Chapter 1

The Braga Method:
Extracting Certified Algorithms from
Complex Recursive Schemes in Coq

Dominique Larchey-Wendling* and Jean-François Monin†
Dominique Larchey-Wendling‡ (dominique.larchey-wendling@loria.fr)
Bâtiment LORIA, BP 239, 54506 Vandœuvre-lès-Nancy, France
Jean-François Monin§ (jean-francois.monin@univ-grenoble-alpes.fr)
Bâtiment IMAG, 700 av. centrale, 38401 St Martin d’Hères, France

We present the Braga method which we use to get verified OCaml programs by extraction from fully specified Coq terms. Unlike structural recursion which is accepted as is by Coq, the Braga method works systematically with more involved recursive schemes, including the non-terminating schemes of partial algorithms, nested or mutually recursive schemes, etc. The method is based on two main concepts linked together: an inductive description of the computational graph of an algorithm and an inductive characterization of its domain. The computational graph mimics the structure of recursive calls of the algorithm and serves both (a) as a guideline for the definition of a domain predicate of which the inductive structure is compatible with recursive calls; and (b) as a conformity predicate to ensure that the Coq algorithm logically reflects the original algorithm at a low-level. We illustrate the Braga method on various concrete recursive algorithms, including unbounded search, “fold-left” from the tail, non-terminating depth-first search, Paulson’s normalization algorithm and first-order unification, the last two algorithms being examples of nested recursive schemes. The method allows us to easily show partial correctness and characterize termination in each case, and in addition, the intended OCaml algorithm is faithfully extracted from Coq code. All the results are implemented in Coq and freely accessible on GitHub.

*Université de Lorraine, CNRS, LORIA, Vandœuvre-lès-Nancy, France
†Université Grenoble Alpes, CNRS, Grenoble INP, VERIMAG.
‡This research was partly supported by the TICAMORE joint ANR-FWF project (ANR grant 16-CE91-0002).
§This research was partly supported by the French national research organization ANR (ANR grant 15-CE25-0008).
1. Introduction

The ability to describe partial recursive functions which can have non-terminating computations, and to reason on them, is very useful because this is a natural room for many complex algorithms, and usual functional languages don’t impose any restriction on termination. In complement, Coq is a proof-assistant celebrated for years for its success in different fields of mathematics and computer science. In particular, it is a tool of choice for the certification of algorithms written in functional programming languages such as OCaml or Haskell thanks to one of its powerful features called program extraction, which can be summarized as follows. A faithful Coq version prog of the target program is written in the functional language embedded in Coq. Correctness properties of prog are then proved at will and, in the end of the process, an OCaml (say) version of prog is automatically extracted. As far as we are confident in this automated extraction, the resulting OCaml program satisfies the expected correctness properties. A well-known impressive example using this technique is the certified compiler for the C language developed in the CompCert project.\(^1\)

However, a challenging discrepancy is raised here because at a deep level of the logic implemented by Coq, only total functions encoded by terminating algorithms are allowed. It would be a strong impairment not to be able to encode as Coq functions a larger class of algorithms based on complex recursive schemes, including nested recursion or functions entailing computations that can terminate or loop forever, depending on the effective parameters given as input. In such situation, it is very important in practice to be able to reason (with formal support) on correctness properties before getting knowledge or even in order to get knowledge on termination issues.

We believe that thanks to the Braga method, named as a tribute to our initial summary presentation at TYPES 2018,\(^2\) a large class of functional algorithms which were considered as out of reach before can now be certified. We support this claim here by a number of significant examples illustrating the range of possibilities offered by this approach. We even present a small example of a certified program implementing an algorithm that cannot be directly written in OCaml. In addition to this document, the Coq code corresponding to these examples is available at https://github.com/DmxLarchey/The-Braga-Method.

The Braga method, to be explained in much further details in this chapter, digests and improves previous work developed in the last decades based
on well-founded relations, inductive-recursive schemes, etc. However it can altogether be presented in a very short amount of space (see Section 3). In a nutshell, a relational version of the functional program f of interest is written under the form of an inductive relation G that mimics the structure of recursive calls; an inductive characterization of the domain of f is inferred from G, either as a custom inductive predicate D or, equivalently, as a binary relation to be managed through the standard accessibility predicate of Coq. The subtle point is to ensure that recursive calls are safely expressed with a structurally smaller domain argument. This can be either automatically obtained using the `inversion` tactic of Coq or, if one prefers an explicit approach, using concise terms where the structural decrease shows up very clearly.

