac{\underline{\alpha} \vdash \underline{\alpha}}{\underline{\alpha} \vdash \underline{\alpha}} \\ \displaystyle \frac{ \displaystyle \frac{(\underline{\alpha} \multimap \underline{\alpha}) \multimap \underline{\alpha}, \emptyset \vdash \underline{\alpha}}{(\underline{\alpha} \multimap \underline{\alpha}) \multimap \underline{\alpha}, !^{\infty} \overline{\Sigma}, \emptyset \vdash \underline{\alpha}} & \mathsf{gen. weak.} \\ \\ \displaystyle \frac{ \displaystyle \frac{(\underline{\alpha} \multimap \underline{\alpha}) \multimap \underline{\alpha}, !^{\infty} \overline{\Sigma}, \emptyset \vdash \underline{\alpha}}{\underline{\alpha} \multimap \underline{\alpha}, !^{\infty} \overline{\Sigma}, \emptyset \vdash \underline{\alpha}} & \mathsf{gen. weak.} \\ \\ \displaystyle \frac{ \displaystyle \frac{[!^{\infty} \overline{\Sigma}, \sqrt{\beta} \vdash \underline{\alpha}}{\cdots} & \mathsf{repeat} \ y \ \mathsf{times}} & \displaystyle \frac{ \displaystyle \frac{\underline{\alpha} \vdash \underline{\alpha}}{\underline{\alpha} \vdash \underline{\alpha}} \\ \\ \displaystyle \frac{ \displaystyle \frac{\overline{\beta} \vdash \overline{\beta}}{\underline{\alpha} \multimap \underline{\alpha}, !^{\infty} \overline{\Sigma}, y \overline{\beta} \vdash \underline{\alpha}} & \neg \mathsf{-left} \\ \\ \\ \displaystyle \frac{ \displaystyle \frac{\overline{\beta} \multimap (\underline{\alpha} \multimap \underline{\alpha}), !^{\infty} \overline{\Sigma}, \overline{\beta}, y \overline{\beta} \vdash \underline{\alpha}}{\underline{\beta} \multimap (\underline{\alpha} \multimap \underline{\alpha}) \in \overline{\Sigma}} \end{array}$$

The conditional jump ZERO_n $\alpha p q$ (case of IMSELL₃)

$$\frac{\Sigma /\!/_{n} \mathbf{0} \oplus y \vdash q}{\Sigma /\!/_{n} \mathbf{0} \oplus y \vdash p} \operatorname{ZERO}_{n} \alpha \, p \, q \in \Sigma$$

$$\frac{\frac{!^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash \overline{q}}{!^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash !^{b}\overline{q}} b \preccurlyeq \infty, b \quad \overline{\overline{p} \vdash \overline{p}}}{\frac{!^{b}\overline{q} \multimap \overline{p}, !^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash \overline{p}}{!^{\infty}\overline{\Sigma}, y\overline{\beta} \vdash \overline{p}}} \stackrel{-o-left}{=} \frac{$$

• for IMSELL₃, $\overline{\alpha}$ and $\overline{\beta}$ not just fresh variables

- $\overline{\alpha} := !^a \alpha_0$ and $\overline{\beta} := !^b \beta_0$ (with α_0, β_0 fresh)
- exploit the interaction between $!^{\infty}$, $!^{a}$ and $!^{b}$

• the promotion rule $(b \preccurlyeq \infty, b)$ would not apply if x > 0

- $\overline{\alpha} = !^a \alpha_0$ would occur on the left of \vdash
- and $b \not\preccurlyeq a$ in the modal structure Λ_3

Soundness of the reduction from $\mathsf{MM}_{\mathrm{nd}}$

$$\begin{array}{ll} \alpha_{0} := 0, \ \beta_{0} := 1, \ \overline{p} := 2 + p, \ \overline{\alpha} := !^{a} \alpha_{0} \ \text{and} \ \beta := !^{b} \beta_{0} \\ \hline \overline{\text{STOP}_{n} p} := (\overline{p} \multimap \overline{p}) \multimap \overline{p} \\ \hline \overline{\text{INC}_{n} \alpha p q} := (\overline{\alpha} \multimap \overline{q}) \multimap \overline{p} \\ \hline \overline{\text{DEC}_{n} \alpha p q} := \overline{\alpha} \multimap (\overline{q} \multimap \overline{p}) \\ \hline \overline{\text{ZERO}_{n} \alpha p q} := !^{b} \overline{q} \multimap \overline{p} \\ \hline \end{array}$$

