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Introduction
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Motivations for studying MSELL

MELL decidability
I most important LL open decidability question
I some proof attempts (Bimbo 2015)
I later refuted (Strassburger 2019)
I MELL encodes Petri nets reachability

Petri nets, VASS reachability is decidable
I major results from 80’s (Mayr 1981, et al)
I proof still revisted in the 2010’s (Leroux)
I non-elementary (Czerwinski et al 2019)
I (possibly) Ackermann complete (Czerwinski 2021, Leroux 2021)

MSELL simple extension of MELL
I 3 modalities, one of them exponential
I modalities interact in the promotion rule

MSELL is undecidable (Chaudhuri 2018)
I unlike ILL, proof does not use forking via &
I instead exploits interaction of modalities

D. Larchey-Wendling Undecidability of MSELL in Coq FSCD 2021 – July 22 2



Approach and main focus of the talk

The proof of Chaudhuri 2018
I undecidability of (classical) MSELL
I many-one reduction from two counters Minsky machines
I completeness of the reduction via focussing

Revisit the proof for (intuitionistic) IMSELL
I compare with the ILL proof (CPP’19)
I completeness via (trivial) phase semantics

A synthetic framework for mechanized undecidability in Coq
I need to add undecidability for two counters machines MMA02

I we plug from the FRACTRAN seed instead of many counters machines
I we introduce a sequent formulation of counter machines MMnd

In this talk, we focus on:
I comparing the reductions from MMnd to ILL vs. IMSELL
I explain some details for the FRACTRAN to MMA02

D. Larchey-Wendling Undecidability of MSELL in Coq FSCD 2021 – July 22 3



A library for synthetic undecidability in Coq

https://github.com/uds-psl/coq-library-undecidability

Definition (Synthetic undecidability)

P undecidable := Halting problem reduces to P

a decision problem (X ,P) : Σ(X : Type),X → P
Many-one reduction from (X ,P) to (Y ,Q)

I computable function f : X → Y s.t. ∀x , P x ↔ Q(f x)
I “computable” requirement replaced by “defined in CTT”
I We write P � Q when such reduction exists

Coq terms are computable (axiom-free)

Undecidability in Coq by many-one reductions
I if P undecidable and P � Q then Q undecidable
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Overview of the library of Undecidability (CoqPL’20)

Γ `∩ ? : A

SSTS

Tiling

3oUnif

Tag Sys.

Trakht.

FOL

TMm

TMs

SR

mPCP

PCP

BPCP ILL

wCBV

µ-rec

MMn

BSM

MM0n EILL

H10

DIOsingle

DIOelem

DIOlogic

FRACTRAN MMA02

MMA2

MMnd

IMSELL3

Γ `F ? : A

H10c

2oUnif SemiUnif

UnifBound

Y. Forster, DLW, A. Dudenhefner, F. Kunze, D. Kirst, G. Smolka ...

ITP’18’19’21, CPP’19’20, FSCD’19’20’21, IJCAR’20, LICS’21

Mechanizing undecidability for logics was my main initial motivation
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Intuitionistic Linear Logic
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Intuitionistic Linear Logic (ILL)

A ` A

A, Γ ` B

Γ ` A( B

Γ ` A B,∆ ` C

A( B, Γ,∆ ` C

Γ ` A Γ ` B

Γ ` A & B

A, Γ ` C

A & B, Γ ` C

B, Γ ` C

A & B, Γ ` C

!Γ ` B

!Γ ` !B
promotion

A, Γ ` B

!A, Γ ` B
dereliction

Γ ` B

!A, Γ ` B
Weak

!A, !A, Γ ` B

!A, Γ ` B
Contr
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Intui. Multiplicative and Exponential LL (IMELL)

A ` A

A, Γ ` B

Γ ` A( B

Γ ` A B,∆ ` C

A( B, Γ,∆ ` C

!Γ ` B

!Γ ` !B
promotion

A, Γ ` B

!A, Γ ` B
dereliction

Γ ` B

!A, Γ ` B
Weak

!A, !A, Γ ` B

!A, Γ ` B
Contr
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Intui. Mult. Sub-Exponential LL (IMSELL)

A ` A

A, Γ ` B

Γ ` A( B

Γ ` A B,∆ ` C

A( B, Γ,∆ ` C

!?Γ ` B

!?Γ ` !mB
m 4 ?