The chapter is organized as follows. For self-containedness, Section 2 presents the necessary background on Coq, including some fine points about structural recursion or the non-interference principle between the universes respectively devoted to observable data and functions on one side, and to their logical properties on the other. The reader in a hurry and already aware of these aspects can skip this section and directly start with Section 3 on page 19 where the basics of the Braga method are presented and illustrated on very simple algorithms which, at first glance, seem inexpressible in Coq because absolutely no clue is available on their convergence domain. Section 4 is devoted to additional tools that provide interesting variants of the Braga method. The first one is based on the constructive version of the generic accessibility predicate based on a binary relation given to it as a parameter, which is used in the Coq standard library to characterize well-foundedness, a standard tool for well-founded recursion. The second one is a technique for simulating induction-recursion in a type theory without this feature — this is currently the case in Coq. Then Sections 5 to 8 illustrate how the method and its variants can be applied on more complex situations involving: in Section 5, a non-standard approach to the well-known `fold_left` function on lists; in Section 6, depth-first search, another potentially non-terminating algorithm; and in Sections 7 (Paulson normalisation algorithm of if-then-else expressions) and 8 (first-order unification), examples of nested recursion, with a presentation of the last ingredient of the Braga method. Finally, the relationship between previous work and our approach is given in Section 9.
2. Background Material

We provide here a light introduction to the main principles under the hood of Coq that should be sufficient for the non-specialist to grasp the main intuitions in the work presented here. This is by no means a somewhat complete presentation of Coq and the interested reader is referred to the abundant literature on the subject, for instance the book by Bertot and Castéran.

2.1. Types, propositions and terms

Coq is essentially a strongly typed functional programing language, with a very powerful type system called the Calculus of (Co)Inductive Constructions (CIC) with Universes. At the same time, Coq is a proof assistant implementing the so-called Curry-Howard-De Bruijn isomorphism, where theorems are types inhabited by their proofs, a central idea to be illustrated in more detail below.

As already suggested, the types in CIC are themselves organized along a hierarchy of universes generically denoted by Type, at the bottom of which a special type is of interest for us in this chapter: the sort Prop of propositions — we will often use the shorthand P. For data types and functions on them we will use Type.

The two basic constructs for defining types are functional types, e.g. $A \rightarrow B$, which is the type of functions from A to B, and inductive types whose canonical inhabitants are exhaustively described with special injective\(^a\) functions called constructors. When A and B are propositions, $A \rightarrow B$ is the type of functions returning a proof of B given a proof of A as input. In other words, the arrow \rightarrow is interpreted as the logical implication between propositions.

Among common examples of inductive data types, we have bool for Booleans, whose constructors are true and false, and nat for Peano natural numbers, with two constructors noted $0 : \text{nat}$ and $S : \text{nat} \rightarrow \text{nat}$, where S represents the successor function. We commonly use digital notation, for example 2 for $S \ (S \ 0)$. Note that an inductive type can be recursive, but it is not mandatory. For instance in nat, S has an argument of type nat but no recursivity is involved in bool.

Two special inductive propositions are of interest: False which has zero

\(^a\)There are cases where constructors of dependent types are not provably injective but we can ignore these subtleties for the discussion here.
constructor, and then cannot be proved in the empty environment, and True which has exactly one constructor called I (the proposition trivially proved by I).

We will use a number of shorthands: B for bool, N for nat, ⊥ for False and ⊤ for True. Additionally, in Sections 5, 6 and 8, we will use the inductive type of (polymorphic) lists over a given base type \(X \):

\[
\text{Type} \quad \text{defined as} \quad l : \text{list} X ::= \text{nil} \mid \text{cons} \; x \; l \quad \text{where} \; x : X
\]

in BNF notation. The symbol \([\,]\) is a short notation for the empty list \text{nil} and the infix notation \(x :: l \) represents \(\text{cons} \; x \; l \), i.e. the list \(l \) augmented with the value \(x : X \) at its head. We assume some familiarity with lists and we will denote that type as \(L \; X \) in the rest of this chapter. Notice that the Coq syntax corresponding to the above definition would be:

\[
\text{Inductive} \quad L \; (X : \text{Type}) : \text{Type} := \quad [\,] : L \; X \mid (x : X) :: (l : L \; X) : L \; X.
\]

