Looking at Separation Algebras with Boolean BI-eyes ${ }^{\star}$

Dominique Larchey-Wendling ${ }^{1}$ and Didier Galmiche ${ }^{2}$
${ }^{1}$ LORIA - CNRS, Nancy, France
dominique.larchey-wendling@loria.fr
${ }^{2}$ LORIA - Université de Lorraine, Nancy, France
didier.galmiche@loria.fr

Abstract

In this paper, we show that the formulæ of Boolean BI cannot distinguish between some of the different notions of separation algebra found in the literature: partial commutative monoids, either cancellative or not, with a single unit or not, all define the same notion of validity. We obtain this result by the careful study of the specific properties of the counter-models that are generated by tableaux proof-search in Boolean BI.

1 Introduction

Separation logic [18] is a well established logical formalism for reasoning about heaps of memory and programs that manipulate them. The purely propositional part of the logic is usually given by Boolean BI (also denoted BBI) which is a particular bunched logic obtained by freely combining the Boolean connectives of classical propositional logic with those of multiplicative intuitionistic linear logic [11]. Provability in BBI is defined by a Hilbert system [17] and corresponds to validity in the class of non-deterministic (or relational) monoids [8]. Restricting that class to e.g. partial monoids gives another notion of validity [14] for which the Hilbert system is not complete anymore.

Separation logic is defined by a particular kind of partial monoids built for instance from memory heaps that are composed by disjoint union; see [313|15] for a survey of the different models either abstract or concrete that are usually considered in the literature. These models verify some additional properties that may be invalid in non-deterministic models or even in partial monoidal models. Some of these properties are the foundation of separation algebras [5]67]. For instance, the existence of multiple units for the composition of heaps, or the property that the composition of heaps is a cancellative operation, the main focus of this paper. This last property does not hold in an arbitrary partial monoid.

Let us discuss some motivations behind the study of these specific properties of separation algebras. Abstract separation logics and variants of BBI are usually undecidable [3,2,14|15]. But still, being able to prove statements expressed in BBI is required in the framework of Hoare logic. Hence the idea is to try narrowing down the logic and the separation model through the logical

[^0]or proof-theoretical representations of the specific properties of separation algebras. We notice the lively interest in proof-search for relational BBI [110|16], partial monoidal BBI [12[13] and propositional abstract separation logic [9].

In [4], Brotherston and Villard show that cancellativity cannot be axiomatized within BBI : no formula of BBI is able to distinguish cancellative from non-cancellative monoids. Let us note that even though an axiomatization is proposed in some hybrid extension of BBI [4], proof-search in such extensions of BBI is a largely unexplored track of research. In the current paper, we show the stronger result that any BBI formula that is valid in partial and cancellative models is also valid in any partial model: validity of BBI formulæ is the very same predicate if you add cancellativity as a requirement for your models.

In [9], Hóu et al. present a labelled sequent calculus for proof-search in propositional abstract separation logic extending their work on relational BBI [10] by introducing model specific proof-rules, in particular one for partiality and one for cancellativity. A noticeable consequence of our result is that their rule for cancellativity is redundant when searching for proofs of BBI-formulæ: one may find shorter proofs using that rule but it does not reinforce provability. As another consequence, extending the older labelled tableaux calculus for partial monoidal BBI of Larchey-Wendling and Galmiche [13] to cover cancellativity is trivial: simply do nothing. The difficulty does not lie in the extension of the system but in the proof of the redundancy of cancellativity.

The results obtained in this paper emphasize the importance of the strong completeness theorem for partial monoidal BBI [12] from which they derive. The counter-models generated by the labelled tableaux proof-search calculus contain information about the logic itself that, when carefully extracted, can be used to obtain completeness for additional properties of abstract models.

Let us give an overview of the paper. In Section 2 , we recall the syntax and Kripke semantics of Boolean Bl and we present non-deterministic monoids which are the models of BBI , and some sub-classes of monoids related to separation algebras and abstract separation logic models, e.g. cancellative monoids. In Section 3. we study the links between single unit and multi-unit monoids and give a quick semantic overview of why they are equivalent w.r.t. BBI validity. In Section 4. we define the notion of partial monoidal equivalence (or PME for short) to syntactically represent partial monoids with a single unit. We define basic and simple PMEs which are the monoids that are generated by labelled tableaux proof-search [12]. In Section5, we use the strong completeness result for simple PMEs to derive an equivalence theorem for some separation algebras. It is based on our core result: basic/simple PMEs are cancellative and have invertible squares. We discuss the proof of this result in the following sections. In Section6, we introduce the notion of invertibility in the context of PMEs. In Section7, we argue that even though basic PMEs are defined inductively, it is not possible to give a direct inductive proof of cancellativity or of the invertibility of squares for basic PMEs. In Section 8, we show that basic PMEs can be transformed into primary PMEs and that primary PMEs are cancellative with invertible squares. Omitted proofs can be found in the appendices.

2 Boolean BI and its non-deterministic Kripke semantics

In this section, we introduce a "compact" syntax for BBI: conjunction \wedge and negation \neg are the only Boolean connectives. ${ }^{3}$ Then, we present the Kripke semantics of BBI based on the notion of non-deterministic monoid.

Definition 1. The formulæ of BBI are freely built using logical variables in Var , the logical constant \mathbb{I}, the unary connective \neg or binary connectives in $\{*,-*, \wedge\}$. The formal grammar is $F::=v|\mathbb{I}| \neg F|F \wedge F| F * F \mid F \rightarrow F$ with $v \in$ Var.

We introduce the semantic foundations of BBI. Let us consider a set M QWe denote by $\mathcal{P}(M)$ the power-set of M, i.e. its set of subsets. A binary function ○: $M \times M \longrightarrow \mathcal{P}(M)$ is naturally extended to a binary operator on $\mathcal{P}(M)$ by $X \circ Y=\bigcup\{x \circ y \mid x \in X, y \in Y\}$ for any subsets X, Y of M. Using this extension, we can view an element m of M as the singleton set $\{m\}$ and derive equations like $m \circ X=\{m\} \circ X, a \circ b=\{a\} \circ\{b\}$ or $\emptyset \circ X=\emptyset$.

Definition 2. A non-deterministic monoid (ND-monoid for short) is a triple $\mathfrak{M}=$ (M, \circ, U) where $U \subseteq M$ is the set of units and $\circ: M \times M \longrightarrow \mathcal{P}(M)$ is a composition for which the axioms of (neutrality) $\forall x \in M x \circ U=\{x\}$, (commutativity) $\forall x, y \in$ $M x \circ y=y \circ x$, and (associativity) ${ }^{5} \forall x, y, z \in M(x \circ y) \circ z=x \circ(y \circ z)$ hold .

The extension of \circ to $\mathcal{P}(M)$ thus induces a (usual) commutative monoidal structure with unit U on $\mathcal{P}(M)$. The term non-deterministic was introduced in [8] in order to emphasize the fact that the composition $a \circ b$ may yield not only one but an arbitrary number of results including the possible incompatibility of a and b in which case $a \circ b=\emptyset$. Notice that \mathfrak{M} is called a BBI-model in [4].

Given $\mathfrak{M}=(M, \circ, U)$ and an interpretation $\delta: \operatorname{Var} \longrightarrow \mathcal{P}(M)$ of variables, we define the Kripke forcing relation by induction on the structure of formulæ:

$$
\begin{gathered}
\mathfrak{M}, x \Vdash_{\delta} v \text { iff } x \in \delta(v) \quad \mathfrak{M}, x \Vdash_{\delta} \mathbb{I} \text { iff } x \in U \quad \mathfrak{M}, x \Vdash_{\delta} \neg A \text { iff } \mathfrak{M}, x \nVdash_{\delta} A \\
\mathfrak{M}, x \Vdash_{\delta} A \wedge B \text { iff } \mathfrak{M}, x \Vdash_{\delta} A \text { and } \mathfrak{M}, x \Vdash_{\delta} B \\
\mathfrak{M}, x \Vdash_{\delta} A * B \text { iff } \exists a, b, x \in a \circ b \text { and } \mathfrak{M}, a \Vdash_{\delta} A \text { and } \mathfrak{M}, b \Vdash_{\delta} B \\
\mathfrak{M}, x \Vdash_{\delta} A \rightarrow B \text { iff } \forall a, b,\left(b \in x \circ a \text { and } \mathfrak{M}, a \Vdash_{\delta} A\right) \Rightarrow \mathfrak{M}, b \Vdash_{\delta} B
\end{gathered}
$$

Definition 3 (BBI-validity, counter-models). A formula F of BBI is valid in $\mathfrak{M}=$ (M, \circ, U) if for any interpretation $\delta: \operatorname{Var} \longrightarrow \mathcal{P}(M)$ the relation $\mathfrak{M}, m \Vdash_{\delta} F$ holds for any $m \in M$. A counter-model of the formula F is given by a ND-monoid \mathfrak{M}, an interpretation $\delta: \operatorname{Var} \longrightarrow \mathcal{P}(M)$, and an element $m \in M$ such that $\mathfrak{M}, m \nVdash_{\delta} F$.

In some papers, you might find BBI defined by non-deterministic monoidal Kripke semantics [14]810], in other papers it is defined by partial deterministic monoidal Kripke semantics [12[13] and generally separation logic models are particular instances of partial (deterministic) monoids [3449]. See [13] for a general discussion about these issues.

[^1]

Fig. 1. Inclusions between BBI-validity in some sub-classes of ND-monoids.

Definition 4. For any ND-monoid (M, \circ, U), we name some properties as follows:
(PD) Partial deterministic $\forall x, y, a, b \quad\{x, y\} \subseteq a \circ b \Rightarrow x=y$
(SU) Single unit $\quad \exists u U=\{u\}$
(CA) Cancellativity $\quad \forall k, a, b(k \circ a) \cap(k \circ b) \neq \emptyset \Rightarrow a=b$
(IU) Indivisible units $\quad \forall x, y x \circ y \cap U \neq \emptyset \Rightarrow x \in U$
(DI) Disjointness $\quad \forall x x \circ x \neq \emptyset \Rightarrow x \in U$

These properties allow us to consider sub-classes of the full class of NDmonoids. Other properties like divisibility or cross-split are considered as well in [4] but in this paper, we focus on the properties of Definition 4 .

We denote by ND the full class of non-deterministic monoids. We identify the property X with the sub-class $X \subseteq$ ND of monoids which satisfy property X. If X and Y are two properties, we read $X+Y$ as the sub-class of monoids of ND that satisfy the conjunction of X and Y. This is the meaning of the equation $X+Y=X \cap Y$ which might look strange at first. As an example, $\mathrm{PD}+\mathrm{SU}+$ $\mathrm{CA}+\mathrm{IU}$ is both the conjunction of those four properties and the sub-class of cancellative partial deterministic monoids with a single and indivisible unit.

Proposition 1. The two strict inclusions $\mathrm{DI} \subsetneq \mathrm{IU}$ and $\mathrm{PD}+\mathrm{DI} \subsetneq \mathrm{PD}+\mathrm{IU}$ hold.
The sub-class HM of heap monoids verifies all the properties of Definition 4 . However, it is not defined by a property but it is described by the concrete models of Separation Logic [15].

Various notions of separation algebra can be found in the literature: for instance the "original" notion of separation algebra is defined in [5] as the elements of the sub-class PD $+\mathrm{SU}+\mathrm{CA}$; in the "views" framework of [6], a separation algebra is an element of sub-class PD; while it is of sub-class $\mathrm{PD}+\mathrm{CA}$ in [7]. To finish, in [13], though not called separation algebra, a BBI-model is an element of sub-class PD + SU.

In general the sub-classes of ND define different notions of validity on the formulæ of BBI [14]. However, it was proved recently that theses properties are not axiomatizable in BBI [4], with the exception of $\mathrm{IU}{ }^{6}$ We define a notation to express the relations between those potentially different notions of validity.

Definition $5\left(\mathbf{B B I}_{X}\right)$. For any sub-class $X \subseteq \mathrm{ND}$, we denote by BBI_{X} the set of formulx of BBI which are valid in any ND-monoid of the sub-class X.

[^2]Obviously, if the inclusion $X \subseteq Y$ holds between the sub-classes X and Y of ND-monoids then inclusion $\mathrm{BBI}_{Y} \subseteq \mathrm{BBI}_{X}$ holds between the sets of valid formulæ. The sets BBI_{X} are usually not recursive (at least for the sub-classes we consider here) because of the undecidability of BBI [3|2|14|15]. The identity $\mathrm{BBI}_{X}=\mathrm{BBI}_{Y}$ implies for instance that a semi-decision algorithm for validity (of formulæ) in sub-class X can be replaced by some semi-decision algorithm for validity in sub-class Y. It also "suggests" that there might exist some kind of relation (like a map [4] or a bisimulation [15]) between the models of sub-class X and those of sub-class $Y 7$

To the best of our knowledge, the graph of Figure 1 summarizes what was known about the inclusion relations between the formulæ valid in the previously mentioned sub-classes of ND-monoids, the single arrow \rightarrow representing strict inclusion, the double arrow \Rightarrow representing non-strict inclusion. In fact, besides trivial inclusion results derived from the obvious inclusions of sub-classes of monoids, not very much was known except the strict inclusion $\mathrm{BBI}_{\mathrm{ND}} \subsetneq \mathrm{BBI}_{\mathrm{PD}}$ proved ${ }^{8}$ in [14] and the strict inclusions $\mathrm{BBI}_{\mathrm{ND}} \subsetneq \mathrm{BBI}_{\mathrm{IU}}$ and $\mathrm{BBI}_{\mathrm{PD}} \subsetneq \mathrm{BBI}_{\mathrm{PD}+\mathrm{IU}}$ which are trivial consequences of the stronger result that IU can be axiomatized in BBI. Beware that PD cannot be axiomatized in BBI [4].

The left gray box in Figure 1 is the main motivation behind the current paper. It contains the four different definitions of separation algebras mentioned earlier: $\mathrm{PD}, \mathrm{PD}+\mathrm{SU}, \mathrm{PD}+\mathrm{CA}$ and $\mathrm{PD}+\mathrm{SU}+\mathrm{CA}$. In this paper, we show that these four sub-classes of ND-monoids define the same set of valid formulæ, i.e. the double arrows are in fact identities. To obtain these results, we first give a simple proof that $\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}} \subseteq \mathrm{BBI}_{\mathrm{PD}}$ in Section 3 , and then a much more involved proof that $\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}+\mathrm{CA}} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$ in the latest sections of the paper. This proof is based on a careful study of the properties of the counter-models generated by proof-search, which are complete for $\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$ [12].

The right gray box in Figure 1 is a secondary focus of our paper. We prove the identities $B B I_{P D+I U}=B B I_{P D+D I}=B B I_{P D+S U+C A+I U+D I}$ by exploiting the fact that the counter-models generated by proof-search which satisfy property IU also satisfy property DI.

3 Single units in non-deterministic monoids

We give a quick overview of the relations between the multi-unit semantics and the single unit semantics. We recall that they define the same notion of validity for BBI and we give a model-theoretic account of this equivalence. Soundness/completeness for the single unit semantics w.r.t. the Hilbert proof system for BBI were already established in [8] ${ }^{9}$
Definition 6 (The unit of \boldsymbol{x}). Let (M, \circ, U) be a ND-monoid. For any $x \in M$, there exists a unique $u_{x} \in U$ such that $x \circ u_{x}=\{x\}$. It is called the unit of x.

[^3]Definition 7 (Slice monoid at \boldsymbol{x}). Let $\mathfrak{M}=(M, \circ, U)$ be a ND-monoid and let $x \in M$. Then the triple $\mathfrak{M}_{x}=\left(M_{x}, \circ^{\prime},\left\{u_{x}\right\}\right)$ is a ND-monoid of sub-class SU where $M_{x}=\left\{k \in M \mid u_{k}=u_{x}\right\}$ and \circ^{\prime} is the restriction of \circ to M_{x} which is defined on $M_{x} \times M_{x}$ by $u \circ^{\prime} v=u \circ v$. The triple \mathfrak{M}_{x} is called the slice monoid at x.

Lemma 1. Let $\mathfrak{M}=(M, \circ, U)$ be a ND-monoid, $\delta: \operatorname{Var} \longrightarrow \mathcal{P}(M)$ and $x \in M$. Let us consider \mathfrak{M}_{x}, the slice monoid at x and let $\delta^{\prime}: \operatorname{Var} \longrightarrow \mathcal{P}\left(M_{x}\right)$ be defined by $\delta^{\prime}(z)=\delta(z) \cap M_{x}$ for any $z \in M_{x}$. For any formula F of BBI and any $z \in M_{x}$, we have $\mathfrak{M}, z \Vdash_{\delta} F$ iff $\mathfrak{M}_{x}, z \Vdash_{\delta^{\prime}} F$.

Theorem 1. If $K \subseteq \mathrm{ND}$ is a sub-class of ND-monoids closed under slicing, then $\mathrm{BBI}_{K}=\mathrm{BBI}_{K+\mathrm{SU}}$ holds. In particular, $\mathrm{BBI}_{\mathrm{ND}}=\mathrm{BBI}_{\mathrm{SU}}$ and $\mathrm{BBI}_{\mathrm{PD}}=\mathrm{BB} \mathrm{ID}_{\mathrm{PD}}$. .

Remark: the property SU cannot be axiomatized in BBI [4]. The identity $B B I_{N D}=B B I_{S U}$ gives another proof argument for this result.

4 Partial Monoidal Equivalences

We recall the framework of labels and constraints that is used to syntactically represent partial monoids of sub-class $\mathrm{PD}+\mathrm{SU}$ which form the semantic basis of partial monoidal Boolean BI. The section is a short reminder of the theory developed in [13] where a labelled tableaux system is introduced and its soundness w.r.t. the sub-class PD +SU is established. Moreover, the (strong) completeness of this tableaux system is proved in [12] and this crucial (albeit non-constructive) result is restated here as Theorem 2

4.1 Words, constraints, PMEs and the sub-class PD + SU

Let L^{\star} be the set of finite multisets of letters of the alphabet L. We call the elements of L^{\star} words; they do not account for the order of letters. The composition of words is denoted multiplicatively ${ }^{10}$ and the empty word is denoted ϵ. Hence $\left(L^{\star}, \cdot, \epsilon\right)$ is the (usual) commutative monoid freely generated by L.