•
$$\overline{\Sigma} = \overline{[\sigma_1; \ldots; \sigma_n]} := \overline{\sigma_1}, \ldots, \overline{\sigma_n}$$

Theorem (Soundness)

If $\Sigma /\!/_n x \oplus y \vdash p$ is derivable in MM_{nd} then $!^{\infty}\overline{\Sigma}, x\overline{\alpha}, y\overline{\beta} \vdash \overline{p}$ is provable in IMSELL_3

• completeness by semantics in place of focusing (Chaudhuri 2018)

Trivial Phase Semantics for IMSELL_Λ

- Start from a commutative monoid (M, \bullet, ϵ) e.g. $(\mathbb{N}^2, +, [0; 0])$
- for $X, Y \subseteq M$ define:
 - extended composition: $X \bullet Y := \{x \bullet y \mid x \in X \land y \in Y\}$
 - ▶ linear map: $X \rightarrow Y := \{k \in M \mid \{k\} \bullet X \subseteq Y\}$
- trivial means the closure is the *identity closure*
- interpret $(\Lambda, \mathcal{U}, \preccurlyeq)$, for $m : \Lambda$, $K_m \subseteq M$ s.t.
 - decreasing: $\forall m k, m \preccurlyeq k \rightarrow K_k \subseteq K_m$
 - ▶ sub-monoid: $\forall m, \epsilon \in K_m \land K_m \bullet K_m \subseteq K_m$
 - unbounded: $\forall u \in \mathcal{U}, K_u = \{\epsilon\}$
- for $\llbracket \cdot \rrbracket \subseteq M$ defined on logical variable, we extend

$$\llbracket A \multimap B \rrbracket := \llbracket A \rrbracket \longrightarrow \llbracket B \rrbracket \qquad \llbracket !^m A \rrbracket := \llbracket A \rrbracket \cap K_m$$
$$\llbracket A_1, \dots, A_n \rrbracket := \llbracket A_1 \rrbracket \bullet \dots \bullet \llbracket A_n \rrbracket$$

Theorem (Soundness)

If $\Gamma \vdash A$ has a proof in $IMSELL_{\Lambda}$ then $\llbracket \Gamma \rrbracket \subseteq \llbracket A \rrbracket$

Completeness of the reduction from $\mathsf{MM}_{\mathrm{nd}}$

- Assume $!^{\infty}\overline{\Sigma}, x\overline{\alpha}, y\overline{\beta} \vdash \overline{p}$ is provable in IMSELL₃
- \blacksquare We use a trivial phase interpretation in $(\mathbb{N}^2,+,[0;0])$

 $\mathcal{K}_m[x;y] := (a \preccurlyeq m \rightarrow y = 0) \land (b \preccurlyeq m \rightarrow x = 0) \land (m \in \mathcal{U} \rightarrow x = y = 0)$

- hence: $K_a = \mathbb{N} \times \{0\}$, $K_b = \{0\} \times \mathbb{N}$, and $K_{\infty} = \{[0; 0]\}$
- we interpret variables as:

$$\llbracket \alpha_{\mathbf{0}} \rrbracket := \left\{ \llbracket 1; \mathbf{0} \end{bmatrix} \right\} \quad \llbracket \beta_{\mathbf{0}} \rrbracket := \left\{ \llbracket 0; \mathbf{1} \end{bmatrix} \quad \llbracket \overline{p} \rrbracket = \left\{ \llbracket x; y \rrbracket \mid \Sigma /\!/_{n} x \oplus y \vdash p \right\}$$

remember: [[α]] = [[!^aα₀]] = [[α₀]] ∩ K_a = {[1;0]}
we check: [0;0] ∈ [[![∞]Σ]] and [x; y] ∈ [[xα, yβ]]
by soundness, from Σ, xα, yβ ⊢ p we deduce [x; y] ∈ [[p]]