Further lists operators and notations include the list \(x_1 :: x_2 :: x_3 :: [\,] \) denoted as \([x_1;x_2;x_3] \), appending the lists \(l, m : L \; X \) denoted \(l + m \) and satisfying the equations \([\,] + m = m \) and \((x :: l) + m = x :: (l + m) \). The list reversal function \(\text{rev} : L \; X \rightarrow L \; X \) satisfying \(\text{rev} [\,] = [\,] \) and \(\text{rev} (x :: l) = (\text{rev} \; l) ++ [x] \) is also assumed. Finally, we describe a more visual way to introduce inductive definitions, with rules. For lists, this would look like

\[
\text{Inductive} \quad L \; (X : \text{Type}) : \text{Type} := \quad \frac{x : X \quad l : L \; X}{[\,] : L \; X} \quad \frac{x :: l : L \; X}{x :: l : L \; X}
\]

and we hope that the reader will be able to switch between BNF definitions (mostly for simple inductive types), rule based definitions (mostly for inductive predicates, see later) and the regular Coq syntax when reading source code. As a final comment on lists for now, notice that the type parameter \(X \) is declared implicit in most list operators including \([\,] \), ::, ++ and \(\text{rev} \). Hence it is not syntactically present in expressions and is recovered from the context most of the time.

Using function application and other constructs we can form typed terms; \(t : T \) states that the term \(t \) has type \(T \). For instance we have \(0 : N \) and \(S \; 0 : N \). Abstraction, written \(\lambda x : X \; t \), denotes a function taking an argument \(x \) of type \(X \) in input, whose body is given by \(t \) — \(x \) is just a name, whereas \(t \) and \(X \) can be complex expressions. When the type is clear from the context, it can be omitted. We also use common shorthand notations, for example \(\lambda x \; y \; t \) for \(\lambda x, (\lambda y, t) \) and \((f \; x \; y) \) for \(((f \; x) \; y) \).
Common functions such as negation or conjunction on Boolean values in \mathbb{B} are defined by pattern matching using the following syntax:

```coq
Definition neg (b : B) : B :=
  match b with
  | true ⇒ false
  | false ⇒ true
end.
```

Common functions on the type of Peano natural numbers \mathbb{N} such as addition are defined by pattern matching and recursion, with the keyword `Fixpoint` in place of the keyword `Definition`:

```coq
Fixpoint add (n m : N) : N :=
  match n with
  | 0 ⇒ m
  | S p ⇒ S(add p m)
end.
```

Importantly, only total functions can be defined. In particular, looping computations are forbidden. This imposes an important restriction on recursion: recursive calls are allowed only on structurally smaller arguments. On the above example, n is $S\ p$ in the second pattern, hence the recursive call is allowed because p is a strict subterm of $S\ p$. We go back to this in detail below since it is the central issue tackled in this chapter. Coq provides features for defining notations, for instance `add x y` is noted $x + y$ as usual.

Predicates are functions from a type (or several types) to \mathbb{P}. An important special case is equality, which happens to be yet another inductive type, with a single constructor corresponding to reflexivity (equality on X provides the smallest reflexive binary relation on X, and pattern-matching on a proof of equality happens to yield the Leibniz rule).\(^b\)

Universal quantification also corresponds to a functional type. For instance, $\forall n : \mathbb{N}, n = n + 0$ is seen as the type of functions from natural numbers n to proofs of equalities between n and $n + 0$. This is a typical example of dependent typing, where the type of the result (the proposition $n = n + 0$) depends on the value n given in input. Indeed, this formula can be proved either by induction on n, or by directly programming a recursive function f on n that starts with a pattern-matching on n; when n is 0, the type of the result is $0 = 0 + 0$ which reduces to $0 = 0$ by computation of

\(^b\)This approximation of the exact nature of $=$ in Coq is sufficient for our needs.
add, and then is trivially proved by reflexivity of the = equality predicate. When \(n \) is \(S\ p \), the type of the result is \(S\ p = S\ p + 0 \) which reduces to \(S\ p = S(p + 0) \) by computation, then solved using \(p = p + 0 \) obtained by a recursive call to \(f \), namely \(f\ p \). Such a function can be applied to any closed value, e.g., \(S(30) \), providing a proof of \(2 = 2 + 0 \). If desired, this proof can be then reduced by computation and after two steps, it boils down to a proof of \(2 = 2 \) by reflexivity. This illustrates that computations can be performed on proofs. In the present case, the result is very small (informally, just “by reflexivity”) but in general the result can be a huge proof tree, where many lemmas and theories have been expanded. It is not really an issue, we will soon see why. To close this aspect, remark that the usual principle of induction on \(\mathbb{N} \) is itself actually inhabited by a structural recursive function on \(\mathbb{N} \).