We view the alphabet L or any of its subsets $X \subseteq L$ as a subset $X \subsetneq L^{\star}$, i.e. we assume letters as one-letter words. We denote $x \prec y$ when x is a sub-word of y (i.e. $\exists k, x k=y$). If $x \prec y$, the unique k such that $x k=y$ is denoted y / x and we have $y=x(y / x)$. The carrier alphabet of a word m is $\mathcal{A}_{m}=\{\mathrm{c} \in L \mid \mathrm{c} \prec m\}$.

A constraint is an ordered pair of words in $L^{\star} \times L^{\star}$ denoted $m \rightarrow n$. A binary relation $R \subseteq L^{\star} \times L^{\star}$ between words of L^{\star} is a set of constraints, hence $x R y$ is a shortcut for $x \rightarrow y \in R$. The language of a binary relation $R \subseteq L^{\star} \times L^{\star}$ denoted \mathcal{L}_{R} is defined by $\mathcal{L}_{R}=\left\{x \in L^{\star} \mid \exists m, n \in L^{\star}\right.$ s.t. xm $R n$ or m R xn $\}$. The carrier alphabet of R is $\mathcal{A}_{R}=\bigcup\left\{\mathcal{A}_{m} \cup \mathcal{A}_{n} \mid m R n\right\}$.

A word $m \in L^{\star}$ is said to be defined in R if $m \in \mathcal{L}_{R}$ and is undefined in R otherwise. A letter $\mathrm{c} \in L$ is new to R if $\mathrm{c} \notin \mathcal{A}_{R}$. The language \mathcal{L}_{R} is downward closed w.r.t. the sub-word order \prec. The inclusion $\mathcal{L}_{R} \subseteq \mathcal{A}_{R}^{\star}$ and the identity

[^4]$\mathcal{A}_{R}=\mathcal{L}_{R} \cap L$ hold. If R_{1} and R_{2} are two relations such that $R_{1} \subseteq R_{2}$ then the inclusions $\mathcal{A}_{R_{1}} \subseteq \mathcal{A}_{R_{2}}$ and $\mathcal{L}_{R_{1}} \subseteq \mathcal{L}_{R_{2}}$ hold. Let us define the particular sets of constraints/relations we are interested in.
Definition 8 (PME). A partial monoidal equivalence (PME for short) over the alphabet L is a binary relation $\sim \subseteq L^{\star} \times L^{\star}$ which is closed under the rules $\langle\epsilon, s, c, d, t\rangle$:
$$
\overline{\epsilon-\epsilon}\langle\epsilon\rangle \frac{x-y}{y-x}\langle s\rangle \frac{k y-k y-x-y}{k x-k y}\langle c\rangle \frac{x y-x y}{x-x}\langle d\rangle \frac{x-y-y-z}{x-z}\langle t\rangle
$$

Proposition 2. Any PME \sim is also closed under the (derived) rules $\left\langle p_{l}, p_{r}, e_{l}, e_{r}\right\rangle$:

$$
\frac{k x-y}{x-x}\left\langle p_{l}\right\rangle \quad \frac{x-k y}{y-y}\left\langle p_{r}\right\rangle \quad \frac{x-y \quad y k-m}{x k-m}\left\langle e_{l}\right\rangle \quad \frac{x-y \quad m-y k}{m-x k}\left\langle e_{r}\right\rangle
$$

and the identities $\mathcal{L}_{\sim}=\left\{x \in L^{\star} \mid x \sim x\right\}$ and $\mathcal{A}_{\sim}=\{\mathrm{c} \in L \mid \mathrm{c} \sim \mathrm{c}\}$ hold.
See [13] for a proof of Proposition 2 These derived rules will be more suitable for proving properties of PMEs throughout this paper. Rule $\left\langle p_{l}\right\rangle$ (resp. $\left\langle p_{r}\right\rangle$) is a left (resp. right) projection rule. Rules $\left\langle e_{l}\right\rangle$ and $\left\langle e_{r}\right\rangle$ express the possibility to exchange related sub-words inside the PME \sim, either on the left or on the right.
Definition 9. A PME is cancellative (resp. has indivisible units, resp. has disjointness) if it is closed under rule $\langle c a\rangle$ (resp. rule $\langle i u\rangle$, resp. rule $\langle d i\rangle{ }^{11}$

$$
\frac{k x-k y}{x-y}\langle c a\rangle \quad \frac{\epsilon-x y}{\epsilon-x}\langle i u\rangle \quad \frac{x x-x x}{\epsilon-x}\langle d i\rangle
$$

Let us see how the rules $\langle c a\rangle,\langle i u\rangle$ and $\langle d i\rangle$ relate to sub-classes CA, IU and DI. Let \sim be a PME over L. The relation \sim is a partial equivalence on L^{\star} by rules $\langle s\rangle$ and $\langle t\rangle$. The partial equivalence class of a word x is $[x]=\{y \mid x \sim y\}$. The partial quotient L^{\star} / \sim is the set of non-empty classes $L^{\star} / \sim=\{[x] \mid x \sim x\}$. We define a non-deterministic composition on L^{\star} / \sim by $[z] \in[x] \bullet[y]$ iff $z \sim x y$.
Proposition 3. The triple $\mathfrak{M}_{\sim}=\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ is a ND-monoid of sub-class PD + SU. \mathfrak{M}_{\sim} is of sub-class CA (resp. sub-class IU, resp. sub-class DI) if and only if \sim is closed under rule $\langle c a\rangle$ (resp. rule $\langle i u\rangle$, resp. rule $\langle d i\rangle$).

4.2 Generated PME, basic PME extensions and simple PMEs

Defined by closure under some deduction rules, the class of PMEs over an alphabet L is thus closed under arbitrary intersections. Let \mathcal{C} be a set of constraints over the alphabet L. The PME generated by \mathcal{C} is the least PME containing \mathcal{C}. It is either denoted by $\sim_{\mathcal{C}}$ or $\overline{\mathcal{C}}$ and the notations $m \sim_{\mathcal{C}} n$ and $m-n \in \overline{\mathcal{C}}$ are synonymous. The operator $\mathcal{C} \mapsto \overline{\mathcal{C}}$ is a closure operator on sets of constraints, i.e. it is extensive ($\mathcal{C} \subseteq \overline{\mathcal{C}}$), monotonic ($\mathcal{C} \subseteq \mathcal{D}$ implies $\overline{\mathcal{C}} \subseteq \overline{\mathcal{D}}$) and idempotent $(\overline{\mathcal{C}} \subseteq \overline{\mathcal{C}})$. The identity $\mathcal{A}_{\mathcal{C}}=\mathcal{A}_{\overline{\mathcal{C}}}$ holds (see [13] Proposition 3.16) but the identity $\mathcal{L}_{\mathcal{C}}=\mathcal{L}_{\overline{\mathcal{C}}}$ does not hold in general, only the inclusion $\mathcal{L}_{\mathcal{C}} \subseteq \mathcal{L}_{\overline{\mathcal{C}}}$ holds.

[^5]Proposition 4 (Compactness). Let \mathcal{C} be a set of constraints over the alphabet L and $m, n \in L^{\star}$ be s.t. $m \sim_{\mathcal{C}} n$ holds. There exists a finite subset $\mathcal{C}_{f} \subseteq \mathcal{C}$ such that $m \sim_{\mathcal{C}_{f}} n$.

This compactness property (proved in [13] Proposition 3.17) is not related to the particular nature of rules defining PMEs but solely to the fact that the rules $\langle\epsilon, s, c, d, t\rangle$ only have a finite number of premises.

Definition 10 (PME extension). Let \sim be a PME and \mathcal{C} be a set of constraints, both over L. We denote by $\sim+\mathcal{C}=\overline{(\sim \cup \mathcal{C})}$ the extension of \sim by the constraints of \mathcal{C}.

The extension $\sim+\mathcal{C}$ is the least PME containing both \sim and \mathcal{C}. Let \sim be a PME and $\mathcal{C}_{1}, \mathcal{C}_{2}$ be two sets of constraints. The identities $\left(\sim+\mathcal{C}_{1}\right)+\mathcal{C}_{2}=$ $\left(\sim+\mathcal{C}_{2}\right)+\mathcal{C}_{1}=\sim+\left(\mathcal{C}_{1} \cup \mathcal{C}_{2}\right)$ hold. Moreover, for any $m, n \in L^{\star}$, the relation $m \sim n$ holds if and only if the identity $\sim+\{m-n\}=\sim$ holds.

We single out PME extensions of the forms $\sim+\{\mathrm{ab}-m\}, \sim+\{\mathrm{a} m-\mathrm{b}\}$ or $\sim+\{\epsilon-m\}$ where m is defined in \sim and $\mathrm{a} \neq \mathrm{b}$ are two letters new to \sim. These extensions are generated by proof-search in the tableau method for BBI [12].

Definition 11 (Basic extension). Given a PME ~ over the alphabet L, a constraint is basic w.r.t. \sim when it is of one of the three forms $\mathrm{ab}-m$, $\mathrm{a} m-\mathrm{b}$ or $\epsilon-m$ with $m \sim m$ and $\mathrm{a} \neq \mathrm{b} \in L \backslash \mathcal{A}_{\sim}$. When $x \rightarrow y$ is basic w.r.t. \sim, we say that $\sim+\{x \rightarrow y\}$ is a basic extension of the PME \sim.

Let $k \in \mathbb{N} \cup\{\infty\}$ and $\left(x_{i}-y_{i}\right)_{i<k}$ be a sequence of constraints. Let $\mathcal{C}_{p}=$ $\left\{x_{i}-y_{i} \mid i<p\right\}$ for $p<k$. We suppose that each extension $\sim_{\mathcal{C}_{p}}+\left\{x_{p}-y_{p}\right\}$ is basic for any $p<k$. If $k<\infty$ (resp. $k=\infty$) then the sequence $\left(x_{i}-y_{i}\right)_{i<k}$ is called basic (resp. simple). The empty sequence of constraints is basic.

Definition 12. A basic (resp. simple) PME is of the form $\sim_{\mathcal{C}}$ where $\mathcal{C}=\left\{x_{i} \rightarrow y_{i} \mid\right.$ $i<k\}$ and $\left(x_{i}-y_{i}\right)_{i<k}$ is a basic (resp. simple) sequence of constraints.

Any basic PME is simple: indeed, by rule $\langle\epsilon\rangle$ we have $\sim+\{\epsilon-\epsilon\}=\sim$ for any PME \sim. Thus, using case $\epsilon \rightarrow m$ of Definition 11 with $m=\epsilon$, we can complete any basic sequence into a simple sequence by looping on $\epsilon \rightarrow \epsilon$. The converse does not hold: simple PMEs with infinite alphabets are not basic.

Remark: we point out that in the set of constraints \mathcal{C}, the order of appearance of constraints does not impact the closure $\sim_{\mathcal{C}}$. However, in a basic (or simple) sequence of constraints, the order is important because the newness of letters depends on the previous constraints in the sequence. Moreover, to prove that a PME is not basic, it is not sufficient to show that the sequence that defines it is not basic: maybe there exists another defining sequence which is basic.

5 Equivalence results for some Separation Algebras

In this section, we show our main result: many of the different classes of separation algebra found in the literature (see discussion of Section 2) cannot be distinguished by any formula of Boolean BI. This is a stronger result than the
impossibility to axiomatize those classes in BBI [4]. Our result relies in an essential way on the (non-constructive) strong completeness theorem for partial monoidal $\mathrm{BBI}[12]^{12]}$ "Strong" means that $\mathrm{BB} \mathrm{I}_{\mathrm{PD}+\mathrm{SU}}$ is complete for the specific monoids that are generated by tableaux proof-search, i.e. simple PMEs.

Theorem 2 (Strong completeness for partial monoidal BBI). Let F be a BBIformula that is invalid in some partial deterministic monoid with single unit, i.e. $F \notin$ BBI ${ }_{\text {PD }+ \text { SU }}$. There exists a countable alphabet L, a simple PME \sim over L, a valuation $\delta: \operatorname{Var} \longrightarrow \mathcal{P}\left(L^{\star} / \sim\right)$ and a letter $\mathrm{a} \in L$ such that $\mathrm{a} \sim \mathrm{a}$ and $\mathfrak{M}_{\sim},[\mathrm{a}] \nVdash_{\delta} F$.

We will exploit the following properties of simple PMEs to derive our equivalence results for some separation algebras / abstract separation logics.

Theorem 3. Simple PMEs are closed under rule $\langle c a\rangle$. Simple PMEs which are closed under rule $\langle i u\rangle$ are also closed under rule $\langle d i\rangle$.

Theorem 3 is the core result of the current paper. In Section 6 , we introduce the tools used in its proof. In Section 7, we show that this proof cannot be done by direct induction on the sequence of constraints. In Section 8, we develop the argumentation using a detour via primary PMEs. The result is formally obtained as a conjunction of Corollaries 2 and 3

Theorem 4. The following notions of separation algebras found in the literature collapse to the same validity on BBI formulx. Formally, we have the identities:
(a) $\mathrm{BBI}_{\mathrm{PD}}=\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}=\mathrm{BBI} \mathrm{PD}+\mathrm{CA}=\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}+\mathrm{CA}}$;
(b) $\mathrm{BBI}_{\mathrm{PD}+\mathrm{IU}}=\mathrm{BB}_{\mathrm{PD}+\mathrm{DI}}=\mathrm{BB} \mathrm{I}_{\mathrm{PD}+\mathrm{SU}+\mathrm{CA}+\mathrm{IU}+\mathrm{DI}}$.

Proof. Let Q and K be the two following sub-classes $Q=\mathrm{PD}+\mathrm{SU}+\mathrm{CA}$ and $K=Q+\mathrm{IU}+$ DI of ND-monoids. For (a), we prove the inclusions $\mathrm{BBI}_{Q} \subseteq$ $\mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}} \subseteq \mathrm{BBI}_{\mathrm{PD}} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{CA}} \subseteq \mathrm{BBI}_{Q}$. We have $\mathrm{BBI}_{\mathrm{PD}} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{CA}} \subseteq$ BBl_{Q} by sub-class inclusion in ND-monoids. By Theorem 1 , we have $\mathrm{BBl}_{\mathrm{PD}}=$ $\left.\mathrm{BB}\right|_{\mathrm{PD}+\mathrm{SU}}$. Hence, to obtain (a), it is sufficient to prove $\mathrm{BBI}_{Q} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$. For (b), we show the inclusions $\mathrm{BBI}_{K} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{IU}} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{DI}} \subseteq \mathrm{BBI}_{K}$. Since we have $K \subseteq \mathrm{PD}+\mathrm{DI}$, the inclusion $\mathrm{BBl}_{\mathrm{PD}+\mathrm{DI}} \subseteq \mathrm{BBI}_{K}$ is immediate. Then the inclusion $\mathrm{BBI}_{\mathrm{PD}+\mathrm{IU}} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{DI}}$ is a direct consequence of Proposition 1 . Hence, to obtain (b), it is sufficient to prove $\mathrm{BBI}_{K} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{IU}}$.

Let us prove the contrapositive of the inclusion $\mathrm{BBl}_{Q} \subseteq \mathrm{BBl}_{\mathrm{PD}+\mathrm{SU}}$. Let us consider $F \notin \mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$ and let us show $F \notin \mathrm{BBI}_{Q}$. By Theorem 2, we obtain a simple PME \sim, a valuation $\delta:$ Var $\longrightarrow \mathcal{P}\left(L^{\star} / \sim\right)$ and a letter a $\in L$ such that a \sim a and $\mathfrak{M}_{\sim},[\mathrm{a}] \not_{\delta} F$. By Theorem 3 , the simple PME \sim is closed under rule $\langle c a\rangle$ and thus, by Propositions 3 , the partial quotient monoid \mathfrak{M}_{\sim} belongs to the sub-class $\mathrm{PD}+\mathrm{SU}+\mathrm{CA}$. We deduce $F \notin \mathrm{BBI}_{Q}$.

Before we prove the inclusion $\mathrm{BBl}_{K} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{IU}}$, let us make a remark on the formula $\mathbb{U}=\neg(\neg \mathbb{I} * \neg \mathbb{I})$ and the scheme $(\mathbb{I} \wedge \mathbb{U}) \rightarrow *(\cdot)$. Let $\mathfrak{M}=(M, \circ,\{e\})$ be a ND-monoid of sub-class SU and let $\delta: \operatorname{Var} \longrightarrow \mathcal{P}(M)$. Then we have $\mathfrak{M}, e \Vdash_{\delta} \mathbb{U}$

[^6]if and only if \mathfrak{M} is of sub-class IU . Let F be a BBI-formula. Then for any $x \in M$, we have $\mathfrak{M}, x \nVdash_{\delta}(\mathbb{I} \wedge \mathbb{U}) \rightarrow_{*} F$ if and only if \mathfrak{M} is of sub-class IU and $\mathfrak{M}, x \nVdash_{\delta} F$.

Let us now prove the contrapositive of the inclusion $\mathrm{BBI}_{K} \subseteq \mathrm{BBI}_{\mathrm{PD}+\mathrm{IU}}$. Let us consider a formula F such that $F \notin \mathrm{BBI}_{\mathrm{PD}+\mathrm{IU}}$ and let us show $F \notin \mathrm{BBI}_{K}$. Let us first establish $(\mathbb{I} \wedge \mathbb{U}) \rightarrow F \notin \mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$. Since the sub-class $\mathrm{PD}+\mathrm{IU}$ is closed under slicing, by Theorem 1 we have $F \notin \mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}+\mathrm{IU}}$. Hence there exists a counter-model \mathfrak{M} of F in sub-class $\mathrm{PD}+\mathrm{SU}+\mathrm{IU}$. From the previous remark on \mathbb{U}, we deduce that \mathfrak{M} is also a counter-model of $(\mathbb{I} \wedge \mathbb{U}) \rightarrow *$. As \mathfrak{M} also belongs to sub-class $\mathrm{PD}+\mathrm{SU}$, we deduce $(\mathbb{I} \wedge \mathbb{U}) \rightarrow F \notin \mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$.