Theorem (Completeness)

If $!^{\infty}\overline{\Sigma}, x\overline{\alpha}, y\overline{\beta} \vdash \overline{p}$ is provable in IMSELL₃ then $\Sigma /\!/_n x \oplus y \vdash p$ is derivable in MM_{nd}

Undecidability for $IMSELL_{\Lambda}$ and $IMSELL_{3}$

- Assume either $\Lambda = \Lambda_3$ or Λ_3 embeds into Λ
- We get a many-one reduction $MM_{nd} \preceq IMSELL_{\Lambda}$:

 $\Sigma /\!/_n x \oplus y \vdash \rho \in \mathsf{MM}_{\mathrm{nd}} \quad \mathsf{iff} \quad !^\infty \overline{\Sigma}, x \overline{\alpha}, y \overline{\beta} \vdash \overline{\rho} \in \mathsf{IMSELL}_{\mathsf{A}}$

Corollary (Undecidability)

If Λ_3 embeds into Λ then $\mathsf{MM}_{\rm nd}$ many-one reduces to $\mathsf{IMSELL}_\Lambda.$ In particular, provability in IMSELL_3 is undecidable

From $\mathsf{FRACTRAN}_{\mathrm{reg}}$ to $\mathsf{MMA0}_2$

The FRACTRAN language

Example (FRACTRAN program: list of (regular) fractions)

 $\left[\frac{455}{33};\frac{11}{13};\frac{1}{11};\frac{3}{7};\frac{11}{2};\frac{1}{3}\right]$

- Designed by J.H. Conway 1987
- Program: list of $\mathbb{N} \times \mathbb{N}^*$; State: a single $x \in \mathbb{N}$
- Step relation is simple to describe
 - ▶ pick the first p/q s.t. $x \cdot p/q \in \mathbb{N}$, and this is the new state
 - inductively, characterized by two rules:

$$\frac{qy = px}{p/q :: Q //_{F} x \succ y} \qquad \frac{q \nmid px \quad Q //_{F} x \succ y}{p/q :: Q //_{F} x \succ y}$$

The $\mathsf{FRACTRAN}_{\mathrm{reg}}$ seed

- Here we only consider regular fractions, i.e. no p/0
- Termination: $Q /\!\!/_{\mathrm{F}} x \downarrow := \exists y, \ Q /\!\!/_{\mathrm{F}} x \succ^* y \land \forall z, \ \neg(Q /\!\!/_{\mathrm{F}} y \succ z)$
- Decision problem: $\mathsf{FRACTRAN}_{\mathrm{reg}}(Q, x) := Q /\!\!/_F x \downarrow$
- Via a Gödel coding of many counters Minsky machines (Conway)
 - \blacktriangleright reduction from Minsky machines Halting to $\mathsf{FRACTRAN}_{\mathrm{reg}}$

Theorem (mechanized by DLW&Forster, FSCD2019)

There is a many-one reduction from the Halting problem for single tape Turing machines to termination of regular FRACTRAN programs, i.e. Halt \leq FRACTRAN_{reg}, and thus FRACTRAN_{reg} is undecidable.

\blacksquare FRACTRAN $_{\rm reg}$ as a seed of undecidability

Programming with MM_{nd} vs. (classic) Minsky machines

- Minsky machines:
 - low-level model of computation
 - hundreds of instructions
 - correctness proofs require modular reasonning
- Modular reasonning:
 - programs inherit properties of sub-programs
- \blacksquare $MM_{\rm nd},$ i.e. sequent style Minsky machines
 - great as a seed, especially for Linear logic
 - cumbersome as a target
- the issue is modular reasonning
 - \blacktriangleright merging $MM_{\rm nd}$ programs lead namespace/labels conflicts
 - very bad for modular reasonning
- we use another (classic) representation
 - with a program counter PC
 - one sequence of contiguous instructions
 - concatenation avoid namespace conflicts