Another important dependent type is \(\exists\ x : T, \, P\ x \), which is inhabited by pairs \((x, \rho_x) \), where \(x \), the witness, inhabits \(X \) and \(\rho_x \) is a proof of \(P\ x \). More precisely, it is an inductive type having a single constructor of type \(\forall\ x : X, \, P\ x \to \exists\ y, \, P\ y \) named \texttt{ex_intro}. For the sake of brevity we write \((x, \rho_x)\) for \texttt{ex_intro}\(x\rho_x \).

Coq provides also \(\Sigma \)-types, denoted by \(\{ x : X \mid P\ x \} \), which are also inhabited by pairs \((x, \rho_x)\) where \(\rho_x : P\ x \). Only the label of the constructor changes, \texttt{exist} instead of \texttt{ex_intro}. Although the \(\Sigma \)-types \(\exists\ x : T, \, P\ x \) and \(\{ x : X \mid P\ x \} \) look isomorphic, there is a big difference between them: \(\exists\ x : T, \, P\ x \) is of sort \(\mathbb{P} \), whereas \(\{ x : X \mid P\ x \} \) is of sort \(\mathbb{Type} \). Here comes an important distinction between sort \(\mathbb{P} \) and sort \(\mathbb{Type} \) to be discussed in the next section.

2.2. Non interference from Prop to Type

We first state the non-interference property which plays a key role in the work presented here.

Pieces of information available in Prop cannot be exploited in Type.

This informal motto will be expressed with more technical words below. In order to explain its meaning, we consider two similar statements, one expressed with \(\exists \) and the next one with a \(\Sigma \)-type.

Assume \(x : \mathbb{N} \) and a hypothesis \(H_x : \exists n, n + n = x \). Then by pattern-matching on \(H_x \), we can get its two components, that is, \(n_0 : \mathbb{N} \) and an equality \(\rho : n_0 + n_0 = x \), allowing us to build a proof \(\rho ' \) of \(S\ n_0 + S\ n_0 = S(\ S\ x) \) and then a proof \((S\ n_0, \rho ')\) of \(\exists n, n + n = S(\ S\ x) \). This proof, reflecting an informal
reasoning starting with *let n₀ be the number such that...* is implemented by a term \texttt{match } H \texttt{ with } (n₀, ρ) \Rightarrow \ldots (S n₀, ρ′) \texttt{ end}. With an additional abstraction step, we get a function \(\lambda H \cdot \texttt{match... end} \) of type \((∃n, n + n = x) \rightarrow (∃n, n + n = S(Sx)) \).

Similarly, an inhabitant of \(\{n \mid n + n = S(Sx)\} \) can be constructed from an inhabitant in \(\{n \mid n + n = x\} \), yielding after an abstraction step a function \(Φ_{\text{even}} : \{n \mid n + n = x\} \rightarrow \{n \mid n + n = S(Sx)\} \).

Now consider the application \(Φ_{\text{even}}(3, ρ₃) \) where \(ρ₃ \) is a proof of \(3 + 3 = 6 \). Its computation will return a pair \((4, ρ₄) \) with \(ρ₄ : 4 + 4 = 8 \). In a more general situation, we have a function \(Ψ : \{x : \mathbb{N} \mid Px\} \rightarrow \{y : \mathbb{N} \mid Qy\} \).

Another convenient way to type a function \(Ψ \) which takes an \(x \) such that \(Px \) is satisfied and returns a constrained \(y \) is:

\[
∀x : \mathbb{N}, Px \rightarrow \{y : \mathbb{N} \mid Qy\}.
\]

Here \(\{x : \mathbb{N} \mid Px\} \) is unpacked, so that we get a function with two arguments, \(x \) then a proof of \(Px \). An interesting advantage of this formulation is that \(Q \) is in the scope of \(x \), we can then consider a postcondition relating \(y \) with \(x \) as in this common pattern:

\[
Ψ : ∀x : X, Px \rightarrow \{y : Y \mid Qxy\}.
\]

Note that in the Braga method, we will use extensively this pattern with a special conformity relation \(G \) for \(Q \) and its domain \(D \) for \(P \). Using the infix notation \(x ↦→ G \) for \(Gx \) this will then be written:

\[
Ψ : ∀x : X, Dx \rightarrow \{y : Y \mid x ↦→ G \}.
\]

Now, consider a computation of \(Ψ 35 ρ \) with \(ρ \) a proof of \(P 35 \). It yields a pair \((y, ρ′) \) with \(ρ′ \) a proof of \(Q 35 y \). When the computation is completed, both \(y \) and \(ρ′ \) are said to be in normal form. What does it mean? From \(y \), a natural number, we get a normal value such as e.g. \(3141 \). For \(ρ′ \) we get a term corresponding to a normal proof term as illustrated above on \(2 = 2 + 0 \) in page \(7 \).