We apply Theorem 2 and we obtain a counter-model of $(\mathbb{I} \wedge \mathbb{U}) \rightarrow F$ of the form \mathfrak{M}_{\sim} where \sim is a simple PME. Since \mathfrak{M}_{\sim} is of subclass SU , we deduce that \mathfrak{M}_{\sim} is of subclass $I U$ and \mathfrak{M}_{\sim} is a counter-model of F (see previous remark on \mathbb{U}). Hence \mathfrak{M}_{\sim} is of sub-class $\mathrm{PD}+\mathrm{SU}+\mathrm{IU}$. Thus by Proposition 3 , \sim is closed under rule $\langle i u\rangle$. Hence by Theorem 3 , the simple PME \sim is closed under rules $\langle c a\rangle$ and $\langle d i\rangle$. By Proposition $3, \mathfrak{M}_{\sim}$ is a counter-model of F of sub-class $\mathrm{PD}+\mathrm{SU}+\mathrm{CA}+\mathrm{IU}+\mathrm{DI}$ and we conclude $F \notin \mathrm{BBI}_{K}$.

Remark: unlike IU, DI is not axiomatizable in BBI [4] thus we cannot have $B B I_{\mathrm{DI}}=\mathrm{BBI}_{\mathrm{IU}}$. Hence the strict inclusion $\mathrm{BBI}_{\mathrm{IU}} \subsetneq \mathrm{BBI}_{\mathrm{DI}}$ by Proposition 1 Let us now discuss and develop the proof of Theorem 3, our core result.

6 Invertibility, group-PMEs and squares

In this section, we study the properties of the extension $\sim+\{\epsilon-m\}$ and how they impact invertible letters/words. We introduce the notion of group-PME.
Definition 13. A group-PME over L is a PME \sim such that $\mathcal{A}_{\sim}=\mathcal{I}_{\sim}$ where $\mathcal{I}_{\sim}=$ $\left\{\mathrm{c} \in L \mid \epsilon \sim \mathrm{c} \beta\right.$ holds for some $\left.\beta \in L^{\star}\right\}$ is the set of invertible letters of \sim.

The operator $\sim \mapsto \mathcal{I}_{\sim}$ is monotonic. By rule $\left\langle p_{r}\right\rangle$, the inclusion $\mathcal{I}_{\sim} \subseteq \mathcal{A}_{\sim}$ holds for any PME. We may write $\mathcal{I}_{\mathcal{C}}$ for $\mathcal{I}_{\mathcal{C}_{\mathcal{C}}}$; this should not lead to any ambiguity. We introduce a set of derived rules related to invertible words (in $\mathcal{I}_{\sim}^{\star}$) and we analyze the relations between \sim and invertible words. Appart from the letter α which serves as a parameter for (primary) extensions, we ease the reading by denoting invertible words with greek letters β, γ, \ldots in place of x, y, \ldots
Definition 14 (Squares and invertible squares). We say that a word $\alpha \in L^{\star}$ is square-free if $\forall c \in L, \mathrm{cc} \nprec \alpha$. We say that the PME \sim be over L has invertible squares if $\forall \mathrm{c} \in L, \mathrm{cc} \sim \mathrm{cc} \Rightarrow \mathrm{c} \in \mathcal{I}_{\sim}$ (i.e. any squarable letter is invertible).
Proposition 5. Let \sim be a PME over L. If \sim has invertible squares then for any word $k \in L^{\star}$, if $k k \sim k k$ holds then $k \in \mathcal{I}_{\sim}^{\star}$ holds.
Proposition 6. PMEs are closed under rules $\left\langle\epsilon_{c}, i_{\uparrow}, i_{c}, i_{s}, i_{\leftarrow}, i_{\rightarrow}\right\rangle$:

$$
\begin{array}{ccc}
\frac{\epsilon-\gamma \quad \epsilon-\beta}{\epsilon-\gamma \beta}\left\langle\epsilon_{c}\right\rangle & \frac{x-y \quad \epsilon-\gamma \beta}{\gamma x-\gamma y}\left\langle i_{c}\right\rangle & \frac{x-\beta y \epsilon-\gamma \beta}{\gamma x-y}\left\langle i_{\leftarrow}\right\rangle \\
\frac{\epsilon-\gamma \beta \quad \epsilon-\gamma \beta^{\prime}}{\beta-\beta^{\prime}}\left\langle i_{\uparrow}\right\rangle & \frac{\gamma x-\gamma y \quad \epsilon-\gamma \beta}{x-y}\left\langle i_{s}\right\rangle & \frac{\gamma x-y \quad \epsilon \rightarrow \gamma \beta}{x-\beta y}\left\langle i_{\rightarrow}\right\rangle
\end{array}
$$

Fig. 2. The partial equivalence classes of $\sim_{0}=\overline{\mathcal{C}_{0}}, \sim_{1}=\overline{\mathcal{C}_{1}}$ and $\sim_{2}=\overline{\mathcal{C}_{2}}$

Proposition 7. Let \sim be a PME over L and $x, y \in L^{\star}$ and $\gamma \in \mathcal{I}_{\sim}^{\star}$. We have: (a) $x \in \mathcal{I}_{\sim}^{\star}$ iff $\exists \beta \in \sim x \beta$; (b) $x \sim y$ iff $\gamma x \sim \gamma y$; (c) the inclusion $\mathcal{I}_{\sim}^{\star} \subseteq \mathcal{L}_{\sim}$ holds; (d) if $x \sim y$ then $x \in \mathcal{I}_{\sim}^{\star} \Leftrightarrow y \in \mathcal{I}_{\sim}^{\star}$.

In any group-PME \sim, every defined letter is invertible and from Proposition 7 (c), we obtain the identity $\mathcal{L}_{\sim}=\mathcal{I}_{\sim}^{\star}{ }^{13}$ Proposition 8 makes explicit a sufficient condition under which extensions do not change invertible letters: no new invertible letter appears in $\sim+\{x-y\}$ unless either $x \in \mathcal{I}_{\sim}^{\star}$ or $y \in \mathcal{I}_{\sim}^{\star}$.

Proposition 8. Let \sim be a PME and \mathcal{C} be a set of constraints such that for any $x-y \in$ \mathcal{C} the identity $\{x, y\} \cap \mathcal{I}_{\sim}^{\star}=\emptyset$ holds. Then the identity $\mathcal{I}_{\sim+\mathcal{C}}=\mathcal{I}_{\sim}$ holds.

7 No direct inductive proof of cancellativity for basic PMEs

We argue that it is not possible to prove cancellativity of basic PMEs by a direct induction on the length of the sequence defining them. This justifies the involved development that lies ahead. We present an example where the extensions $\sim+\{\epsilon-m\}$ break cancellativity and introduce non-invertible squares ${ }^{14}$

Let $\mathrm{k}, \mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in L$ be six different letters. Let us consider the following PME $\sim_{0}=\sim_{\mathcal{C}_{0}}$ where $\mathcal{C}_{0}=\{\mathrm{kx} \rightarrow \mathrm{ab}, \mathrm{ky}-\mathrm{ac}\}$. In Figure 2, we represent the corresponding set of partial equivalence classes of \sim_{0}. It is left to the reader to check that these are indeed the partial equivalence classes of the closure of \mathcal{C}_{0} : we have $L^{\star} / \sim_{0}=\{[\epsilon],[\mathrm{k}],[\mathrm{x}],[\mathrm{y}],[\mathrm{a}],[\mathrm{b}],[\mathrm{c}],[\mathrm{kx}],[\mathrm{ky}]\}$ with $[\alpha]=\{\alpha\}$ for $\alpha \in\{\epsilon, k, x, y, a, b, c\}$ and $[k x]=\{k x, a b\}$ and $[k y]=\{k y, a c\}$. We check that \sim_{0} is cancellative and has invertible squares (it contains no square except ϵ).

Now we consider the extension $\mathcal{C}_{1}=\mathcal{C}_{0} \cup\{\epsilon-\mathrm{b}, \epsilon-\mathrm{c}\}$ and $\sim_{1}=\sim_{0}+$ $\{\epsilon-\mathrm{b}, \epsilon-\mathrm{c}\}$. Let us denote $E=\mathrm{b}^{\star} \mathrm{c}^{\star}=\left\{\mathrm{b}^{i} \mathrm{c}^{j} \mid i, j \in \mathbb{N}\right\}$. Then $L^{\star} / \sim_{1}=$ $\{[\epsilon],[\mathrm{k}],[\mathrm{x}],[\mathrm{y}],[\mathrm{a}]\}$ where $[\alpha]=\alpha E$ for $\alpha \in\{\epsilon, \mathrm{k}, \mathrm{x}, \mathrm{y}\}$ and $[\mathrm{a}]=(\mathrm{a}|\mathrm{kx}| \mathrm{ky}) E$. The PME \sim_{1} is not cancellative anymore. Indeed, $k x \sim_{1}$ ky but $x \not \varkappa_{1} y$. Hence we have an example that shows that the extension $\sim+\{\epsilon-m\}$ does not preserve cancellativity. But still \sim_{1} has invertible squares; check that $\mathcal{I}_{\sim_{1}}=\{b, c\}$.

[^7]Finally we consider the extension $\mathcal{C}_{2}=\mathcal{C}_{1} \cup\{\epsilon-x\}$ and $\sim_{2}=\sim_{1}+\{\epsilon-x\}$. Let us denote $E=\mathrm{b}^{\star} \mathrm{c}^{\star} \mathrm{x}^{\star}$. Then $L^{\star} / \sim_{2}=\left\{\left[\mathrm{y}^{n}\right] \mid n \geqslant 0\right\} \cup\{[\mathrm{a}]\}$ with $\left[\mathrm{y}^{n}\right]=\mathrm{y}^{n} E$ and $[\mathrm{a}]=(\mathrm{a} \mid \mathrm{k}) \mathrm{y}^{\star} E$. Like \sim_{1}, the PME \sim_{2} is not cancellative. Moreover it has squares like y^{2} where y is not an invertible letter; check $\mathcal{I}_{\sim_{2}}=\{b, c, x\}$. Hence \sim_{2} contains non-invertible squares.

We see that the extension $\sim+\{\epsilon-m\}$ preserves neither cancellativity nor the invertibility of squares. Therefore it is not possible to show that basic PMEs have these properties by direct induction on the basic sequence.

8 Basic PMEs are primary extensions of group-PMEs

We define the notion of primary extension and use the equations in Lemma3to show that cancellativity and invertible squares are preserved by primary extensions. We then prove that basic PMEs are primary extensions of group-PMEs.

Definition 15 (Primary PME). Let \sim be a PME over L and $\alpha, m \in L^{\star}$ be two words such that $m \sim m, \alpha \neq \epsilon, \mathcal{A} \sim \mathcal{A}_{\alpha}=\emptyset$ and α is square-free. A type-1 extension of \sim is of the form $\sim+\{\alpha-m\}$; A type-2 extension of \sim is of the form $\sim+\{\alpha m-\mathrm{b}\}$ with $\mathrm{b} \in L \backslash\left(\mathcal{A}_{\sim} \cup \mathcal{A}_{\alpha}\right)$. A primary extension of \sim is a type- 1 or a type- 2 extension of \sim. The class of primary PMEs is the least class containing group-PMEs and closed under primary extensions.

We show that the properties of "cancellativity" and "invertible squares" hold for group-PMEs and are preserved by primary extensions.

Lemma 2. Every group-PME is cancellative and has invertible squares.
Lemma 3. Let \sim be a PME over L and $m, \alpha \in L^{\star}$ be such that $m \sim m, \alpha \neq \epsilon$ and $\mathcal{A}_{\alpha} \cap \mathcal{A}_{\sim}=\emptyset$. Then the two following identities hold:

$$
\begin{aligned}
\sim+ & \{\alpha-m\}=\left\{\delta \alpha^{u} x-\delta \alpha^{v} y \mid \exists i, m^{u} x \sim m^{v} y, m^{i+u} x \sim m^{i+v} y \text { and } \delta \prec \alpha^{i}\right\} \\
& \sim+\{\alpha m-\alpha m\}=\sim \cup\{\delta x-\delta y \mid x \sim y, \epsilon \neq \delta \prec \alpha \text { and } \exists q x q \sim m\}
\end{aligned}
$$

Moreover, if \sim is cancellative then both $\sim+\{\alpha-m\}$ and $\sim+\{\alpha m \rightarrow \alpha m\}$ are cancellative; and if \sim has invertible squares and α is square-free then both $\sim+\{\alpha-m\}$ and $\sim+\{\alpha m \rightarrow \alpha m\}$ have invertible squares.

Corollary 1. Primary PMEs are cancellative and have invertible squares.
The proof of Lemma 3 is long/technical but not too difficult (once you have the equations). We now prove our core result: basic PMEs are primary PMEs; in particular, they are cancellative and have invertible squares.

Theorem 5. Basic PMEs are primary PMEs.
Proof. Let us consider a basic PME ~. By Definition 12, there exists a basic sequence of constraints $\left(x_{i}-y_{i}\right)_{i<k}$ such that $\sim=\sim_{\mathcal{H}}$, with $k<\infty$ and $\mathcal{H}=\left\{x_{0}-y_{0}, \ldots, x_{k-1}-y_{k-1}\right\}$. For any $q \leqslant k$, we denote $\mathcal{H}_{q}=\left\{x_{i}-y_{i} \mid i<q\right\}$.

The extension $\sim_{\mathcal{H}_{q}}+\left\{x_{q}-y_{q}\right\}$ is basic for any $q<k$. We recall the notation $\mathcal{I}_{\sim}=\mathcal{I}_{\mathcal{H}}$ for the set of invertible letters of $\sim=\sim_{\mathcal{H}}$.

From $x_{i}-y_{i} \in \mathcal{H}$, we deduce $x_{i} \sim y_{i}$ and by Proposition 7 (d), we have $x_{i} \in \mathcal{I}_{\sim}^{\star}$ iff $y_{i} \in \mathcal{I}_{\sim}^{\star}$ for any $i<k$. Hence we obtain a partition $0, k[=C \uplus D$ with $C=\left\{i<k \mid\left\{x_{i}, y_{i}\right\} \subseteq \mathcal{I}_{\sim}^{\star}\right\}$ and $D=\left\{i<k \mid\left\{x_{i}, y_{i}\right\} \cap \mathcal{I}_{\sim}^{\star}=\emptyset\right\}$. Let us denote $\mathcal{C}=\left\{x_{i}-y_{i} \mid i \in C\right\}$ and $\mathcal{D}=\left\{x_{i}-y_{i} \mid i \in D\right\}$.

Let us enumerate $D=\left\{\sigma_{0}<\cdots<\sigma_{d-1}\right\}$ in strictly increasing order with $d=\operatorname{card}(D) \leqslant k$ and $\sigma:\left[0, d\left[\longrightarrow\left[0, k\left[\right.\right.\right.\right.$. For $q \leqslant d$, let us denote $D_{q}=\left\{\sigma_{i} \mid i<\right.$ $q\}$. We show the inclusion $\left[0, \sigma_{q}\left[\subseteq C \cup D_{q}\right.\right.$: indeed, let us consider $j<\sigma_{q}$ and let us prove $j \in C \cup D_{q}$. From $\sigma_{q}<k$, we deduce $j \in[0, k[=C \uplus D$. In case $j \in C$, we have finished. In case $j \in D=\left\{\sigma_{0}<\cdots<\sigma_{d-1}\right\}$, then $j=\sigma_{r}$ for some $r<d$. If $q \leqslant r$ then $\sigma_{q} \leqslant \sigma_{r}=j$ which contradicts $j<\sigma_{q}$. Hence we must have $r<q$ and we conclude $j=\sigma_{r} \in D_{q}$. Let us denote $\mathcal{D}_{q}=\left\{x_{\sigma_{i}}-y_{\sigma_{i}} \mid i<q\right\}$ for $q \leqslant d$. From $D_{q} \subseteq\left[0, \sigma_{q}\right.$ [we derive $\mathcal{D}_{q} \subseteq \mathcal{H}_{\sigma_{q}}$.

Let us prove the identities $\mathcal{A}_{\mathcal{C}}=\mathcal{I}_{\mathcal{C}}=\mathcal{I}_{\sim}$. Since $\mathcal{H}=\mathcal{C} \cup \mathcal{D}$, we get $\sim_{\mathcal{H}}=$ $\sim_{\mathcal{C}}+\mathcal{D}$. Moreover, every constraint of \mathcal{D} is of the form $x \rightarrow y$ with $\{x, y\} \cap \mathcal{I}_{\sim}^{\star}=\emptyset$. As $\mathcal{I}_{\mathcal{C}} \subseteq \mathcal{I}_{\mathcal{H}}=\mathcal{I}_{\sim}$ we deduce $\{x, y\} \cap \mathcal{I}_{\mathcal{C}}^{\star}=\emptyset$ for every constraint $x \rightarrow y \in \mathcal{D}$. Thus, by Proposition 8 , we have $\mathcal{I}_{\sim_{\mathcal{C}}+\mathcal{D}}=\mathcal{I}_{\sim_{\mathcal{C}}}$ and thus $\mathcal{I}_{\mathcal{C}}=\mathcal{I}_{\sim_{\mathcal{C}}}=\mathcal{I}_{\sim_{\mathcal{C}}+\mathcal{D}}=$ $\mathcal{I}_{\sim_{\mathcal{H}}}=\mathcal{I}_{\sim}$. Also, for any $x-y \in \mathcal{C}$ we have $\{x, y\} \subseteq \mathcal{I}_{\sim}^{\star}$ and thus $\mathcal{A}_{\mathcal{C}} \subseteq \mathcal{I}_{\sim}$. We conclude $\mathcal{A}_{\mathcal{C}}=\mathcal{I}_{\mathcal{C}}=\mathcal{I}_{\sim}$. In particular, $\sim_{\mathcal{C}}$ is a group-PME.