Minsky Machines (\mathbb{N} valued register machines)

Example (transfers s to d in 3 instructions, with $s \neq d$)

 $\texttt{TRANSFER}_{a} \, s \, d \, q := \ q : \texttt{INC}_{a} \, d \quad q+1 : \texttt{DEC}_{a} \, s \, q \quad q+2 : \texttt{DEC}_{a} \, d \, (3+q)$

• programs: $(q, [\iota_0; \ldots; \iota_k]) \iff q : \iota_0; \ldots; q+k : \iota_k$

• *n* registers of value in \mathbb{N} for a fixed *n*

- state: $(\mathsf{PC}, \vec{v}) \in \mathbb{N} \times \mathbb{N}^n$
- instructions: $\iota ::= INC_a x \mid DEC_a x j$
- Step semantics for $INC_a x$ and $DEC_a x j$ (pseudo code)

INC_a x :
$$x \leftarrow x + 1$$
; PC \leftarrow PC + 1
DEC_a x j : if x = 0 then PC \leftarrow PC + 1
if x > 0 then x \leftarrow x - 1; PC \leftarrow j

• $(q, \text{TRANSFER}_a \, s \, d \, q) /\!\!/_a (q, \vec{v}) \succ^+ (3 + q, \vec{v} \{0/s\} \{(\vec{v}_s + \vec{v}_d))/d\}$

Minsky machines semantics and termination

$$\frac{i_{1} = |L| + i \qquad P = L + \sigma :: R}{\sigma /\!/_{a} (i_{1}, \vec{v}_{1}) \succ st_{2} \qquad (i, P) /\!/_{a} st_{2} \succ^{k} st_{3}}$$

$$\frac{i_{1} = |L| + i \qquad P = L + \sigma :: R}{\sigma /\!/_{a} (i_{1}, \vec{v}_{1}) \succ st_{2} \qquad (i, P) /\!/_{a} st_{2} \succ^{k} st_{3}}$$

$$\begin{array}{ll} (i,P) /\!\!/_{a} st_{1} \succ^{*} st_{2} &:= \exists k, (i,P) /\!\!/_{a} st_{1} \succ^{k} st_{2} & (\text{computation}) \\ (i,P) /\!\!/_{a} st_{1} \succ^{+} st_{2} &:= \exists k > 0, (i,P) /\!\!/_{a} st_{1} \succ^{k} st_{2} & (\text{progress}) \\ (i,P) /\!\!/_{a} st_{1} \rightsquigarrow (i_{2}, \vec{v}_{2}) &:= (i,P) /\!\!/_{a} st_{1} \succ^{*} (i_{2}, \vec{v}_{2}) \land \text{out } i_{2} (i,P) & (\text{output}) \\ (i,P) /\!\!/_{a} st_{1} \downarrow &:= \exists st_{2}, (i,P) /\!\!/_{a} st_{1} \rightsquigarrow st_{2} & (\text{termination}) \end{array}$$

Definition (Termination)

For MMA_n & MMA0_n, instances are pairs (P, \vec{v}) : P list of MMA_n instructions (starting at 1) and \vec{v} : \mathbb{N}^n is the initial content of registers.

$$\begin{array}{ll} \mathsf{MMA}_n & (\mathsf{termination}) & (1, P) /\!/_{\mathrm{a}}(1, \vec{v}) \downarrow \\ \mathsf{MMA0}_n & (\mathsf{term. on zero}) & (1, P) /\!/_{\mathrm{a}}(1, \vec{v}) \rightsquigarrow (0, [0; \dots; 0]) \end{array}$$

A FRACTRAN compiler using only two counters

• a critical brick in the construction with s := 0, d := 1

• tries fraction p/q on the contents of s, assuming d is void

$$(i_0, FRAC_ONE_a p q i_0 j) := \begin{bmatrix} i_0: MULT_CST_a s d p i_0; \\ i_1: MOD_CST_a d s i_2 i_5 q i_1; \\ i_2: DIV_CST_a s d q i_2; \\ i_3: TRANSFER_a d s i_3; \\ i_4: JUMP_a j d; \\ i_5: DIV_CST_a s d p i_5; \\ i_6: TRANSFER_a d s i_6 \\ i_7: \end{bmatrix}$$

Lemma

If qy = px then $(i_0, \text{FRAC_ONE}_a p q i_0 j) /\!\!/_a (i_0, [x; 0]) \succ^+ (j, [y; 0])$. If $q \nmid px$ then $(i_0, \text{FRAC_ONE}_a p q i_0 j) /\!\!/_a (i_0, [x; 0]) \succ^+ (i_7, [x; 0])$.