However in practice, we have a different interest in the two parts of this result: we want to know the normal value of the result, for instance, the amount of the income tax to be payed at the end of the year, rather than a complicated expression yielding this value. On the other hand, the normal form of \(ρ′ \) is of little interest to the end user, who basically wants to know that the result \(y \) (say \(3141 \)) satisfies the postcondition \(Qxy \), provided
the input x (say 35) satisfies the precondition $P x$. Potentially interesting aspects of the proof ρ' could be the kind of properties (algebraic, etc) used in the reasoning, but this has nothing to do with the normal form of ρ'. Indeed, the computation of this normal form can be performed in theory, which is important for meta-theoretical considerations such as the justification of the logical rules used and the consistency of the underlying logical system.

However, in order to ensure that computing on the proof part is actually not necessary, an important principle must be respected: the computation of y from x does not depend on the proofs attached to them. This is the very meaning of the non-interference principle stated at the beginning of this section. This is often stated in the literature by qualifying terms in Type as informative and statements in P as logical or non-informative, though this terminology is somewhat misleading. Intuitively, logical statements behave like secret comments. As those comments live in the same logical framework, where proofs are seen as typed functions, computations could be performed on them as well. But we don’t want those computations to have an impact on the data returned as outputs. To enforce this non-interference property, Coq applies a very simple rule:

Pattern-matching on a term of sort $Prop$ to construct a term of sort $Type$ is forbidden\(^c\).

Assume for instance that our context provides a data $D_x : \{n \mid n + n = x\}$, expressing that we have a public n which is the half of x. Then by pattern-matching, H_x can be freely decomposed into some n and an associated proof, which can then be used to construct an inhabitant of $\{n \mid n + n = S(S(x))\}$, witnessing that we can compute the half of $2 + x$. This is the job done by Φ_{even}.

On the other hand, assume that we only have an existential hypothesis $H_x : \exists n, n + n = x$. The point is that an inhabitant (n, ρ_n) of $\exists n, n + n = x$ contains a number n intended to be hidden — it is just a helper for expressing that x is even. Nevertheless, H_x can also be decomposed into a secret n and an associated proof, provided we only try to construct a proof of another proposition; for instance, saying that $2 + x$ is even as well — as an aside, the latter proof embeds a secret $S n$.

However, $H_x : \exists n, n + n = x$ cannot be exploited by the same simple pattern-matching strategy to construct a data such as a Boolean value, a

\(^c\)There is a very small number of harmless exceptions, to be discussed later.
natural number, either alone or packed inside a Σ-type. In order to get
the half of \(x \) and then compute the half of \(2 + x \), more work is needed.
Essentially, we first write a recursive program that computes the half of an
even number, or more accurately, a number packed with a proof that it is
even, that is a function \(\text{half} \) :

\[
\forall x, (\exists n, n + n = x) \rightarrow \{ n | n + n = x \}
\]
then we can decompose the result returned by \(\text{half} \) \(x \) \(H_x \) which inhabits
the Σ-type \(\{ n | n + n = x \} \), in order to get the half of \(x \) and then compute
the half of \(2 + x \). A sketch of the function \(\text{half} \) is given in Figure 1. The
function \(\Phi_{\text{even}} \) was described at the beginning of Section 2.2. The recursive
call needs an effective parameter of type \(\exists n, n + n = x' \), to be provided
from \(H_{SS} : \exists n, n + n = S(S x') \). When \(x \) is 1, we have an absurd case: from
\(H_1 : \exists n, n + n = 1 \) it is possible to derive \(\bot \). Let us call \(\varphi \) the latter proof of
\(\bot \). As \(\bot \) is an empty (or zero-case) type, a pattern matching on \(\varphi \) provides
a fake inhabitant of \(\{ n | n + n = 1 \} \). This is one of the rare exceptions to
the rule given above, since \(\bot \) is in sort \(\mathbb{P} \) whereas \(\{ n | n + n = 1 \} \) is in sort
\(\text{Type} \). We come back to this issue in more detail in Section 2.7, where more
subtle ways of getting a fake inhabitant in a so-called informative type from
a proof of an absurd proposition will be discussed.