Let us define $\mathcal{E}_{q}=\mathcal{C} \cup \mathcal{D}_{q}$ for $q \leqslant d$. As $\mathcal{C} \subseteq \mathcal{E}_{q} \subseteq \mathcal{E}_{d}=\mathcal{C} \cup \mathcal{D}_{d}=\mathcal{C} \cup \mathcal{D}=\mathcal{H}$, we deduce $\mathcal{I}_{\sim}=\mathcal{I}_{\mathcal{C}} \subseteq \mathcal{I}_{\mathcal{E}_{q}} \subseteq \mathcal{I}_{\mathcal{H}}=\mathcal{I}_{\sim}$ and thus $\mathcal{I}_{\mathcal{E}_{q}}=\mathcal{I}_{\sim}$ for any $q \leqslant d$. Let us establish the inclusions $\mathcal{H}_{\sigma_{q}} \subseteq \mathcal{E}_{q}$ and $\mathcal{A}_{\mathcal{E}_{q}} \backslash \mathcal{A}_{\mathcal{H}_{\sigma_{q}}} \subseteq \mathcal{I}_{\sim}$. The first inclusion follows from $\left[0, \sigma_{q}\left[\subseteq C \cup D_{q}\right.\right.$ and the definitions of $\mathcal{H}_{\sigma_{q}}$ and \mathcal{E}_{q}. For the second inclusion, starting with $\mathcal{D}_{q} \subseteq \mathcal{H}_{\sigma_{q}}$ we derive $\mathcal{E}_{q}=\mathcal{C} \cup \mathcal{D}_{q} \subseteq \mathcal{C} \cup \mathcal{H}_{\sigma_{q}}$ and thus $\mathcal{A}_{\mathcal{E}_{q}} \subseteq \mathcal{A}_{\mathcal{C}} \cup \mathcal{A}_{\mathcal{H}_{\sigma_{q}}}=\mathcal{I}_{\sim} \cup \mathcal{A}_{\mathcal{H}_{\sigma_{q}}}$. Hence the inclusion $\mathcal{A}_{\mathcal{E}_{q}} \backslash \mathcal{A}_{\mathcal{H}_{\sigma_{q}}} \subseteq \mathcal{I}_{\sim}^{q}$.

Let us show by induction on $q \leqslant d$ that $\sim_{\mathcal{E}_{q}}$ is a primary PME. First the ground case. We have $\mathcal{D}_{0}=\emptyset$ and thus the identity $\sim_{\mathcal{E}_{0}}=\sim_{\mathcal{C}}$ holds. As a consequence, $\sim_{\mathcal{E}_{0}}$ is a group-PME and thus is a primary PME. Then the induction step. We assume that $\sim_{\mathcal{E}_{q}}$ is a primary PME and we show that $\sim_{\mathcal{E}_{q+1}}=\sim_{\mathcal{E}_{q}}+$ $\left\{x_{\sigma_{q}}-y_{\sigma_{q}}\right\}$ is also a primary PME. For this aim, we show that $\sim_{\mathcal{E}_{q}}+\left\{x_{\sigma_{q}}-y_{\sigma_{q}}\right\}$ is identical to a primary extension of $\sim_{\mathcal{E}_{q}}$. We remind that the constraint $x_{\sigma_{q}}-y_{\sigma_{q}}$ is basic w.r.t. $\sim_{\mathcal{H}_{\sigma_{q}}}$. We proceed by case analysis on that fact (see Definition 11):

- if $x_{\sigma_{q}}-y_{\sigma_{q}}=\mathrm{ab}-m$ with $m \sim_{\mathcal{H}_{\sigma_{q}}} m$ and $\mathrm{a} \neq \mathrm{b} \in L \backslash \mathcal{A}_{\mathcal{H}_{\sigma_{q}}}$. From $\mathcal{H}_{\sigma_{q}} \subseteq \mathcal{E}_{q}$ we deduce $m \sim_{\mathcal{E}_{q}} m$. We establish the relation $\{\mathrm{a}, \mathrm{b}\} \nsubseteq \mathcal{A}_{\mathcal{E}_{q}}$: if $\{\mathrm{a}, \mathrm{b}\} \subseteq \mathcal{A}_{\mathcal{E}_{q}}$ holds then we have $\{\mathrm{a}, \mathrm{b}\} \subseteq \mathcal{A}_{\mathcal{E}_{q}} \backslash \mathcal{A}_{\mathcal{H}_{\sigma_{q}}} \subseteq \mathcal{I}_{\sim}$ and as a consequence $\mathrm{ab} \in \mathcal{I}_{\sim}^{\star}$. But from $\sigma_{q} \in D$, we get ab $=x_{\sigma_{q}} \notin \mathcal{I}_{\sim}^{\star}$ which leads to a contradiction.
In case $\{\mathrm{a}, \mathrm{b}\} \cap \mathcal{A}_{\mathcal{E}_{q}}=\emptyset$ then $\mathcal{A}_{\mathrm{ab}} \cap \mathcal{A}_{\mathcal{E}_{q}}=\emptyset$, $\mathrm{ab} \neq \epsilon$ is square-free and $m \sim_{\mathcal{E}_{q}} m$. Hence, $\sim_{\mathcal{E}_{q}}+\{\mathrm{ab}-m\}$ is a type-1 primary extension of $\sim_{\mathcal{E}_{q}}$.
In case $\mathrm{a} \in \mathcal{A}_{\mathcal{E}_{q}}$ and $\mathrm{b} \notin \mathcal{A}_{\mathcal{E}_{q}}$ then $\mathrm{a} \in \mathcal{A}_{\mathcal{E}_{q}} \backslash \mathcal{A}_{\mathcal{H}_{\sigma_{q}}} \subseteq \mathcal{I}_{\sim}=\mathcal{I}_{\mathcal{E}_{q}}$ and hence we have $\epsilon \sim_{\mathcal{E}_{q}}$ a β for some β. The identity $\sim_{\mathcal{E}_{q}}+\{\mathrm{ab}-m\}=\sim_{\mathcal{E}_{q}}+\{\mathrm{b}-m \beta\}$ holds by direct application of rules $\left\langle i_{\leftarrow}\right\rangle$ and $\left\langle i_{\rightarrow}\right\rangle$. We verify that $\sim_{\mathcal{E}_{q}}+\{\mathrm{b} \rightarrow$ $m \beta\}$ is a type- 1 primary extension of $\sim_{\mathcal{E}_{q}}: \mathrm{b} \neq \epsilon$ is square-free, $\mathcal{A}_{\mathrm{b}} \cap \mathcal{A}_{\mathcal{E}_{q}}=\emptyset$, $m \beta \sim_{\mathcal{E}_{q}} m \beta$ (because $m \sim_{\mathcal{E}_{q}} m, \epsilon \sim_{\mathcal{E}_{q}}$ a β and rule $\left\langle i_{c}\right\rangle$). Hence $\sim_{\mathcal{E}_{q}}+\{$ ab $m\}$ is identical to a type-1 primary extension of $\sim_{\mathcal{E}_{q}}$.

The case $\mathrm{b} \in \mathcal{A}_{\mathcal{E}_{q}}$ and $\mathrm{a} \notin \mathcal{A}_{\mathcal{E}_{q}}$ can be treated in a symmetric way. In any of these three cases, we have proved that the $\mathrm{PME} \sim_{\mathcal{E}_{q}}+\{\mathrm{ab}-m\}$ can be expressed as a type-1 primary extension of $\sim_{\mathcal{E}_{q}}$;

- if $x_{\sigma_{q}} \rightarrow y_{\sigma_{q}}=\mathrm{a} m \rightarrow \mathrm{~b}$ with $m \sim_{\mathcal{H}_{\sigma_{q}}} m$ and $\mathrm{a} \neq \mathrm{b} \in L \backslash \mathcal{A}_{\mathcal{H}_{\sigma_{q}}}$. From $\sigma_{q} \in D$, we have $\mathrm{b}=y_{\sigma_{q}} \notin \mathcal{I}_{\sim}^{\star}$ and thus $\mathrm{b} \notin \mathcal{I}_{\sim}$. From the inclusion $\mathcal{H}_{\sigma_{q}} \subseteq \mathcal{E}_{q}$, we deduce $m \sim_{\mathcal{E}_{q}} m$. We further have $\mathrm{b} \notin \mathcal{A}_{\mathcal{E}_{q}}$ (otherwise we would have $\mathrm{b} \in \mathcal{A}_{\mathcal{E}_{q}} \backslash \mathcal{A}_{\mathcal{H}_{\sigma_{q}}} \subseteq \mathcal{I}_{\sim}$ contradicting $\mathrm{b} \notin \mathcal{I}_{\sim}$). We consider the two cases a $\notin \mathcal{A}_{\mathcal{E}_{q}}$ and $\mathrm{a} \in \mathcal{A}_{\mathcal{E}_{q}}$.
In case a $\notin \mathcal{A}_{\mathcal{E}_{q}}$ then we check that $\sim_{\mathcal{E}_{q}}+\{\mathrm{am}-\mathrm{b}\}$ is a type-2 primary extension: $\mathrm{a} \neq \epsilon$ is square-free, $\mathcal{A}_{\mathrm{a}} \cap \mathcal{A}_{\mathcal{E}_{q}}=\emptyset, m \sim_{\mathcal{E}_{q}} m$ and $\mathrm{b} \notin \mathcal{A}_{\mathcal{E}_{q}} \cup \mathcal{A}_{\mathrm{a}}$. In case $\mathrm{a} \in \mathcal{A}_{\mathcal{E}_{q}}$ then $\mathrm{a} \in \mathcal{A}_{\mathcal{E}_{q}} \backslash \mathcal{A}_{\mathcal{H}_{\sigma_{q}}} \subseteq \mathcal{I}_{\sim}=\mathcal{I}_{\mathcal{E}_{q}}$. Hence there exists β such that $\epsilon \sim_{\mathcal{E}_{q}} \mathrm{a} \beta$. The identity $\sim_{\mathcal{E}_{q}}+\{\mathrm{a} m-\mathrm{b}\}=\sim_{\mathcal{E}_{q}}+\{\mathrm{b} \rightarrow \mathrm{a} m\}$ holds by rule $\langle s\rangle$. Let us check that $\sim_{\mathcal{E}_{q}}+\{\mathrm{b}-\mathrm{a} m\}$ is a type-1 primary extension of $\sim_{\mathcal{E}_{q}}: \mathrm{b} \neq \epsilon$ is square-free and $\mathcal{A}_{\mathrm{b}} \cap \mathcal{A}_{\mathcal{E}_{q}}=\emptyset$ holds. a $m \sim_{\mathcal{E}_{q}}$ a m is the last remaining condition, obtained from $m \sim_{\mathcal{E}_{q}} m$ and $\epsilon \sim_{\mathcal{E}_{q}}$ a β using rule $\left\langle i_{c}\right\rangle$. In any of these two cases, we have proved that the PME $\sim_{\mathcal{E}_{q}}+\{\mathrm{am}-\mathrm{b}\}$ can be expressed as a type- 1 or as type-2 primary extension of $\sim_{\mathcal{E}_{q}}$;
- if $x_{\sigma_{q}} \rightarrow y_{\sigma_{q}}=\epsilon \rightarrow m$ with $m \sim_{\mathcal{H}_{\sigma_{q}}} m$. Then we have $x_{\sigma_{q}}=\epsilon \in \mathcal{I}_{\sim}^{\star}$ which directly contradicts $\left\{x_{\sigma_{q}}, y_{\sigma_{q}}\right\} \cap \mathcal{I}_{\sim}^{\star}=\emptyset$. Hence this case is not possible.
Hence, by induction on $q \leqslant d$, the $\mathrm{PME} \sim_{\mathcal{E}_{q}}$ is primary. In particular $\sim_{\mathcal{E}_{d}}=$ $\sim_{\mathcal{H}}=\sim$ is a primary PME.

Corollary 2. Basic and simple PMEs are cancellative and have invertible squares.

Corollary 3. Simple PMEs closed under rule $\langle i u\rangle$ are also closed under rule \langle di \rangle.

9 Conclusion

In this paper, we prove that validity in Boolean BI does not distinguish between some of the different notions of separation algebras commonly found in the literature. This result is obtained by an in-depth examination of the syntactic properties of basic/simple PMEs which are the counter-models that are generated by tableaux proof-search. We show that these models are cancellative and that the only squares they allow are composed of invertible letters using a detour via the notion of primary PME. From the cancellativity of simple PMEs and the strong completeness theorem, we derive equivalence results for cancellative partial monoids. We relate indivisibility of units to the disjointness property.

We propose some perspectives. First, we could investigate more properties of basic/simple PMEs to enrich the graph of known relations between the family $\left(\mathrm{BBI}_{X}\right)_{X}$. In particular, we expect a full characterization of basic PMEs that could lead to finer properties of simple PMEs. Another track of research would be to find a constructive proof of the results of this paper. There is little hope to succeed by using the strong completeness which is inescapably nonconstructive; but we could for instance approach the problem by eliminating the cancellativity rule in the proofs of the sequent calculus [9]. Another way to tackle the problem would be to design bisimulations or at least Kripke semantics preserving relations between cancellative and non-cancellative models.

References

1. Brotherston, J.: Bunched Logics Displayed. Studia Logica 100(6) (2012) 1223-1254
2. Brotherston, J., Kanovich, M.: Undecidability of Propositional Separation Logic and Its Neighbours. In: LICS, IEEE Computer Society (2010) 130-139
3. Brotherston, J., Kanovich, M.: Undecidability of Propositional Separation Logic and its Neighbours. Journal of the ACM 61(2) (2014)
4. Brotherston, J., Villard, J.: Parametric Completeness for Separation Theories. In: POPL, ACM (2014) 453-464
5. Calcagno, C., O'Hearn, P.W., Yang, H.: Local Action and Abstract Separation Logic. In: LICS, IEEE Computer Society (2007) 366-378
6. Dinsdale-Young, T., Birkedal, L., Gardner, P., Parkinson, M.J., Yang, H.: Views: compositional reasoning for concurrent programs. In: POPL, ACM (2013) 287-300
7. Dockins, R., Hobor, A., Appel, A.W.: A Fresh Look at Separation Algebras and Share Accounting. In: APLAS. Volume 5904 of Lecture Notes in Computer Science., Springer (2009) 161-177
8. Galmiche, D., Larchey-Wendling, D.: Expressivity properties of Boolean BI through Relational Models. In: FSTTCS. Volume 4337 of Lecture Notes in Computer Science., Springer (2006) 358-369
9. Hóu, Z., Clouston, R., Goré, R., Tiu, A.: Proof search for propositional abstract separation logics via labelled sequents. In: POPL, ACM (2014) 465-476
10. Hóu, Z., Tiu, A., Goré, R.: A Labelled Sequent Calculus for BBI: Proof Theory and Proof Search. In: TABLEAUX. Volume 8123 of Lecture Notes in Computer Science., Springer (2013) 172-187
11. Ishtiaq, S.S., O'Hearn, P.W.: BI as an Assertion Language for Mutable Data Structures. In: POPL, London, UK (2001) 14-26
12. Larchey-Wendling, D.: The formal strong completeness of partial monoidal Boolean BI. J. Logic. Comput. (2014) doi:10.1093/logcom/exu031
13. Larchey-Wendling, D., Galmiche, D.: Exploring the relation between Intuitionistic BI and Boolean BI: an unexpected embedding. Mathematical Structures in Computer Science 19(3) (2009) 435-500
14. Larchey-Wendling, D., Galmiche, D.: The Undecidability of Boolean BI through Phase Semantics. In: LICS, IEEE Computer Society (2010) 140-149
15. Larchey-Wendling, D., Galmiche, D.: Nondeterministic Phase Semantics and the Undecidability of Boolean BI. ACM ToCL 14(1) (2013) 6
16. Park, J., Seo, J., Park, S.: A theorem prover for Boolean BI. In: POPL, ACM (2013) 219-232
17. Pym, D.: The Semantics and Proof Theory of the Logic of Bunched Implications. Volume 26 of Applied Logic Series. Kluwer Academic Publishers (2002)
18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: LICS, IEEE Computer Society (2002) 55-74

A Postponed proofs of Section 2

Proposition 1. $\mathrm{DI} \subsetneq \mathrm{IU}$ and $\mathrm{PD}+\mathrm{DI} \subsetneq \mathrm{PD}+\mathrm{IU}$.
Proof. Let us first show the inclusion DI \subseteq IU. So let $\mathfrak{M}=(M, \circ, U)$ be a NDmonoid of sub-class DI. Let us prove that \mathfrak{M} belongs to sub-class IU. So we assume $x \circ y \cap U \neq \emptyset$ and we prove $x \in U$. There exists $u \in U$ such that $u \in x \circ y$. Then when have $u \in u \circ u \subseteq(x \circ y) \circ(x \circ y)=(x \circ x) \circ(y \circ y)$ by associativity/commutativity. Hence we cannot have $x \circ x=\emptyset$. So $x \circ x \neq \emptyset$ and as \mathfrak{M} belongs to DI, we conclude $x \in U$.

From the inclusion $\mathrm{DI} \subseteq \mathrm{IU}$, we immediately derive $\mathrm{PD}+\mathrm{DI} \subseteq \mathrm{PD}+\mathrm{IU}$; just remember that the conjunction + (of properties) corresponds to the intersection \cap (of sub-classes of ND).

To prove that both inclusions are strict, it is sufficent to find a PD-monoid that belongs to IU and not to DI. The monoid of natural numbers $(\mathbb{N}, o,\{0\})$ with $x \circ y=\{x+y\}$ satisfies these requirements.

B Postponed proofs of Section 3

In this section, let (M, \circ, U) be a ND-monoid. Before we establish the existence and unicity of units, let us introduce a first proposition.

Proposition 9. If $u, v \in U$ then $u \circ v \neq \emptyset$ if and only if $u=v$; and in that case the identity $u \circ u=\{u\}$ holds.