A, Γ ` B

!mA, Γ ` B

Γ ` B

!uA, Γ ` B
u ∈ U

!uA, !uA, Γ ` B

!uA, Γ ` B
u ∈ U
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IMSELLΛ (the modal structure)
Compared to ILL: multiplicatives only (no &, like IMELL)

Compared to IMELL: modal rules are refined
I Contr./Weak. limited to unbounded modalities

Modal structure Λ = (Λ,4,U):
I with a pre-order 4 : Λ→ Λ→ P
I a sub-set of unbounded modalities u ∈ U , with U : Λ→ P
I U is 4-upward closed

Promotion: interaction between modalities ? = {k1, . . . , kn}

!?Γ ` B

!?Γ ` !mB
m 4 ?

!k1A1, . . . , !
knAn ` B

!k1A1, . . . , !
knAn ` !mB

m 4 k1, . . . , kn

Uniform case m = k1 = · · · = kn same as (regular) promotion

!mΓ ` B

!mΓ ` !mB
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IMSELLΛ and IMSELL3 (undecidability)

Decidability of IMSELLΛ depending on Λ

IMSELL3 = IMSELLΛ3 is undecidable:
I Λ3 = {a, b,∞}, U3 = {∞}
I a 4∞ and b 4∞

a 6∈ U3 b 6∈ U3

∞ ∈ U3

I a 64 b and b 64 a

Also IMSELLΛ undecidable when Λ embeds Λ3

IMSELL∞ is isomorphic to IMELL
I Λ∞ = U∞ = {∞}
I IMSELLΛ contains IMELL when U 6= ∅

IMSELLΛ decidable?
I yes if U = ∅
I IMELL ' IMSELL∞ is unknown

Undecidability for IMSELL3:
I by many-one reduction from two-counters Minsky machines
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Reducing Minsky machines to ILL and IMSELL3
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MMnd: sequent style Minsky machines

Σ finite list/set of instructions (STOPn, INCn, DECn, ZEROn )

Sequents: Σ //n x ⊕ y ` p

x/y values (in N) of two counters α/β

p, q, . . . are labels (in e.g. N)

Computation as proof-search, Halting as derivability

Σ //n 0⊕ 0 ` p
STOPn p ∈ Σ

Σ //n 1+x ⊕ y ` q

Σ //n x ⊕ y ` p
INCn α p q ∈ Σ

Σ //n x ⊕ 1+y ` q

Σ //n x ⊕ y ` p
INCn β p q ∈ Σ

Σ //n x ⊕ y ` q

Σ //n 1+x ⊕ y ` p
DECn α p q ∈ Σ

Σ //n x ⊕ y ` q

Σ //n x ⊕ 1+y ` p
DECn β p q ∈ Σ

Σ //n 0⊕ y ` q

Σ //n 0⊕ y ` p
ZEROn α p q ∈ Σ

Σ //n x ⊕ 0 ` q

Σ //n x ⊕ 0 ` p
ZEROn β p q ∈ Σ
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Basics of the encoding of MMnd in ILL/IMSELL3

Admissible rules in IMELL, IMSELL3 and ILL

∆ ` B

!∞Σ,∆ ` B
(gen. weak.)

A, !∞Σ,∆ ` B

!∞Σ,∆ ` B
A ∈ Σ (absorption)

We identify !∞ and !
I IMELL is a fragment of both ILL and IMSELL3

From MMnd sequents to LL sequents

Σ //n x ⊕ y ` p  !∞Σ, xα, yβ ` p

We below denote ∆ = xα, yβ = α, . . . , α︸ ︷︷ ︸
x times

, β, . . . , β︸ ︷︷ ︸
y times

Σ, α and β depend on ILL vs. IMSELL3
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Increment INCn α p q (already in IMELL)

Σ //n 1+x ⊕ y ` q

Σ //n x ⊕ y ` p
INCn α p q ∈ Σ

!∞Σ, α,∆ ` q
(-right

!∞Σ,∆ ` α( q p ` p
(-left

(α( q)( p, !∞Σ,∆ ` p
(α( q)( p ∈ Σ

!∞Σ,∆ ` p
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Decrement DECn α p q (already in IMELL)

Σ //n x ⊕ y ` q

Σ //n 1+x ⊕ y ` p
DECn α p q ∈ Σ

α ` α

!∞Σ,∆ ` q p ` p
(-left

q( p, !∞Σ,∆ ` p
(-left

α( (q( p), !∞Σ, α,∆ ` p
α( (q( p) ∈ Σ

!∞Σ, α,∆ ` p
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Stop instruction STOPn p (already in IMELL)

Σ //n 0⊕ 0 ` p
STOPn p ∈ Σ

p ` p
(-right

` p( p p ` p
(-left

(p( p)( p ` p
gen. weak.