• Then we chain those for the program $[p_1/q_1; \ldots; p_n/q_n]$, and loop

Reduction from FRACTRAN to $MMA_2/MMA0_2$

Theorem

For any regular FRACTRAN program $Q : \mathbb{L}(\mathbb{N} \times \mathbb{N}^*)$, one can compute a MMA_2 program FRAC_MMA_a Q such that for any $x : \mathbb{N}$, the three following properties are equivalent:

- $1 Q /\!\!/_{\mathrm{F}} x \downarrow;$
- **2** $(1, \text{FRAC}_MMA_a Q) //_a (1, [x; 0]) \rightsquigarrow (0, [0; 0]);$
- 3 $(1, \text{FRAC}_MMA_a Q) //_a (1, [x; 0]) \downarrow$.

Corollary (Undecidability)

 $\mathsf{FRACTRAN}_{\mathrm{reg}} \preceq \mathsf{MMA}_2$ and $\mathsf{FRACTRAN}_{\mathrm{reg}} \preceq \mathsf{MMA0}_2$ hence MMA_2 and $\mathsf{MMA0}_2$ are both undecidable.

Minsky machine termination as provability

Reduction from $\mathsf{MMA0}_2$ to $\mathsf{MM}_{\mathrm{nd}}$

a quite straightforward translation

$$\overline{(\cdot)} : \mathbb{F}_2 \to \{\alpha, \beta\} \qquad \overline{0} := \alpha \quad \overline{1} := \beta$$

$$\langle i, \text{INC}_a x \rangle := [\text{INC}_n \overline{x} i (1+i)]$$

$$\langle i, \text{DEC}_a x j \rangle := [\text{DEC}_n \overline{x} i j; \text{ZERO}_n \overline{x} i (1+i)]$$

$$\langle \langle i, [] \rangle := []$$

$$\langle \langle i, \sigma :: P \rangle \rangle := \langle i, \sigma \rangle + \langle \langle 1+i, P \rangle \rangle$$

Lemma (reduction)

With $\Sigma_P := \text{STOP}_n 0 :: \langle\!\langle 1, P \rangle\!\rangle$ we have $(1, P) /\!/_a (i, [x, y]) \succ^* (0, [0; 0])$ iff $\Sigma_P /\!/_n x \oplus y \vdash i$ is derivable in MM_{nd} .

Corollary

 $\mathsf{MMA0}_2 \preceq \mathsf{MM}_{\mathrm{nd}}$ hence $\mathsf{MM}_{\mathrm{nd}}$ is undecidable.

D. Larchey-Wendling

Conclusion

Contributions and Perspectives

- Undecidability of IMSELL₃, a simpler proof:
 - via a proof-theoretic presentation of Minsky machines
 - that compares well with that of ILL
 - outlines the role played by the promotion rule
 - ► a short semantic proof for the completeness of the reduction
- Mechanisation in the Coq library of undecidability:
 - Two counters Minsky machines seed (from FRACTRAN)
 - Undecidability for IMSELL_A and IMSELL₃
 - ► Code available (+1200,+600 loc), included in the library

https://github.com/uds-psl/coq-library-undecidability/releases/tag/FSCD-2021

Perspectives

- ▶ (General) phase sem. for $IMSELL_{\Lambda} \rightsquigarrow cut$ -elimination for $IMSELL_{\Lambda}$
- ► If doable, implement Ackermann hardness for Petri nets/VASS
- Insights for MELL, zero test at the end of computation?