Proof. For any $k \in u \circ v$, using neutrality and commutativity, we derive $k \in$ $u \circ v \subseteq u \circ U=\{u\}$ and $k \in u \circ v=v \circ u \subseteq v \circ U=\{v\}$. Hence the inclusion $u \circ v \subseteq\{u\} \cap\{v\}$ holds. Thus, if $u \circ v \neq \emptyset$ then $u=v$. For any $v \neq u \in U$ we have $u \circ v \subseteq\{u\} \cap\{v\}=\emptyset$. Hence if $u \circ u=\emptyset$, we would have $u \circ U=$ $u \circ u \cup u \circ(U-\{u\})=\emptyset$ which contradicts neutrality. Thus we must have $u \circ u \neq \emptyset$ and since $u \circ u \subseteq u \circ U=\{u\}$, we deduce $u \circ u=\{u\}$.

Now we can establish the existence and unicity of the unit of $x \in M$ which are implicit in Definition 6.

Proof. From the identities $\bigcup\{x \circ u \mid u \in U\}=x \circ U=\{x\} \neq \emptyset$, we deduce that there exists $u \in U$ such that $x \circ u \neq \emptyset$. Then we derive $\emptyset \neq x \circ u \subseteq x \circ U=\{x\}$ and we obtain $x \circ u=\{x\}$. Hence there exists a unit for x.

For unicity, let us consider two units u_{1} and u_{2} for x. We have $x \circ u_{1}=x \circ u_{2}=$ $\{x\}$. By associativity we derive $x \circ\left(u_{1} \circ u_{2}\right)=\left(x \circ u_{1}\right) \circ u_{2}=\{x\} \circ u_{2}=\{x\}$. If the identity $u_{1} \circ u_{2}=\emptyset$ holds, then we derive $x \circ\left(u_{1} \circ u_{2}\right)=x \circ \emptyset=\emptyset$ which contradicts $x \circ\left(u_{1} \circ u_{2}\right)=\{x\}$. Hence we deduce $u_{1} \circ u_{2} \neq \emptyset$. By Proposition 9 . we conclude $u_{1}=u_{2}$. The unit of x is unique.

Proposition 10. Let (M, \circ, U) be a ND-monoid. The following properties hold:
(a) for any $x \in M$, if $x \in U$ then $u_{x}=x$;
(b) for any $x, z \in M$, if $z \circ u_{x} \neq \emptyset$ then $u_{x}=u_{z}$;
(c) for any $x, y, z \in M$, if $x \in y \circ z$ then $u_{x}=u_{y}=u_{z}$.

Proof. For (a), we have $x \circ u_{x}=\{x\} \neq \emptyset$ and thus by Proposition 9. we deduce $x=u_{x}$. For (b), we use the argument $\emptyset \neq z \circ u_{x}=\left(z \circ u_{z}\right) \circ u_{x}=z \circ\left(u_{z} \circ u_{x}\right)$ and we deduce that $u_{z} \circ u_{x}$ cannot be empty and thus $u_{z}=u_{x}$ by Proposition 9 . For (c), we use the relations $x \in y \circ z=\left(y \circ u_{y}\right) \circ\left(z \circ u_{z}\right)=y \circ\left(u_{y} \circ u_{z}\right) \circ z$ to deduce $u_{y} \circ u_{z} \neq \emptyset$ and thus $u_{y}=u_{z}$ by Proposition 9 . From $x \in x \circ u_{x} \subseteq$ $(y \circ z) \circ u_{x}=y \circ\left(z \circ u_{x}\right)$ we deduce that $z \circ u_{x} \neq \emptyset$ and thus $u_{x}=u_{z}$ by (b).

Now we can establish the correctness of the construction of the slice monoid, which is implicit in Definition 7 .

Proof. Using Proposition 10 (c), we check that o^{\prime} is well defined because whenever $u, v \in M_{x}$ holds then the inclusion $u \circ v \subseteq M_{x}$ holds. It is also trivial to check neutrality, commutativity and associativity using Proposition 10 .

Lemma 1, Let $\mathfrak{M}=(M, \circ, U)$ be a ND-monoid, $\delta: \operatorname{Var} \longrightarrow \mathcal{P}(M)$ and $x \in M$. Let us consider \mathfrak{M}_{x}, the slice monoid at x and let $\delta^{\prime}: \operatorname{Var} \longrightarrow \mathcal{P}\left(M_{x}\right)$ be defined by $\delta^{\prime}(z)=\delta(z) \cap M_{x}$ for any $z \in M_{x}$. For any formula F of BBI and any $z \in M_{x}$, we have $\mathfrak{M}, z \Vdash_{\delta} F$ iff $\mathfrak{M}_{x}, z \Vdash_{\delta^{\prime}} F$.

Proof. The proof is done by structural induction on F using Proposition 10 (c). We present three typical cases.

- if $F=v$ with $v \in \operatorname{Var}$ then $\mathfrak{M}, z \Vdash_{\delta} v$ iff $z \in \delta(v)$ iff $z \in \delta(v) \cap M_{x}$ iff $z \in$ $\delta^{\prime}(v)$ iff $\mathfrak{M}_{x}, z \vdash_{\delta^{\prime}} v$;
- if $F=\mathbb{I}$ then $\mathfrak{M}, z \vdash_{\delta} \mathbb{I}$ iff $z \in U$ iff $z \in U \cap M_{x}$ iff $z=u_{x}$ iff $\mathfrak{M}_{x}, z \vdash_{\delta^{\prime}} \mathbb{I}$;
- if $F=A * B$ then $\mathfrak{M}, z \vdash_{\delta} A * B$ iff $\exists a, b z \in a \circ b$ and $\mathfrak{M}, a \vdash_{\delta} A$ and $\mathfrak{M}, b \vdash_{\delta}$ B iff $\exists a, b z \in a \circ^{\prime} b$ and $\mathfrak{M}_{x}, a \Vdash_{\delta^{\prime}} A$ and $\mathfrak{M}_{x}, b \Vdash_{\delta^{\prime}} B$ iff $\mathfrak{M}_{x}, z \Vdash_{\delta^{\prime}} A * B$.

Theorem 1. If $K \subseteq$ ND is a subclass of ND-monoids stable under slicing, then $\mathrm{BBI}_{K}=\mathrm{BBI}_{K+\mathrm{SU}}$ holds. In particular, $\mathrm{BBI}_{\mathrm{ND}}=\mathrm{BBI}_{\mathrm{SU}}$ and $\mathrm{BBI}_{\mathrm{PD}}=\mathrm{BBI} \mathrm{ID}_{\mathrm{P}} \mathrm{SU}$.

Proof. Recall the identity $K+\mathrm{SU}=K \cap \mathrm{SU}$ where + represents the conjunction of properties and \cap represents the intersection of sub-classes ${ }^{15}$

The inclusion $\mathrm{BBI}_{K} \subseteq \mathrm{BBI}_{K+\mathrm{SU}}$ is an obvious consequence of $K \cap \mathrm{SU} \subseteq K$. For the reverse inclusion $\mathrm{BBI}_{K+\mathrm{SU}} \subseteq \mathrm{BBI}_{K}$, consider a formula F such that $F \notin \mathrm{BBI}_{K}$. Hence F has a counter-model in BBI_{K} given by the ND-monoid $\mathfrak{M}=(M, \circ, U)$, the valuation δ and the element $x \in M$ s.t. $\mathfrak{M}, x \nVdash_{\delta} F$. By Lemma1. we deduce that $\mathfrak{M}_{x}, x \nVdash_{\delta^{\prime}} F$ and thus the slice monoid \mathfrak{M}_{x} together with δ^{\prime} and $x \in M_{x}$ is a counter-model of F. Since K is stable under slicing, we have $\mathfrak{M}_{x} \in K$ and thus $F \notin \mathrm{BBI}_{K+\mathrm{SU}}$. To finish, the full subclass ND and the subclass PD are both stable under slicing.

[^8]
C Postponed proofs of Section 4

Proposition 3. The triple $\mathfrak{M}_{\sim}=\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ is a ND-monoid of sub-class PD + SU. \mathfrak{M}_{\sim} is in sub-class CA (resp. sub-class IU, resp. sub-class DI) if and only if \sim is closed under rule $\langle c a\rangle$ (resp. rule $\langle i u\rangle$, resp. rule $\langle d i\rangle$).

Proof. Let us first show that the relation $[z] \in[x] \bullet[y]$ is well defined, i.e. independent of the choice of the representatives x, y, and z. Let us pick $x \sim x^{\prime}$, $y \sim y^{\prime}$ and $z \sim z^{\prime}$ such that $z \sim x y$ holds and let us show that $z^{\prime} \sim x^{\prime} y^{\prime}$ holds. By rule $\langle s\rangle$, we have $x^{\prime} \sim x, y^{\prime} \sim y, z^{\prime} \sim z$. Then from $z \sim x y$ using twice rule $\left\langle e_{r}\right\rangle$ we derive $z \sim x^{\prime} y$ and $z \sim x^{\prime} y^{\prime}$. Using rule $\langle t\rangle$, we obtain $z^{\prime} \sim x^{\prime} y^{\prime}$.

Let us check neutrality. Let us consider $x \in L^{\star}$ such that $x \sim x$. Then $[z] \in$ $[x] \bullet[\epsilon]$ if and only if $z \sim x \epsilon$ and hence if and only if $[z]=[x]$. Commutativity is obvious because words are multisets.

For associativity, let x, a, b, c be such that $x \sim x, a \sim a, b \sim b$ and $c \sim c$. Let us suppose that $[x] \in[a] \bullet([b] \bullet[c])$. Then we have some k such that $k \sim k$, $[x] \in[a] \bullet[k]$ and $[k] \in[b] \bullet[c]$. We deduce $x \sim a k$ and $k \sim b c$. By rule $\langle s\rangle$, we obtain $b c \sim k$ and then by rule $\left\langle e_{r}\right\rangle$, we derive $x \sim a(b c)$. Thus $x \sim a b c$, then $a b \sim a b$ by rule $\left\langle p_{r}\right\rangle$. From hence we obtain $[x] \in[a b] \bullet[c]$ and $[a b] \in[a] \bullet[b]$. We conclude $[a] \bullet([b] \bullet[c]) \subseteq([a] \bullet[b]) \bullet[c]$. The reverse inclusion is similar.
$\mathfrak{M}_{\sim}=\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ obviously has a single unit. For partial determinism, let us consider x, y, a and b such that $x \sim x, y \sim y, a \sim a, b \sim b$ and $\{[x],[y]\} \subseteq$ $[a] \bullet[b]$. We deduce $x \sim a b$ and $y \sim a b$. Hence $x \sim y$ by rules $\langle s\rangle$ and $\langle t\rangle$. We conclude that $[x]=[y]$.

Let us now prove that $\mathfrak{M}_{\sim}=\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ is in sub-class CA if and only if \sim is closed under rule $\langle c a\rangle$. For the only if part, let us assume that $\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ verifies property CA. Let us consider three words k, a, b such that $k a \sim k b$. Then we have $[k a]=[k b] \in([k] \bullet[a]) \cap([k] \bullet[b])$. By property CA, we deduce $[a]=[b]$ and thus $a \sim b$. Hence \sim is indeed closed for rule $\langle c a\rangle$.

For the if part, let us assume that the PME \sim is closed for rule $\langle c a\rangle$. Then let us consider x, k, a, b such that $x \sim x, k \sim k, a \sim a, b \sim b$ and $[x] \in([k] \bullet[a]) \cap$ $([k] \bullet[b])$. We deduce $x \sim k a$ and $x \sim k b$. By rules $\langle s\rangle$ and $\langle t\rangle$, we derive $k a \sim k b$. Since \sim is closed for rule $\langle c a\rangle$, we deduce $a \sim b$ and thus $[a]=[b]$.

Let us now prove that $\mathfrak{M}_{\sim}=\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ is in sub-class IU if and only if \sim is closed under rule $\langle i u\rangle$. For the only if part, let us assume that $\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ verifies property IU. Let us consider two words x, y such that $\epsilon \sim x y$. Then we have $[\epsilon] \in[x] \bullet[y]$ and thus $[x] \in\{[\epsilon]\}$ by property IU. We deduce $[\epsilon]=[x]$ and thus $\epsilon \sim x$. Hence \sim is indeed closed for rule $\langle i u\rangle$.

For the if part, let us assume that the PME \sim is closed for rule $\langle i u\rangle$. Then let us consider x, y such that $x \sim x, y \sim y$ and $([x] \bullet[y]) \cap\{[\epsilon]\} \neq \emptyset$. We deduce $[\epsilon] \in[x] \bullet[y]$ and thus we have $\epsilon \sim x y$. By rules $\langle i u\rangle$, we derive $\epsilon \sim x$, and as a consequence $[x]=[\epsilon] \in\{[\epsilon]\}$. Hence \mathfrak{M}_{\sim} is in sub-class IU.

Let us now prove that $\mathfrak{M}_{\sim}=\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ is in sub-class DI if and only if \sim is closed under rule $\langle d i\rangle$. For the only if part, let us assume that $\left(L^{\star} / \sim, \bullet,\{[\epsilon]\}\right)$ verifies property DI. Let us consider a word x such that $x x \sim x x$. Then we have
$[x x] \in[x] \bullet[x]$ and thus $[x] \in\{[\epsilon]\}$ by property DI. We deduce $[\epsilon]=[x]$ and thus $\epsilon \sim x$. Hence \sim is indeed closed for rule $\langle d i\rangle$.

For the if part, let us assume that the PME \sim is closed for rule $\langle d i\rangle$. Then let us consider x such that $x \sim x$ and $[x] \bullet[x] \neq \emptyset$. Let $[z] \in[x] \bullet[x]$. We deduce $z \sim x x$ and thus $x x \sim x x$ by rule $\left\langle p_{r}\right\rangle$. Hence $\epsilon \sim x$ by rule $\langle d i\rangle$, and as a consequence $[x]=[\epsilon] \in\{[\epsilon]\}$. Hence \mathfrak{M}_{\sim} is in sub-class DI.

D Postponed proofs of Section 6

Proposition 5. Let \sim be a PME over L. If \sim has invertible squares then for any word $k \in L^{\star}$, if $k k \sim k k$ holds then $k \in \mathcal{I}_{\sim}^{\star}$ holds.

Proof. Let us consider $k \in L^{\star}$ such that $k k \sim k k$ holds. Let $\mathrm{c} \in \mathcal{A}_{k}$ be a letter of k. Then we have the identity $k=\mathrm{c}(k / \mathrm{c})$ and we deduce $\mathrm{cc}(k / \mathrm{c})(k / \mathrm{c}) \sim$ $\mathrm{cc}(k / \mathrm{c})(k / \mathrm{c})$ and thus $\mathrm{cc} \sim \mathrm{cc}$ holds by rule $\langle d\rangle$. Hence, since \sim has invertible squares, we get $\mathrm{c} \in \mathcal{I}_{\sim}$. We have proved the inclusion $\mathcal{A}_{k} \subseteq \mathcal{I}_{\sim}$ and thus $k \in \mathcal{I}_{\sim}^{\star}$.
Proposition 6. PMEs are closed under rules $\left\langle\epsilon_{c}, i_{\uparrow}, i_{c}, i_{s}, i_{\leftarrow}, i_{\rightarrow}\right\rangle$:

$$
\begin{array}{ccc}
\frac{\epsilon-\gamma \quad \epsilon-\beta}{\epsilon \rightarrow \gamma \beta}\left\langle\epsilon_{c}\right\rangle & \frac{x-y \epsilon-\gamma \beta}{\gamma x-\gamma y}\left\langle i_{c}\right\rangle & \frac{x-\beta y \epsilon-\gamma \beta}{\gamma x-y}\left\langle i_{\leftarrow}\right\rangle \\
\frac{\epsilon-\gamma \beta \quad \epsilon-\gamma \beta^{\prime}}{\beta \rightarrow \beta^{\prime}}\left\langle i_{\uparrow}\right\rangle & \frac{\gamma x+\gamma y \epsilon+\gamma \beta}{x-y}\left\langle i_{s}\right\rangle & \frac{\gamma x+y \epsilon \rightarrow \gamma \beta}{x-\beta y}\left\langle i_{\rightarrow}\right\rangle
\end{array}
$$

Proof. For rules $\left\langle\epsilon_{c}\right\rangle$ and $\left\langle i_{c}\right\rangle$, we provide the following proof trees:

$$
\frac{\frac{\epsilon-\gamma}{\gamma-\epsilon}\langle s\rangle \quad \epsilon-\epsilon \beta}{\epsilon \rightarrow \gamma \beta}\left\langle e_{r}\right\rangle \quad \frac{\frac{x-y}{x \epsilon-x \epsilon}\left\langle p_{l}\right\rangle}{} \frac{\frac{x-\gamma \beta \beta}{\gamma x-\gamma x}\left\langle p_{r}\right\rangle}{\frac{\gamma x-\gamma y}{\gamma-y}}\langle c\rangle
$$

For rules $\left\langle i_{s}\right\rangle$ and after that $\left\langle i_{\uparrow}\right\rangle$, we provide the following proof trees:

For rules $\left\langle i_{\leftarrow}\right\rangle$ and $\left\langle i_{\rightarrow}\right\rangle$, we provide the following proof trees:

$$
\frac{\epsilon-\gamma \beta \frac{x-\beta y \epsilon-\gamma \beta}{\gamma x-\gamma \beta y}\left\langle i_{c}\right\rangle}{\gamma x-y}\left\langle e_{r}\right\rangle \quad \frac{\epsilon-\gamma \beta \frac{\gamma x-y \epsilon-\gamma \beta}{\gamma \beta x-\beta y}\left\langle i_{c}\right\rangle}{x \rightarrow \beta y}\left\langle e_{l}\right\rangle
$$

Proposition 7. Let ~ be a PME over L. The following properties hold:
(a) for any $x \in L^{\star}, x \in \mathcal{I}_{\sim}^{\star}$ if and only if $\exists \beta \in L^{\star}, \epsilon \sim x \beta$;
(b) for any $x, y \in L^{\star}$ and any $\gamma \in \mathcal{I}_{\sim}^{\star}, x \sim y$ if and only if $\gamma x \sim \gamma y$;
(c) the inclusion $\mathcal{I}_{\sim}^{\star} \subseteq \mathcal{L}_{\sim}$ holds;
(d) for any $x, y \in L^{\star}$, if $x \sim y$ then $x \in \mathcal{I}_{\sim}^{\star} \Leftrightarrow y \in \mathcal{I}_{\sim}^{\star}$.