(p( p)( p, !∞Σ ` p
(p( p)( p ∈ Σ

!∞Σ, ∅ ` p
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The conditional jump ZEROn α p q (part 1, ILL only)

Σ //n 0⊕ y ` q

Σ //n 0⊕ y ` p
ZEROn α p q ∈ Σ

zero test on α

!∞Σ, yβ ` α !∞Σ, yβ ` q
&-right

!∞Σ, yβ ` α & q p ` p
(-left

(α & q)( p, !∞Σ, yβ ` p
(α & q)( p ∈ Σ

!∞Σ, yβ ` p

α and β are fresh variables

I α implements a zero test of α, i.e. x =? 0
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The zero test on α (part 2, already in IMELL)

β ` β

α ` α
(-right

` α( α α ` α
(-left

(α( α)( α, ∅ ` α
gen. weak.

(α( α)( α, !∞Σ, ∅ ` α
(α( α)( α ∈ Σ

!∞Σ, ∅ ` α

· · ·
repeat y times

!∞Σ, yβ ` α α ` α
(-left

α( α, !∞Σ, yβ ` α
(-left

β( (α( α), !∞Σ, β, yβ ` α
β( (α( α) ∈ Σ

!∞Σ, (1+y)β ` α
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The conditional jump ZEROn α p q (case of IMSELL3)

Σ //n 0⊕ y ` q

Σ //n 0⊕ y ` p
ZEROn α p q ∈ Σ

!∞Σ, yβ ` q
b 4∞, b

!∞Σ, yβ ` !bq p ` p
(-left

!bq( p, !∞Σ, yβ ` p
!bq( p ∈ Σ

!∞Σ, yβ ` p

for IMSELL3, α and β not just fresh variables
I α := !aα0 and β := !bβ0 (with α0, β0 fresh)
I exploit the interaction between !∞, !a and !b

the promotion rule (b 4∞, b) would not apply if x > 0
I α = !aα0 would occur on the left of `
I and b 64 a in the modal structure Λ3
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Soundness of the reduction from MMnd

α0 := 0, β0 := 1, p := 2 + p, α := !aα0 and β := !bβ0

STOPn p := (p( p)( p

INCn α p q := (α( q)( p INCn β p q := (β( q)( p

DECn α p q := α( (q( p) DECn β p q := β( (q( p)

ZEROn α p q := !bq( p ZEROn β p q := !aq( p

Σ = [σ1; . . . ;σn] := σ1, . . . , σn

Theorem (Soundness)

If Σ //n x ⊕ y ` p is derivable in MMnd then !∞Σ, xα, yβ ` p is provable
in IMSELL3

completeness by semantics in place of focusing (Chaudhuri 2018)
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Trivial Phase Semantics for IMSELLΛ

Start from a commutative monoid (M, •, ε) e.g. (N2,+, [0; 0])

for X ,Y ⊆ M define:
I extended composition: X • Y := {x • y | x ∈ X ∧ y ∈ Y }
I linear map: X −−• Y := {k ∈ M | {k} • X ⊆ Y }

trivial means the closure is the identity closure

interpret (Λ,U ,4), for m : Λ, Km ⊆ M s.t.
I decreasing: ∀m k , m 4 k → Kk ⊆ Km

I sub-monoid: ∀m, ε ∈ Km ∧ Km • Km ⊆ Km

I unbounded: ∀u ∈ U , Ku = {ε}
for [[·]] ⊆ M defined on logical variable, we extend

[[A( B]] := [[A]]−−• [[B]] [[!mA]] := [[A]] ∩ Km

[[A1, . . . ,An]] := [[A1]] • · · · • [[An]]

Theorem (Soundness)