Proof. Let us start with Property (a). For the if part, we suppose $\epsilon \sim x \beta$ and we prove $\mathcal{A}_{x} \subseteq \mathcal{I}_{\sim}$. Let c be a letter of x. Then $x=\mathrm{c}(x / \mathrm{c})$ and thus $\epsilon \sim \mathrm{c}(x / \mathrm{c}) \beta$. So by definition of \mathcal{I}_{\sim} we have $c \in \mathcal{I}_{\sim}$. Since any letter of x belongs to \mathcal{I}_{\sim}, we have proved $x \in \mathcal{I}_{\sim}^{\star}$. For the only if part, let $x=\mathrm{c}_{1} \ldots \mathrm{c}_{k}$ where $\mathrm{c}_{1}, \ldots, \mathrm{c}_{k} \in \mathcal{I}_{\sim}$ are the letters of $x \in \mathcal{I}_{\sim}^{\star}$. Hence, by definition of \mathcal{I}_{\sim}, there exist $m_{1}, \ldots, m_{k} \in L^{\star}$ such that $\epsilon \sim \mathrm{c}_{1} m_{1}, \ldots, \epsilon \sim \mathrm{c}_{k} m_{k}$ hold. By $k-1$ applications of rule $\left\langle\epsilon_{c}\right\rangle$ we obtain $\epsilon \sim\left(\mathrm{c}_{1} m_{1}\right) \cdots\left(\mathrm{c}_{k} m_{k}\right)$. Hence, we get $\epsilon \sim x \beta$ for $\beta=m_{1} \ldots m_{k}$.

Now let us consider Property (b). Since $\gamma \in \mathcal{I}_{\sim}^{\star}$, by Property (a), there exists $\beta \in L^{\star}$ such that $\epsilon \sim \gamma \beta$. For the if part, we suppose $\gamma x \sim \gamma y$. Then by rule $\left\langle i_{s}\right\rangle$, using $\epsilon \sim \gamma \beta$, we obtain $x \sim y$. For the only if part, we suppose $x \sim y$. Then by rule $\left\langle i_{c}\right\rangle$, using $\epsilon \sim \gamma \beta$, we obtain $\gamma x \sim \gamma y$.

Let us prove Property (c). Let us assume $\gamma \in \mathcal{I}_{\sim}^{\star}$. Then using Property (b) with $x=y=\epsilon$, we check $\epsilon \sim \epsilon$ (which holds by rule $\langle\epsilon\rangle$) and we obtain $\gamma \sim \gamma$. We conclude with $\gamma \in \mathcal{L}_{\sim}$.

Let us finish with Property (d). For the only if part, let us assume $x \sim y$ and $x \in \mathcal{I}_{\sim}^{\star}$ and let us show $y \in \mathcal{I}_{\sim}^{\star}$. Using rule $\langle s\rangle$, we deduce $y \sim x$. From Property (a), we have $\epsilon \sim x \beta$ for some β. Hence by rule $\left\langle e_{r}\right\rangle$, we deduce $\epsilon \sim y \beta$. By Property (a) again, we conclude $y \in \mathcal{I}_{\sim}^{\star}$. For the if part, the proof of ($x \sim$ y and $\left.y \in \mathcal{I}_{\sim}^{\star}\right) \Rightarrow x \in \mathcal{I}_{\sim}^{\star}$ is similar except that it does not use rule $\langle s\rangle$.

Proposition 8. Let \sim be a PME and \mathcal{C} be a set of constraints such that for any $x-y \in$ \mathcal{C} the identity $\{x, y\} \cap \mathcal{I}_{\sim}^{\star}=\emptyset$ holds. Then the identity $\mathcal{I}_{\sim+\mathcal{C}}=\mathcal{I}_{\sim}$ holds.

Proof. Let us define $I=\mathcal{I}_{\sim}$ and $\sim^{\prime}=\sim+\mathcal{C}$. We consider the binary relation \sim_{I} over L^{\star} defined by $x \sim_{I} y$ iff $\left(x \in I^{\star} \Leftrightarrow y \in I^{\star}\right)$. It is straightforward (and left to the reader) to prove that \sim_{I} is a PME.

We show that the inclusions $\sim \subseteq \sim_{I}$ and $\mathcal{C} \subseteq \sim_{I}$ hold. First, the inclusion $\mathcal{C} \subseteq \sim_{I}$ is a direct consequence of the hypothesis on \mathcal{C} because every constraint $x \rightarrow y$ of \mathcal{C} verifies $x \notin I^{\star}$ and $y \notin I^{\star}$.

Let us then prove that $\sim \subseteq \sim_{I}$. So we assume $x \sim y$ and we prove that $x \sim_{I} y$ holds. Hence, let us show that $x \in I^{\star}$ implies $y \in I^{\star}$. Indeed, if $x \in$ $I^{\star}=\mathcal{I}_{\sim}^{\star}$ then by Proposition 7 (a), we obtain β such that $\epsilon \sim x \beta$. Then by rules $\langle s\rangle$ and $\left\langle e_{r}\right\rangle$ we get $\epsilon \sim y \beta$. Hence by Proposition 7 (a) again, we obtain $y \in \mathcal{I}_{\sim}^{\star}=I^{\star}$. The reverse implication $y \in I^{\star}$ implies $x \in I^{\star}$ is obtained in a symmetric way.

Hence the inclusion $\sim \cup \mathcal{C} \subseteq \sim_{I}$ holds, and since \sim_{I} is a PME, then the inclusion $\sim^{\prime}=\sim+\mathcal{C} \subseteq \sim_{I}$ holds. Thus for any $x \in L^{\star}$, if $\epsilon \sim^{\prime} x$ then $\epsilon \sim_{I} x$ and since $\epsilon \in I^{\star}$, we derive $x \in I^{\star}$. From the property $\forall x \in L^{\star}, \epsilon \sim^{\prime} x \Rightarrow x \in I^{\star}$ we deduce $\mathcal{I}_{\sim^{\prime}} \subseteq I=\mathcal{I}_{\sim}$. The reverse inclusion $\mathcal{I}_{\sim} \subseteq \mathcal{I}_{\sim^{\prime}}$ is obvious since $\sim \subseteq \sim^{\prime}$.

E Postponed proofs of Section 8

Lemma 2. Every group-PME is cancellative and has invertible squares.
Proof. Let \sim be a group-PME. We have $\mathcal{A}_{\sim}=\mathcal{I}_{\sim}$. Let us assume $k a \sim k b$. Then $k \in \mathcal{L}_{\sim} \subseteq \mathcal{A}_{\sim}^{\star}=\mathcal{I}_{\sim}^{\star}$. Using Proposition 7 (b) with $\gamma=k$ we deduce $a \sim b$. Hence \sim is closed under rule $\langle c a\rangle$. Now let us assume cc $\sim \mathrm{cc}$. Then $\mathrm{c} \in \mathcal{A}_{\sim}=\mathcal{I}_{\sim}$. Hence \sim has invertible squares.

Lemma 3. Let \sim be a PME over L and $m, \alpha \in L^{\star}$ be such that $m \sim m, \alpha \neq \epsilon$ and $\mathcal{A}_{\alpha} \cap \mathcal{A}_{\sim}=\emptyset$. Then the two following identities hold:

$$
\begin{gathered}
\sim+\{\alpha-m\}=\left\{\delta \alpha^{u} x-\delta \alpha^{v} y \mid \exists i, m^{u} x \sim m^{v} y, m^{i+u} x \sim m^{i+v} y \text { and } \delta \prec \alpha^{i}\right\} \\
\sim+\{\alpha m-\alpha m\}=\sim \cup\{\delta x-\delta y \mid x \sim y, \epsilon \neq \delta \prec \alpha \text { and } \exists q x q \sim m\}
\end{gathered}
$$

Moreover, if \sim is cancellative then both $\sim+\{\alpha-m\}$ and $\sim+\{\alpha m \rightarrow \alpha m\}$ are cancellative; and if \sim has invertible squares and α is square-free then both $\sim+\{\alpha \rightarrow m\}$ and $\sim+\{\alpha m-\alpha m\}$ have invertible squares.

Proof. Let us start with the first equation and define $\sim^{\prime \prime}=\sim+\{\alpha-m\}$ and $\sim^{\prime}=\left\{\delta \alpha^{u} x-\delta \alpha^{v} y \mid \exists i, m^{u} x \sim m^{v} y, m^{i+u} x \sim m^{i+v} y\right.$ and $\left.\delta \prec \alpha^{i}\right\}$. Let us show the inclusion $\sim^{\prime} \subseteq \sim^{\prime \prime}$ and after that the inclusion $\sim^{\prime \prime} \subseteq \sim^{\prime}$.

Then we consider x, y, δ, u, v, i such that $m^{u} x \sim m^{v} y, m^{i+u} x \sim m^{i+v} y$ and $\delta \prec \alpha^{i}$. Let us prove that $\delta \alpha^{u} x \sim^{\prime \prime} \delta \alpha^{v} y$ holds. By definition of $\sim^{\prime \prime}$ as the least PME that contains \sim and $\{\alpha-m\}$, we have $\alpha \sim^{\prime \prime} m, m^{u} x \sim^{\prime \prime} m^{v} y$ and $m^{i+u} x \sim^{\prime \prime} m^{i+v} y$. Now we consider the following proof tree:

$$
\begin{aligned}
& \frac{\alpha \sim^{\prime \prime} m \frac{m^{i+u} x \sim^{\prime \prime} m^{i+v} y}{m^{i} m^{v} y \sim^{\prime \prime} m^{i} m^{v} y}}{\alpha^{i} m^{v} y \sim^{\prime \prime} \alpha^{i} m^{v} y}\left\langle e_{l}\right\rangle i \text { times, }\left\langle e_{r}\right\rangle i \text { times } \\
& \frac{\alpha \sim^{\prime \prime} m \frac{m^{u} x \sim^{\prime \prime} m^{v} y}{\delta m^{u} x \sim^{\prime \prime} \delta m^{v} y}}{\delta m^{v} y \sim^{\prime \prime} \delta m^{v} y}\left\langle e_{l}\right\rangle u \text { times },\left\langle e_{l}\right\rangle v \text { with } \delta \prec \alpha^{i}
\end{aligned}
$$

which gives the proof that $\delta \alpha^{u} x \sim^{\prime \prime} \delta \alpha^{v} y$ holds. We have proved $\sim^{\prime} \subseteq \sim^{\prime \prime}$.
For the converse inclusion $\sim^{\prime \prime}=\sim+\{\alpha-m\} \subseteq \sim^{\prime}$, it is sufficient to show that the relations $\sim \subseteq \sim^{\prime}$ and $\alpha \sim^{\prime} m$ both hold and that \sim^{\prime} is a PME. $\sim \subseteq \sim^{\prime}$ is obtained by the assignments $u, v, i:=0$ and $\delta:=\epsilon$. The relation $\alpha \sim^{\prime} m$ is obtained by the assignments $u:=1, v, i:=0, x, \delta:=\epsilon$ and $y:=m$.

Before we show that \sim^{\prime} is a PME, let us first establish some properties of \sim^{\prime}. The inclusion $\mathcal{A}_{\sim^{\prime}} \subseteq \mathcal{A}_{\sim} \cup \mathcal{A}_{\alpha}$ is easy to establish: for any $\delta \alpha^{u} x \sim^{\prime} \delta \alpha^{v} y$, since we have $\delta \prec \alpha^{i}$ and $m^{u} x \sim m^{v} y$, and thus $\mathcal{A}_{\delta \alpha^{u}} \cup \mathcal{A}_{\delta \alpha^{v}} \subseteq \mathcal{A}_{\alpha}$ and $\mathcal{A}_{x} \cup \mathcal{A}_{y} \subseteq \mathcal{A}_{\sim}$.

We then prove the following equivalence for any $x_{1} \in L^{\star}$:

$$
\begin{equation*}
x_{1} \sim^{\prime} x_{1} \quad \text { iff } \quad \text { there exist } j, \delta, x \text { s.t. } x_{1}=\delta x, m^{j} x \sim m^{j} x \text { and } \delta \prec \alpha^{j} \tag{1}
\end{equation*}
$$

The if side is easy: from $m^{j} x \sim m^{j} x$ we deduce $x \sim x$ by rule $\langle d\rangle$. Then we consider the assignements $u, v:=0, i:=j, \delta:=\delta$ and $x, y:=x$ and check that $x_{1}=\delta \alpha^{u} x=\delta \alpha^{v} y, m^{u} x \sim m^{v} y, m^{i+u} x \sim m^{i+v} y$ and $\delta \prec \alpha^{i}$. For the only if side, let us consider u, v, i, x, y and δ such that $x_{1}=\delta \alpha^{u} x=\delta \alpha^{v} y, m^{u} x \sim m^{v} y$, $m^{i+u} x \sim m^{i+v} y$ and $\delta \prec \alpha^{i}$. From $\mathcal{A} \sim \mathcal{A}_{\alpha}=\emptyset, \mathcal{A}_{\delta} \subseteq \mathcal{A}_{\alpha^{i}}=\mathcal{A}_{\alpha}$ and $\mathcal{A}_{x} \cup \mathcal{A}_{y} \subseteq$ \mathcal{A}_{\sim}, we deduce $\delta \alpha^{u}=\delta \alpha^{v}$ and $x=y$. Hence we must have $u=v$ (because $\alpha \neq \epsilon$). Now let us consider the assignments $j:=i+u, \delta^{\prime}:=\delta \alpha^{u}$ and $x:=x$. We easily check that $x_{1}=\delta^{\prime} x, m^{j} x \sim m^{j} x$ and $\delta^{\prime} \prec \alpha^{j}$.

Then we show the identity

$$
\begin{equation*}
\sim^{\prime}=\left\{\delta \alpha^{u} x-\delta \alpha^{v} y \mid \exists i, m^{u} x \sim m^{v} y, m^{i+u} x \sim m^{i+v} y, \delta \prec \alpha^{i} \text { and } \alpha \nprec \delta\right\} \tag{2}
\end{equation*}
$$

which means that we could have further imposed the condition $\alpha \nprec \delta$ in the definition of \sim^{\prime}. One inclusion is obvious because there is one more condition. For the converse inclusion, let us consider $x_{1} \sim^{\prime} y_{1}$, i.e. $x_{1}=\delta \alpha^{u} x$ and $y_{1}=$ $\delta \alpha^{v} y$ for some x, y, δ, u, v, i such that $m^{u} x \sim m^{v} y, m^{i+u} x \sim m^{i+v} y$ and $\delta \prec \alpha^{i}$. Let w be the greatest natural number such that $\alpha^{w} \prec \delta$ (recall $\alpha \neq \epsilon$) and then we write $\delta=\delta^{\prime} \alpha^{w}$. We deduce that $\alpha \nprec \delta^{\prime}$ (otherwise w would not be the greatest). Then we have $\delta=\delta^{\prime} \alpha^{w} \prec \alpha^{i}$ and we deduce $w \leqslant i$ (because $\alpha \neq \epsilon$) and thus $\delta^{\prime} \prec \alpha^{i-w}$. Hence from $m^{i+u} x \sim m^{i+v} y=m^{i-w} m^{v+w} y$ we deduce $m^{v+w} y \sim m^{v+w} y$ using rule $\left\langle p_{r}\right\rangle$, and then $m^{u+w} x \sim m^{v+w} y$ by rule $\left\langle e_{l}\right\rangle$ with $m^{u} x \sim m^{v} y$. With the assignments $u_{1}:=u+w, v_{1}:=v+w, i_{1}:=i-w$, we deduce the identities $x_{1}=\delta^{\prime} \alpha^{u_{1}} x$ and $y_{1}=\delta^{\prime} \alpha^{v_{1}} y$ and the relations $m^{u_{1}} x \sim m^{v_{1}} y$, $m^{i_{1}+u_{1}} x \sim m^{i_{1}+v_{1}} y, \delta^{\prime} \prec \alpha^{i_{1}}$ and $\alpha \nprec \delta^{\prime}$. We have proved that Equation (2) holds.

Now let us show that \sim^{\prime} is a PME by proving that it is closed under every rule of Definition 8 .

- for rule $\langle\epsilon\rangle$, we obtain $\epsilon \sim^{\prime} \epsilon$ by the assignments $u, v, i:=0$ and $x, y, \delta:=\epsilon$;
$-\sim^{\prime}$ is closed for rule $\langle s\rangle$ because the definition of \sim^{\prime} is symmetric provided \sim is symmetric itself which is the case since \sim is a PME;
- for rule $\langle d\rangle$, let us consider $x y \sim^{\prime} x y$. Using Equivalence (1), there exist j, δ, x_{0} s.t. $x y=\delta x_{0}, m^{j} x_{0} \sim m^{j} x_{0}$ and $\delta \prec \alpha^{j}$. From $x y=\delta x_{0}$, we deduce that there exist $x_{1}, y_{1}, x_{2}, y_{2}$ such that $x=x_{1} x_{2}, y=y_{1} y_{2}, \delta=x_{2} y_{2}$ and $x_{0}=x_{1} y_{1}$. Hence $x_{2} \prec \delta$ and we obtain $x_{2} \prec \alpha^{j}$. From $m^{j} x_{0} \sim m^{j} x_{0}$ we deduce $m^{j} x_{1} y_{1} \sim m^{j} x_{1} y_{1}$ and then $m^{j} x_{1} \sim m^{j} x_{1}$ by rule $\langle d\rangle$. Thus using Equivalence (1) again we conclude $x=x_{2} x_{1} \sim^{\prime} x_{2} x_{1}=x$. We have proved that \sim^{\prime} is closed under rule $\langle d\rangle$;
- for rule $\langle t\rangle$, let us consider $x \sim^{\prime} y$ and $y \sim^{\prime} z$. Then, using Equation (2) there exist $u_{1}, v_{1}, i_{1}, x_{1}, y_{1}, \delta_{1}$ such that $x=\delta_{1} \alpha^{u_{1}} x_{1}, y=\delta_{1} \alpha^{v_{1}} y_{1}, m^{u_{1}} x_{1} \sim m^{v_{1}} y_{1}$, $m^{i_{1}+u_{1}} x_{1} \sim m^{i_{1}+v_{1}} y_{1}, \delta_{1} \prec \alpha^{i_{1}}$ and $\alpha \nprec \delta_{1}$. There also exist $u_{2}, v_{2}, i_{2}, y_{2}$, z_{2}, δ_{2} such that $y=\delta_{2} \alpha^{u_{2}} y_{2}, z=\delta_{2} \alpha^{v_{2}} z_{2}, m^{u_{2}} y_{2} \sim m^{v_{2}} z_{2}, m^{i_{2}+u_{2}} y_{2} \sim$ $m^{i_{2}+v_{2}} z_{2}, \delta_{2} \prec \alpha^{i_{2}}$ and $\alpha \nprec \delta_{2}$. Then we have $y=\delta_{1} \alpha^{v_{1}} y_{1}=\delta_{2} \alpha^{u_{2}} y_{2}$. From $\left(\mathcal{A}_{\delta_{1} \alpha^{v_{1}}} \cup \mathcal{A}_{\delta_{2} \alpha^{u_{2}}}\right) \cap\left(\mathcal{A}_{y_{1}} \cup \mathcal{A}_{y_{2}}\right) \subseteq \mathcal{A}_{\alpha} \cap \mathcal{A}_{\sim}=\emptyset$, we deduce $\delta_{1} \alpha^{v_{1}}=\delta_{2} \alpha^{u_{2}}$ and $y_{1}=y_{2}$. If $v_{1}<u_{2}$ then $\alpha \prec \alpha^{u_{2}-v_{1}} \prec \delta_{1}$ which contradicts $\alpha \nprec \delta_{1}$. If $u_{2}<v_{1}$ then $\alpha \prec \alpha^{v_{1}-u_{2}} \prec \delta_{2}$ which contradicts $\alpha \nprec \delta_{2}$. Hence we must have
$v_{1}=u_{2}$ and thus $\delta_{1}=\delta_{2}$. Let us consider the assignments $u:=u_{1}, v:=v_{2}$, $\delta:=\delta_{1}, i:=\min \left\{i_{1}, i_{2}\right\}$. We have $x=\delta_{1} \alpha^{u_{1}} x_{1}=\delta \alpha^{u} x_{1}, z=\delta_{2} \alpha^{v_{2}} z_{2}=\delta \alpha^{v} z_{2}$ and $m^{u_{1}} x_{1} \sim m^{v_{1}} y_{1}=m^{u_{2}} y_{2} \sim m^{v_{2}} z_{2}$ hence $m^{u} x_{1} \sim m^{v} z_{2}$ by rule $\langle t\rangle$. We also have the derivation

$$
\frac{\left.m^{u_{1}} x_{1} \sim m^{v_{1}} y_{1} \quad \frac{m^{i_{1}} m^{u_{1}} x_{1} \sim m^{i_{1}} m^{v_{1}} y_{1}}{m^{i} m^{v_{1}} y_{1} \sim m^{i} m^{v_{1}} y_{1}}\left\langle p_{r}\right\rangle \text { with } i \leqslant i_{1}\right\rangle}{m^{i} m^{u_{1}} x_{1} \sim m^{i} m^{v_{1}} y_{1}}\left\langle e_{l}\right.
$$

For similar reasons, using $i \leqslant i_{2}$ we derive $m^{i+u_{2}} y_{2} \sim m^{i+v_{2}} z_{2}$. Hence $m^{i+u_{1}} x_{1} \sim m^{i+v_{1}} y_{1}=m^{i+u_{2}} y_{2} \sim m^{i+v_{2}} z_{2}$ and thus we obtain $m^{i+u_{1}} x_{1} \sim$ $m^{i+v_{2}} z_{2}$ by rule $\langle t\rangle$. From $\delta=\delta_{1} \prec \alpha^{i_{1}}, \delta=\delta_{2} \prec \alpha^{i_{2}}$ and $i \in\left\{i_{1}, i_{2}\right\}$, we derive $\delta \prec \alpha^{i}$ and conclude $x=\delta \alpha^{u} x_{1} \sim^{\prime} \delta \alpha^{v} z_{2}=z$. Hence \sim^{\prime} is closed under rule $\langle t\rangle$;

- for rule $\langle c\rangle$, let us consider $k y \sim^{\prime} k y$ and $x \sim^{\prime} y$. Since the inclusion $\mathcal{A}_{\sim^{\prime}} \subseteq$ $\mathcal{A}_{\sim} \cup \mathcal{A}_{\alpha}$ holds, we can write $k=k_{1} k_{2}$ with $k_{1} \in \mathcal{A}_{\sim}^{\star}$ and $k_{2} \in \mathcal{A}_{\alpha}^{\star}$. Using Equivalence (1), we obtain δ_{1}, z_{0} and j_{0} such that $k y=\delta_{1} z_{0}$ with $m^{j_{0}} z_{0} \sim m^{j_{0}} z_{0}$ and $\delta_{1} \prec \alpha^{j_{0}}$. We have thus $\mathcal{A}_{\delta_{1}} \subseteq \mathcal{A}_{\alpha}$ and $\mathcal{A}_{z_{0}} \subseteq \mathcal{A}_{\sim}$. From $x \sim^{\prime} y$ we obtain $x_{0}, y_{0}, \delta_{2}, u_{0}, v_{0}, i_{0}$ such that $x=\delta_{2} \alpha^{u_{0}} x_{0}, y=\delta_{2} \alpha^{v_{0}} y_{0}$, $m^{u_{0}} x_{0} \sim m^{v_{0}} y_{0}, m^{i_{0}+u_{0}} x_{0} \sim m^{i_{0}+v_{0}} y_{0}$, and $\delta_{2} \prec \alpha^{i_{0}}$. Hence $\mathcal{A}_{\delta_{2}} \subseteq \mathcal{A}_{\alpha}$ and $\mathcal{A}_{x_{0}} \cup \mathcal{A}_{y_{0}} \subseteq \mathcal{A}_{\sim}$. From $k y=k_{1} k_{2} \delta_{2} \alpha^{v_{0}} y_{0}=\delta_{1} z_{0}$ and $\mathcal{A}_{\sim} \cap \mathcal{A}_{\alpha}=\emptyset$ we deduce $k_{1} y_{0}=z_{0}$ and $k_{2} \delta_{2} \alpha^{v_{0}}=\delta_{1}$. Hence $k_{2} \delta_{2} \alpha^{v_{0}} \prec \alpha^{j_{0}}$ and thus we must have $v_{0} \leqslant j_{0}$ (because $\alpha \neq \epsilon$). Let us consider the assignments $x_{1}:=k_{1} x_{0}, y_{1}:=k_{1} y_{0}, u:=u_{0}, v:=v_{0}, i:=j_{0}-v_{0}$ and $\delta:=k_{2} \delta_{2}$. Then we have $k x=k_{1} k_{2} \delta_{2} \alpha^{u_{0}} x_{0}=\delta \alpha^{u} x_{1}, k y=k_{1} k_{2} \delta_{2} \alpha^{v_{0}} y_{0}=\delta \alpha^{v} y_{1}, m^{u} x_{1}=k_{1} m^{u_{0}} x_{0}$, $m^{v} y_{1}=k_{1} m^{v_{0}} y_{0}$. From $m^{j_{0}} z_{0} \sim m^{j_{0}} z_{0}$ and $m^{j_{0}} z_{0}=k_{1} m^{j_{0}} y_{0}$ we obtain the following derivation

$$
\frac{m^{u_{0}} x_{0} \sim m^{v_{0}} y_{0}}{\frac{k_{1} m^{j_{0}} y_{0} \sim k_{1} m^{j_{0}} y_{0}}{k_{1} m^{v_{0}} y_{0} \sim k_{1} m^{v_{0}} y_{0}}\langle d\rangle \text { with } v_{0} \leqslant j_{0}}\left\langle k_{1} m^{u_{0}} x_{0} \sim k_{1} m^{v_{0}} y_{0} \quad\right. \text { 位 }
$$

and thus we have established $m^{u} x_{1} \sim m^{v} y_{1}$. The next derivation comes from the identity $j_{0}=\left(j_{0}-v_{0}\right)+v_{0}$
and thus we have established $m^{i+u} x_{1} \sim m^{i+v} y_{1}$. We finally check $\delta \alpha^{v_{0}}=$ $k_{2} \delta_{2} \alpha^{v_{0}}=\delta_{1} \prec \alpha^{j_{0}}$ and thus $\delta \prec \alpha^{j_{0}-v_{0}}=\alpha^{i}$. We conclude that the relation $k x=\delta \alpha^{u} x_{1} \sim^{\prime} \delta \alpha^{v} y_{1}=k y$ holds. Hence \sim^{\prime} is closed under rule $\langle c\rangle$.

Now, assuming the cancellativity of \sim, let us show the cancellativity of $\sim^{\prime}=$ $\sim+\{\alpha-m\}$. We thus assume $k x \sim^{\prime} k y$. Let us prove that $x \sim^{\prime} y$ holds.

Using Equation (2), there exist $x_{0}, y_{0}, \delta, u_{0}, v_{0}$ and i_{0} such that $k x=\delta \alpha^{u_{0}} x_{0}$, $k y=\delta \alpha^{v_{0}} y_{0}, m^{u_{0}} x_{0} \sim m^{v_{0}} y_{0}, m^{i_{0}+u_{0}} x_{0} \sim m^{i_{0}+v_{0}} y_{0}, \delta \prec \alpha^{i_{0}}$ and $\alpha \nprec \delta$. Since $k, x, y \in \mathcal{A}_{\sim}^{\star}, \subseteq\left(\mathcal{A}_{\sim} \cup \mathcal{A}_{\alpha}\right)^{\star}$, we write $k=k_{1} k_{2}, x=x_{1} x_{2}$ and $y=y_{1} y_{2}$ with $k_{1}, x_{1}, y_{1} \in \mathcal{A}_{\sim}^{\star}$ and $k_{2}, x_{2}, y_{2} \in \mathcal{A}_{\alpha}^{\star}$. We deduce $k_{1} x_{1}=x_{0}, k_{2} x_{2}=\delta \alpha^{u_{0}}, k_{1} y_{1}=$ y_{0} and $k_{2} y_{2}=\delta \alpha^{v_{0}}$. Let us assume for instance $u_{0} \leqslant v_{0}$; the case $v_{0} \leqslant u_{0}$ being treated symmetrically. We define $p:=v_{0}-u_{0}$ and we obtain $k_{2} x_{2}=\delta \alpha^{u_{0}}$ and $k_{2} y_{2}=\delta \alpha^{u_{0}+p}$ and thus $y_{2}=x_{2} \alpha^{p}$. Let us factorize α in x_{2} by choosing the highest value n such that $x_{2}=x_{2}^{\prime} \alpha^{n}$ (recall $\alpha \neq \epsilon$). Hence we have $\alpha \nprec x_{2}^{\prime}$. From $\delta \alpha^{u_{0}}=k_{2} x_{2}=k_{2} x_{2}^{\prime} \alpha^{n}$ and $\alpha \nprec \delta$ we deduce $n \leqslant u_{0}$. Hence we obtain $k_{2} x_{2}^{\prime}=\delta \alpha^{u_{0}-n}$.

Let us consider the assignments $x^{\prime}:=x_{1}, y^{\prime}:=y_{1}, u:=n, v:=n+p, i:=$ $i_{0}+\left(u_{0}-n\right)$ and $\delta^{\prime}:=x_{2}^{\prime}$. Then we compute $x=x_{1} x_{2}=x_{2}^{\prime} \alpha^{n} x_{1}=\delta^{\prime} \alpha^{u} x^{\prime}$ and $y=y_{1} y_{2}=x_{2} \alpha^{p} y_{1}=x_{2}^{\prime} \alpha^{n+p} y_{1}=\delta^{\prime} \alpha^{v} y^{\prime}$. We have $\left(m^{u_{0}-n} k_{1}\right) m^{u} x^{\prime}=$ $m^{u_{0}-n} m^{n} k_{1} x_{1}=m^{u_{0}} x_{0}$ and $\left(m^{u_{0}-n} k_{1}\right) m^{v} y^{\prime}=m^{u_{0}-n} m^{n+p} k_{1} y_{1}=m^{v_{0}} y_{0}$ and $m^{u_{0}} x_{0} \sim m^{v_{0}} y_{0}$. Hence we deduce $\left(m^{u_{0}-n} k_{1}\right) m^{u} x^{\prime} \sim\left(m^{u_{0}-n} k_{1}\right) m^{v} y^{\prime}$ and since \sim is cancellative (i.e. closed under rule $\langle c a\rangle$), we obtain $m^{u} x^{\prime} \sim m^{v} y^{\prime}$. By a similar argument we obtain $m^{i+u} x^{\prime} \sim m^{i+v} y^{\prime}$. We finally observe that $\delta^{\prime}=$ $x_{2}^{\prime} \prec \delta \alpha^{u_{0}-n} \prec \alpha^{i_{0}} \alpha^{u_{0}-n}=\alpha^{i}$. Hence we conclude $x=\delta^{\prime} \alpha^{u} x^{\prime} \sim^{\prime} \delta^{\prime} \alpha^{v} y^{\prime}=y$.

Now let us show that $\sim^{\prime}=\sim+\{\alpha-m\}$ has invertible squares if \sim has invertible squares and α contains no squared letter. Let $\mathrm{c} \in L^{\star}$ such that $\mathrm{cc} \sim^{\prime}$ cc. By Equivalence (1), there exist j, δ, x such that $\mathrm{cc}=\delta x, m^{j} x \sim m^{j} x$ and $\delta \prec \alpha^{j}$. Since $\mathcal{A}_{x} \cap \mathcal{\mathcal { A } _ { \delta }} \subseteq \mathcal{A}_{\sim} \cap \mathcal{A}_{\alpha}=\emptyset$, we deduce that either cc $=\delta$ or $\mathrm{cc}=x$. If $x=\mathrm{cc}$ then $m^{j} \mathrm{cc} \sim m^{j} \mathrm{cc}$ and thus cc $\sim \mathrm{cc}$ by rule $\langle d\rangle$. As \sim has invertible squares, we deduce $\mathrm{c} \in \mathcal{I}_{\sim}$ and thus $\mathrm{c} \in \mathcal{I}_{\sim^{\prime}}$. If on the other hand $\mathrm{cc}=\delta$ then cc $\prec \alpha^{j}$. Since α contains no squared letter, we must have $2 \leqslant j$ and thus from $m^{j} x \sim m^{j} x$ we deduce $m m \sim m m$ by rule $\langle d\rangle$. Since \sim has invertible squares, we deduce $m \in \mathcal{I}_{\sim}^{\star} \subseteq \mathcal{I}_{\sim^{\prime}}^{\star}$. From $\alpha \sim^{\prime} m$ we thus deduce $\alpha \in \mathcal{I}_{\sim^{\prime}}^{\star}$. Since c $\in \mathcal{A}_{\alpha}$, we deduce $c \in \mathcal{I}_{\sim^{\prime}}$. We have proved that \sim^{\prime} has invertible squares.

Now let us switch to the second equation of Lemma 3 and define $\sim^{\prime \prime}=$ $\sim+\{\alpha m \rightarrow \alpha m\}$ and $\sim^{\prime}=\sim \cup\{\delta x \rightarrow \delta y \mid x \sim y, \epsilon \neq \delta \prec \alpha$ and $\exists q x q \sim m\}$ Let us prove that $\sim^{\prime \prime}=\sim^{\prime}$ by double inclusion. Let us start with $\sim^{\prime} \subseteq \sim^{\prime \prime}$. First we have the obvious $\sim \subseteq \sim^{\prime \prime}$. Then let us prove that $\delta x \sim^{\prime \prime} \delta y$ holds as soon as we have $x \sim y, \epsilon \neq \delta \prec \alpha$ and $x q \sim m$. From $x \sim y$ (resp. $x q \sim m$) we deduce $x \sim^{\prime \prime} y$ (resp. $x q \sim^{\prime \prime} m$). Then we consider the following derivation:

$$
\left.\frac{\frac{x \sim^{\prime \prime} y}{y \sim^{\prime \prime} x}\langle s\rangle \quad \frac{x q \sim^{\prime \prime} m \quad \alpha m \sim^{\prime \prime} \alpha m}{\frac{\alpha x q \sim^{\prime \prime} \alpha m}{\delta x \sim^{\prime \prime} \delta x}\left\langle e_{l}\right\rangle}\left\langle p_{l}\right\rangle \text { with } \delta \prec \alpha \prec \alpha q}{\delta x \sim^{\prime \prime} \delta y}\left\langle e_{r}\right\rangle\right)
$$

which establishes the relation $\delta x \sim^{\prime \prime} \delta y$. Hence we have proved $\sim^{\prime} \subseteq \sim^{\prime \prime}$.
For the converse inclusion $\sim^{\prime \prime}=\sim+\{\alpha m-\alpha m\} \subseteq \sim^{\prime}$, it is sufficient to show that the relations $\sim \subseteq \sim^{\prime}$ and $\alpha m \sim^{\prime} \alpha m$ both hold and that \sim^{\prime} is a PME.

The inclusion $\sim \subseteq \sim^{\prime}$ is obvious and the relation $\alpha m \sim^{\prime} \alpha m$ is obtained with the assignments $x, y:=m, \delta:=\alpha$ and $q:=\epsilon$.