If Γ ` A has a proof in IMSELLΛ then [[Γ]] ⊆ [[A]]
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Completeness of the reduction from MMnd

Assume !∞Σ, xα, yβ ` p is provable in IMSELL3

We use a trivial phase interpretation in (N2,+, [0; 0])

Km [x ; y ] := (a 4 m→ y = 0) ∧ (b 4 m→ x = 0) ∧ (m ∈ U → x = y = 0)

hence: Ka = N× {0}, Kb = {0} × N, and K∞ =
{

[0; 0]
}

we interpret variables as:

[[α0]] :=
{

[1; 0]
}

[[β0]] :=
{

[0; 1]
}

[[p]] =
{

[x ; y ] | Σ //n x ⊕ y ` p
}

remember: [[α]] = [[!aα0]] = [[α0]] ∩ Ka =
{

[1; 0]
}

we check: [0; 0] ∈ [[!∞Σ]] and [x ; y ] ∈ [[xα, yβ]]

by soundness, from Σ, xα, yβ ` p we deduce [x ; y ] ∈ [[p]]

Theorem (Completeness)

If !∞Σ, xα, yβ ` p is provable in IMSELL3 then Σ //n x ⊕ y ` p is
derivable in MMnd
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Undecidability for IMSELLΛ and IMSELL3

Assume either Λ = Λ3 or Λ3 embeds into Λ

We get a many-one reduction MMnd � IMSELLΛ:

Σ //n x ⊕ y ` p ∈ MMnd iff !∞Σ, xα, yβ ` p ∈ IMSELLΛ

Corollary (Undecidability)

If Λ3 embeds into Λ then MMnd many-one reduces to IMSELLΛ. In
particular, provability in IMSELL3 is undecidable
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From FRACTRANreg to MMA02
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The FRACTRAN language

Example (FRACTRAN program: list of (regular) fractions)

[
455

33
;

11

13
;

1

11
;

3

7
;

11

2
;

1

3

]

Designed by J.H. Conway 1987

Program: list of N× N∗; State: a single x ∈ N
Step relation is simple to describe

I pick the first p/q s.t. x · p/q ∈ N, and this is the new state
I inductively, characterized by two rules:

qy = px

p/q :: Q //F x � y

q - px Q //F x � y

p/q :: Q //F x � y
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The FRACTRANreg seed

Here we only consider regular fractions, i.e. no p/0

Termination: Q //F x ↓ := ∃y , Q //F x �∗ y ∧ ∀z , ¬(Q //F y � z)

Decision problem: FRACTRANreg(Q, x) := Q //F x ↓

Via a Gödel coding of many counters Minsky machines (Conway)
I reduction from Minsky machines Halting to FRACTRANreg

Theorem (mechanized by DLW&Forster, FSCD2019)

There is a many-one reduction from the Halting problem for single tape
Turing machines to termination of regular FRACTRAN programs, i.e.
Halt � FRACTRANreg, and thus FRACTRANreg is undecidable.

FRACTRANreg as a seed of undecidability
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Programming with MMnd vs. (classic) Minsky machines

Minsky machines:
I low-level model of computation
I hundreds of instructions
I correctness proofs require modular reasonning

Modular reasonning:
I programs inherit properties of sub-programs

MMnd, i.e. sequent style Minsky machines
I great as a seed, especially for Linear logic
I cumbersome as a target

the issue is modular reasonning
I merging MMnd programs lead namespace/labels conflicts
I very bad for modular reasonning

we use another (classic) representation
I with a program counter PC
I one sequence of contiguous instructions
I concatenation avoid namespace conflicts
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Minsky Machines (N valued register machines)

Example (transfers s to d in 3 instructions, with s 6= d)

TRANSFERa s d q := q : INCa d q + 1 : DECa s q q + 2 : DECa d (3 + q)

programs: (q, [ι0; . . . ; ιk ]) ! q : ι0; . . . ; q + k : ιk

n registers of value in N for a fixed n

state: (PC, ~v) ∈ N× Nn

instructions: ι ::= INCa x | DECa x j

Step semantics for INCa x and DECa x j (pseudo code)

INCa x : x ← x + 1; PC← PC + 1

DECa x j : if x = 0 then PC← PC + 1
if x > 0 then x ← x − 1; PC← j

(q, TRANSFERa s d q) //a (q, ~v) �+ (3 + q, ~v{0/s}{(~vs + ~vd))/d}
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Minsky machines semantics and termination