We finish with the proof that \sim^{\prime} is a PME by showing that it is closed under every rule of Definition 8

- for rule $\langle\epsilon\rangle$, we obtain $\epsilon \sim^{\prime} \epsilon$ since $\sim \subseteq \sim^{\prime}$ and \sim is closed under $\langle\epsilon\rangle$;
- for rule $\langle s\rangle$, let us consider $x \sim^{\prime} y$. If $x \sim y$ then $y \sim x$ (by rule $\langle s\rangle$ for \sim) and thus $y \sim^{\prime} x$ holds.
If $(x, y)=\left(\delta x^{\prime}, \delta y^{\prime}\right)$ with $x^{\prime} \sim y^{\prime}, \epsilon \neq \delta \prec \alpha$ and $x^{\prime} q \sim m$. Then $y^{\prime} \sim x^{\prime}$ (by rule $\langle s\rangle$ for \sim) and thus $y^{\prime} q \sim m$ by rule $\left\langle e_{l}\right\rangle$. Hence $y=\delta y^{\prime} \sim^{\prime} \delta x^{\prime}=x$ and \sim^{\prime} is closed under rule $\langle s\rangle$;
- for rule $\langle d\rangle$, let us consider $x y \sim^{\prime} x y$. If $x y \sim x y$ then $x \sim x$ (by rule $\langle d\rangle$ for $\sim)$ and thus $x \sim^{\prime} x$ holds.
If $x y=\delta z$ with $z \sim z, \epsilon \neq \delta \prec \alpha$ and $z q \sim m$ for some q. Then $\mathcal{A}_{x y} \subseteq$ $\mathcal{A}_{\alpha} \cup \mathcal{A}_{\sim}$ and let us write $x=x_{1} x_{2}$ and $y=y_{1} y_{2}$ with $x_{1}, y_{1} \in \mathcal{A}_{\sim}^{\star}$ and $x_{2}, y_{2} \in \mathcal{A}_{\alpha}^{\star}$. As $\mathcal{A}_{\sim} \cap \mathcal{A}_{\alpha}=\emptyset$, we deduce $z=x_{1} y_{1}$ and $\delta=x_{2} y_{2}$. From $x_{1} y_{1}=z \sim z=x_{1} y_{1}$, we deduce $x_{1} \sim x_{1}$ by rule $\langle d\rangle$. On the one hand, if $x_{2}=\epsilon$ then $x=x_{1} \sim x_{1}=x$, hence $x \sim^{\prime} x$. On the other hand, if $x_{2} \neq \epsilon$, as we have $x_{1}\left(y_{1} q\right)=z q \sim m$ and $x_{2} \prec x_{2} y_{2}=\delta \prec \alpha$ and we obtain $x=x_{1} x_{2} \sim^{\prime} x_{1} x_{2}=x$. Hence \sim^{\prime} is closed under rule $\langle d\rangle$;
- for rule $\langle t\rangle$, let us consider $x \sim^{\prime} y$ and $y \sim^{\prime} z$. If $x \sim y$ and $y \sim z$ then $x \sim z$ (by rule $\langle t\rangle$ for \sim) and thus $x \sim^{\prime} z$.
If $x \sim y$ and $(y, z)=\left(\delta y^{\prime}, \delta z^{\prime}\right)$ with $y^{\prime} \sim z^{\prime}, \epsilon \neq \delta \prec \alpha$ and $y^{\prime} q \sim m$. Then we deduce $\delta \prec y \in \mathcal{A}_{\sim}^{\star}$ (because $x \sim y$) which implies $\delta \in \mathcal{A}_{\sim}^{\star} \cap \mathcal{A}_{\alpha}^{\star}=\{\epsilon\}$, contradicting $\delta \neq \epsilon$.
The case $(x, y)=\left(\delta x^{\prime}, \delta y^{\prime}\right)$ and $y \sim z$ leads to a similar contradiction.
Finally, we consider the case $(x, y)=\left(\delta_{1} x_{1}, \delta_{1} y_{1}\right)$ and $(y, z)=\left(\delta_{2} y_{2}, \delta_{2} z_{2}\right)$ with $x_{1} \sim y_{1}, \epsilon \neq \delta_{1} \prec \alpha, x_{1} q_{1} \sim m$ and $y_{2} \sim z_{2}, \epsilon \neq \delta_{2} \prec \alpha$ and $y_{2} q_{2} \sim m$. Then we have $y=\delta_{1} y_{1}=\delta_{2} y_{2}$ with $\delta_{1}, \delta_{2} \in \mathcal{A}_{\alpha}^{\star}$ and $y_{1}, y_{2} \in \mathcal{A}_{\sim}^{\star}$. From $\mathcal{A}_{\sim} \cap \mathcal{A}_{\alpha}=\emptyset$ we deduce $\delta_{1}=\delta_{2}$ and $y_{1}=y_{2}$. From $x_{1} \sim y_{1}=y_{2} \sim z_{2}$ we deduce $x_{1} \sim z_{2}$ by rule $\langle t\rangle$. From $y_{2} q_{2} \sim m$ and $y_{2} \sim z_{2}$ we deduce $z_{2} q_{2} \sim m$ by rules $\langle s\rangle$ and $\langle t\rangle$. Hence $x=\delta_{1} x_{1} \sim^{\prime} \delta_{1} z_{2}=z$ and \sim^{\prime} is closed under rule $\langle t\rangle$;
- for rule $\langle c\rangle$, let us consider $k y \sim^{\prime} k y$ and $x \sim^{\prime} y$. If $k y \sim k y$ and $x \sim y$ then $k x \sim k y$ (by rule $\langle c\rangle$ for \sim) and thus $k x \sim^{\prime} k y$.
If $k y \sim k y$ and $(x, y)=\left(\delta x^{\prime}, \delta y^{\prime}\right)$ with $x^{\prime} \sim y^{\prime}, \epsilon \neq \delta \prec \alpha$ and $x^{\prime} q \sim m$ then we have the identity $y=\delta y^{\prime}$ from which we deduce $\delta \prec y \in \mathcal{A}_{\sim}^{\star}$ (because $k y \sim k y$) and thus $\delta \in \mathcal{A}_{\sim}^{\star} \cap \mathcal{A}_{\alpha}^{\star}=\{\epsilon\}$, contradicting $\delta \neq \epsilon$.
If $k y=\delta z$ and $x \sim y$ with $z \sim z, \epsilon \neq \delta \prec \alpha$ and $z q \sim m$. As $\delta \prec \delta z=k y$, $y \in \mathcal{A}_{\sim}^{\star}, \delta \in \mathcal{A}_{\alpha}^{\star}$ and $\mathcal{A}_{\sim} \cap \mathcal{A}_{\alpha}=\emptyset$, we must have $\delta \prec k$. So let $k=\delta k^{\prime}$ hence $k^{\prime} y=z$. Then $k^{\prime} y \sim k^{\prime} y$, hence $k^{\prime} x \sim k^{\prime} y$ by rule $\langle c\rangle$ (with $x \sim y$). As $\left(k^{\prime} y\right) q=z q \sim m$ we obtain $\left(k^{\prime} x\right) q \sim m$ by rule $\left\langle e_{l}\right\rangle$ (with $x \sim y$). Hence $k x=\delta k^{\prime} x \sim^{\prime} \delta k^{\prime} y=k y$.
If $k y=\delta_{1} z$ and $(x, y)=\left(\delta_{2} x_{2}, \delta_{2} y_{2}\right)$ with $z \sim z, \epsilon \neq \delta_{1} \prec \alpha, z q_{1} \sim m, x_{2} \sim$ $y_{2}, \epsilon \neq \delta_{2} \prec \alpha$ and $x_{2} q_{2} \sim m$. As $k \prec k y=\delta_{1} z$, we have $k \in\left(\mathcal{A}_{\alpha} \cup \mathcal{A}_{\sim}\right)^{\star}$. So let $k=k_{1} k_{2}$ with $k_{1} \in \mathcal{A}_{\sim}^{\star}$ and $k_{2} \in \mathcal{A}_{\alpha}^{\star}$. From $k y=k_{1} k_{2} \delta_{2} y_{2}=\delta_{1} z$
and $\mathcal{A}_{\sim} \cap \mathcal{A}_{\alpha}=\emptyset$, we obtain $k_{2} \delta_{2}=\delta_{1}$ and $k_{1} y_{2}=z$. As $z \sim z$, we deduce $k_{1} y_{2} \sim k_{1} y_{2}$. As $x_{2} \sim y_{2}$, we deduce $k_{1} x_{2} \sim k_{1} y_{2}$ by rule $\langle c\rangle$. Also $z q_{1} \sim m$ i.e. $k_{1} y_{2} q_{1} \sim m$. Thus $\left(k_{1} x_{2}\right) q_{1} \sim m$ by rule $\left\langle e_{l}\right\rangle$. Then, we obtain $k x=$ $k_{1} k_{2} \delta_{2} x_{2}=\delta_{1}\left(k_{1} x_{2}\right) \sim^{\prime} \delta_{1}\left(k_{1} y_{2}\right)=k_{2} \delta_{2} k_{1} y_{2}=k y$. Hence \sim^{\prime} is closed under rule $\langle c\rangle$.

Now, assuming the cancellativity of \sim, let us establish the cancellativity of $\sim^{\prime}=\sim+\{\alpha m-\alpha m\}$. We thus assume $k x \sim^{\prime} k y$. Let us prove that $x \sim^{\prime} y$ holds. If $k x \sim k y$ then $x \sim y$ because \sim is cancellative. Thus we deduce $x \sim^{\prime} y$. If $(k x, k y)=\left(\delta x_{0}, \delta y_{0}\right)$ with $x_{0} \sim y_{0}, \epsilon \neq \delta \prec \alpha$ and $x_{0} q \sim m$ then $k, x, y \in$ $\left(\mathcal{A}_{\sim} \cup \mathcal{A}_{\alpha}\right)^{\star}$ and we write $k=k_{1} k_{2}, x=x_{1} x_{2}$ and $y=y_{1} y_{2}$ with $k_{1}, x_{1}, y_{1} \in \mathcal{A}_{\sim}^{\star}$ and $k_{2}, x_{2}, y_{2} \in \mathcal{A}_{\alpha}$. We deduce $k_{1} x_{1}=x_{0}, k_{1} y_{1}=y_{0}$ and $k_{2} x_{2}=\delta=k_{2} y_{2}$. Thus we have $x_{2}=y_{2} \prec \alpha$. Let us assign $\delta^{\prime}:=x_{2}$. From $k_{1} x_{1}=x_{0} \sim y_{0}=k_{1} y_{1}$ we deduce $x_{1} \sim y_{1}$ by cancellativity of \sim. If $\delta^{\prime}=\epsilon$ then $x=x_{1} \sim y_{1}=y$ and thus $x \sim^{\prime} y$. On the other hand, if $\delta^{\prime} \neq \epsilon$ then we have $x_{1} \sim y_{1}, \epsilon \neq \delta^{\prime} \prec \alpha$ and $x_{1}\left(k_{1} q\right)=x_{0} q \sim m$ thus we deduce $x=\delta^{\prime} x_{1} \sim^{\prime} \delta^{\prime} y_{1}=y$. Hence we have proved that \sim^{\prime} is cancellative.

Now let us show that $\sim^{\prime}=\sim+\{\alpha m-\alpha m\}$ has invertible squares if \sim has invertible squares and α is square-free. So let $\mathrm{c} \in L$ be such that $\mathrm{cc} \sim^{\prime} \mathrm{cc}$. Then either $\mathrm{cc} \sim \mathrm{cc}$ in which case $\mathrm{c} \in \mathcal{I}_{\sim} \subseteq \mathcal{I}_{\sim^{\prime}}$. Otherwise we have $\mathrm{cc}=\delta x$ with $x \sim x, \epsilon \neq \delta \prec \alpha$ and $x q \sim m$. Since $\mathcal{A}_{x} \cap \mathcal{A}_{\delta} \subseteq \mathcal{A}_{\sim} \cap \mathcal{A}_{\alpha}=\emptyset$, then either $\mathrm{cc}=\delta$ or $\mathrm{cc}=x$. If $\mathrm{cc}=\delta$ then $\mathrm{cc} \prec \alpha$ which is impossible since α is square-free. Hence we have $x=\mathrm{cc}$ and thus $\mathrm{cc} \sim \mathrm{cc}$. As a consequence $\mathrm{c} \in \mathcal{I}_{\sim} \subseteq \mathcal{I}_{\sim^{\prime}}$. Hence squares are invertible in \sim^{\prime}.

Corollary 1 Primary PMEs are cancellative and have invertible squares.
Proof. Since the ground case of Definition 15 is established by Lemma 2 it is sufficient to show that cancellativity and invertible squares are preserved by primary extensions. The type- 1 extension $\sim+\{\alpha-m\}$ is directly covered by Lemma 3 For the type-2 extension $\sim+\{\alpha m-\mathrm{b}\}$, we use the trivial identity $\sim+\{\alpha m-\mathrm{b}\}=(\sim+\{\alpha m-\alpha m\})+\{\mathrm{b}-\alpha m\}$ and apply Lemma 3 twice.

Corollary 2 Basic and simple PMEs are cancellative and have invertible squares.
Proof. For basic PMEs, the result is an obvious consequence of Corollary 1 and Theorem 5 . We use compactness to extend the result from basic PMEs to simple PMEs. Let us consider a simple PME \sim. By definition, it can be represented by $\sim=\sim_{\infty}$ where $\left(x_{i}-y_{i}\right)_{i<\infty}$ is a simple sequence of constraints, $\mathcal{C}_{p}=\left\{x_{i}-y_{i} \mid\right.$ $i<p\}$ and $\sim_{p}=\sim_{\mathcal{C}_{p}}$ for $p \in \mathbb{N} \cup\{\infty\}$. Let us show that \sim_{∞} is cancellative. So let us pick k, x and y such that $k x \sim_{\infty} k y$. By Proposition 4 (compactness), there exists a finite subset $\mathcal{F} \subseteq \mathcal{C}_{\infty}$ such that $k x \sim_{\mathcal{F}} k y$. Let us pick $p<\infty$ such that $\mathcal{F} \subseteq \mathcal{C}_{p} \subseteq \mathcal{C}_{\infty}$ (for instance the greatest index of a constraint occurring in \mathcal{F}). Then we have $k x \sim_{p} k y$. Since by definition \mathcal{C}_{p} is a basic sequence of constraints then \sim_{p} is a basic PME and thus it is cancellative. Thus we obtain $x \sim_{p} y$. As $\sim_{p} \subseteq \sim_{\infty}$, we conclude $x \sim_{\infty} y$.

The argument for invertible squares is similar. Let $c \in L$ be a letter such that $\mathrm{cc} \sim_{\infty} \mathrm{cc}$ holds. Let us show $\mathrm{c} \in \mathcal{I}_{\sim_{\infty}}$. By Proposition 4 , there exists $p<\infty$ such that cc $\sim_{p} \mathrm{cc}$. Since \sim_{p} is a basic PME, it has invertible squares and thus the inclusion $\mathrm{c} \in \mathcal{I}_{\sim_{p}}$ holds. From the inclusion $\sim_{p} \subseteq \sim_{\infty}=\sim$ we deduce $\mathrm{c} \in \mathcal{I}_{\sim}$.

Corollary 3. Simple PMEs closed under rule $\langle i u\rangle$ are also closed under rule $\langle d i\rangle$.
Proof. Let \sim be as simple PME closed under rule $\langle i u\rangle$. By Proposition 3 and Corollary $2, \sim$ is closed under rule $\langle c a\rangle$ and has invertible squares. Let us show that \sim is closed under rule $\langle d i\rangle$. We assume $x x \sim x x$ and we show $\epsilon \sim x$. Since \sim has invertible squares and $x x \sim x x$ holds, by Proposition 5 we have $x \in \mathcal{I}_{\sim}^{\star}$. Thus there exists β such that $\epsilon \sim x \beta$ by Proposition 7(a). Hence the relation $\epsilon \sim x$ holds by rule $\langle i u\rangle$. We have proved that \sim is closed under rule $\langle d i\rangle$.

[^0]: * Work partially supported by the ANR grant DynRes (project No. ANR-11-BS02-011).

[^1]: ${ }^{3}$ The other Boolean connectives can be obtained by De Morgan's laws.
 ${ }^{4}$ The case $M=\emptyset$ is allowed but arguably not very interesting in the case of BBI.
 ${ }^{5}$ Associativity should be understood using the extension of \circ to $\mathcal{P}(M)$.

[^2]: ${ }^{6}$ In [4], $\mathbb{I} \rightarrow(A * B) \rightarrow A$ is used as a BBI-axiom for $\mathbb{I U}$ but we favor $\neg(\mathbb{I} \wedge(\neg \mathbb{I} * \neg \mathbb{I}))$.

[^3]: ${ }^{7}$ relation from which a constructive proof of $\mathrm{BBI}_{X}=\mathrm{BBI}_{Y}$ could be derived.
 ${ }^{8}$ In fact only $\mathrm{BBI}_{\mathrm{SU}} \subsetneq \mathrm{BBI}_{\mathrm{PD}+\mathrm{SU}}$ is proved in [14] but the same argument will do.
 ${ }^{9}$ The same proof works for the more general multi-unit semantics, as assumed for instance in Theorem 2.5 of [4]. Hence the identity $\mathrm{BBI}_{\mathrm{ND}}=\mathrm{BBI}_{\mathrm{SU}}$ was known since [8].

[^4]: ${ }^{10}$ the additive notation + would conflict with the - sign later used for constraints.

[^5]: ${ }^{11}$ Not every PME is cancellative; e.g. $\sim=\{\epsilon-\epsilon, x-x, y-y, k-k, k x-k x, k y-k y, k x-$ $\mathrm{ky}, \mathrm{ky}-\mathrm{kx}\}$ is a non-cancellative PME over $L=\{\mathrm{x}, \mathrm{y}, \mathrm{k}\}$.

[^6]: ${ }^{12}$ The proof in Coq is available at http://www.loria.fr/~larchey/BBI

[^7]: ${ }^{13}$ In that case, \sim is a congruence over $\mathcal{I}_{\sim}^{\star}$ and the quotient $\mathcal{I}_{\sim}^{\star} / \sim$ is an Abelian group. ${ }^{14}$ i.e. some $k k$ with $k k \sim k k$ and $k \notin \mathcal{I}_{\sim}^{\star}$; see Definition 14

[^8]: ${ }^{15}$ This identity reads: the sub-class of ND-monoids that belong to K and verify property SU is equal to the intersection of sub-class K and sub-class SU .