(i ,P) //a st �0 st

i1 = |L|+ i P = L ++ σ :: R
σ //a (i1, ~v1) � st2 (i ,P) //a st2 �k st3

(i ,P) //a (i1, ~v1) �1+k st3

(i ,P) //a st1 �∗ st2 := ∃k, (i ,P) //a st1 �k st2 (computation)
(i ,P) //a st1 �+ st2 := ∃k > 0, (i ,P) //a st1 �k st2 (progress)

(i ,P) //a st1  (i2, ~v2) := (i ,P) //a st1 �∗ (i2, ~v2) ∧ out i2 (i ,P) (output)
(i ,P) //a st1 ↓ := ∃st2, (i ,P) //a st1  st2 (termination)

Definition (Termination)

For MMAn & MMA0n, instances are pairs (P, ~v): P list of MMAn

instructions (starting at 1) and ~v : Nn is the initial content of registers.

MMAn (termination) (1,P) //a (1, ~v) ↓
MMA0n (term. on zero) (1,P) //a (1, ~v) (0, [0; . . . ; 0])
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A FRACTRAN compiler using only two counters

a critical brick in the construction with s := 0, d := 1

tries fraction p/q on the contents of s, assuming d is void

(i0, FRAC ONEa p q i0 j) :=



i0: MULT CSTa s d p i0;
i1: MOD CSTa d s i2 i5 q i1;
i2: DIV CSTa s d q i2;
i3: TRANSFERa d s i3;
i4: JUMPa j d ;
i5: DIV CSTa s d p i5;
i6: TRANSFERa d s i6
i7:


Lemma

If qy = px then (i0, FRAC ONEa p q i0 j) //a (i0, [x ; 0]) �+ (j , [y ; 0]).
If q - px then (i0, FRAC ONEa p q i0 j) //a (i0, [x ; 0]) �+ (i7, [x ; 0]).

Then we chain those for the program [p1/q1; . . . ; pn/qn], and loop
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Reduction from FRACTRAN to MMA2/MMA02

Theorem

For any regular FRACTRAN program Q : L (N× N∗), one can compute a
MMA2 program FRAC MMAa Q such that for any x : N, the three following
properties are equivalent:

1 Q //F x ↓;
2 (1, FRAC MMAa Q) //a (1, [x ; 0]) (0, [0; 0]);

3 (1, FRAC MMAa Q) //a (1, [x ; 0]) ↓.

Corollary (Undecidability)

FRACTRANreg � MMA2 and FRACTRANreg � MMA02 hence MMA2

and MMA02 are both undecidable.
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Minsky machine termination as provability
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Reduction from MMA02 to MMnd

a quite straightforward translation

(·) : F2 → {α, β} 0 := α 1 := β

〈i , INCa x〉 := [INCn x i (1+i)]
〈i , DECa x j〉 := [DECn x i j ; ZEROn x i (1+i)]

〈〈i , [ ]〉〉 := [ ]
〈〈i , σ :: P〉〉 := 〈i , σ〉++ 〈〈1+i ,P〉〉

Lemma (reduction)

With ΣP := STOPn 0 :: 〈〈1,P〉〉 we have (1,P) //a (i , [x , y ]) �∗ (0, [0; 0]) iff
ΣP //n x ⊕ y ` i is derivable in MMnd.

Corollary

MMA02 � MMnd hence MMnd is undecidable.
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Conclusion
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Contributions and Perspectives

Undecidability of IMSELL3, a simpler proof:
I via a proof-theoretic presentation of Minsky machines
I that compares well with that of ILL
I outlines the role played by the promotion rule
I a short semantic proof for the completeness of the reduction

Mechanisation in the Coq library of undecidability:
I Two counters Minsky machines seed (from FRACTRAN)
I Undecidability for IMSELLΛ and IMSELL3

I Code available (+1200,+600 loc), included in the library

https://github.com/uds-psl/coq-library-undecidability/releases/tag/FSCD-2021

Perspectives
I (General) phase sem. for IMSELLΛ  cut-elimination for IMSELLΛ

I If doable, implement Ackermann hardness for Petri nets/VASS
I Insights for MELL, zero test at the end of computation?
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