2.3. Harmless eliminations from Prop to Type

The rule stated above which strictly forbids eliminations from sort \(\mathbb{P} \) to \(\text{Type} \) has been relaxed to allow for exceptional and harmless eliminations.
The part of the Coq community which is concerned by these harmless eliminations
from sort \(\mathbb{P} \) to sort \(\text{Type} \) usually calls them singleton eliminations; see Gilbert et al.\(^4\) for an up-to-date and comprehensive discussion. However we find this “singleton” denomination a bit misleading and call them “harmless” instead. What qualifies as harmless has a precise meaning, but
we here give the intuition of why such eliminations have been considered acceptable.

Indeed, provided no information of propositional nature can leak into a computation—more precisely propositional information that would allow to choose between diverging computational paths,— then matching on a proof of a proposition in \(P \) to build in term in a \(\text{Type} \) is allowed. This happens when the constructor of the inductive proposition contains only parameters of sort \(P \). Hence typically when there are no constructors at all like for the \(\bot \) empty proposition. This also holds for the logical conjunction \(A \land B \) of which the sole constructor is \(\text{conj} \ A \ B : A \rightarrow B \rightarrow A \land B \), hence \(\text{conj} \ A \ B \) has two parameters, one is a proof of \(A \), and the other a proof of \(B \), both \(A \) and \(B \) being of sort \(P \).

However, the case of the logical disjunction \(A \lor B \) with two constructors is very illuminating. These constructors are \(\text{or_intro} \ A \ B : A \rightarrow A \lor B \) and \(\text{or_intror} \ A \ B : B \rightarrow A \lor B \). Taken separately, both of these constructors could be considered harmless but a pattern matching on a proof of \(A \lor B \) would reveal of Boolean information, i.e. which constructor of either \(\text{or_intro} \) and \(\text{or_intror} \) was used in the proof, or else which of \(A \) or \(B \) has a proof, hence a leak of logical information.

So if there are two or more constructors for an inductive proposition, an information is indeed hidden in the choice of the constructor, and this information cannot be allowed to leak. Not having more than one constructor could then explain the origin of the singleton elimination terminology. However, notice that the proposition \(\exists x : X, \ P \ x \) has only one constructor, \(\text{ex_intro} \ X \ P : \forall x : X, \ P \ x \rightarrow \exists x : X, \ P \ x \), but this constructor has two parameters of which the first, i.e. \(x : X \) is of sort \(\text{Type} \), and not \(P \). It cannot thus be eliminated to build a term in \(\text{Type} \). This is why we find that the “singleton” qualifier does not properly cover the range of those allowed eliminations from \(P \) to \(\text{Type} \), and instead favor the “harmless” qualifier.

2.4. Program extraction

At this stage, we get functions working on data (in \(\text{Type} \)) packed with correctness proofs (in \(P \)), with the additional knowledge which is that computing on proofs is not needed to get the data part of the result.

We can then use an important feature of Coq, allowing us to \textit{extract} from such functions the part which is dedicated to data. To this effect, Coq just erases the code dedicated to proofs. For example, the type of \texttt{half} after \(P \)-erasure would be \(\text{N} \rightarrow \text{N} \): the second input for the precondition is erased,
as well as the second component of the result (a proof of the postcondition).
More generally, the type of a function $\Phi : \forall x : X, P x \rightarrow \{ y : Y \mid Q x y \}$, after P-erasure, becomes $X \rightarrow Y$.

However, the term obtained after raw P-erasure is in general not ac-
ceptable as a Coq term, because Φ would no longer be a total function
(over the whole type X). This phenomenon is witnessed on the above ver-
sion of half, which is not defined on odd inputs. Code extraction actually
targets mainstream functional languages such as OCaml or Haskell, where
partial functions are allowed. For instance, the OCaml code obtained after
extraction of half is a minor variant of

```ocaml
let rec half x =
    let phi_even n = S n
    in match x with
        | 0    -> 0
        | S _  -> assert false (* absurd case *)
        | S (S x') -> phi_even(half x')
```

Note that the extraction process adds an element to be considered to the
Trusted Code Base (TCB), i.e., the set of programs on which the confidence
of a system claimed to be correct relies, on top of the kernel of Coq and
the OCaml compiler. Program extraction was introduced in Coq more than
30 years ago by C. Paulin-Mohring. The interested reader may consult a
more recent overview by P. Letouzey. Here we rely on the correctness
of the (currently implemented) Coq type-checker (kernel) and extraction
mechanism, and consider their own verification/certification to be orthogo-
nal to our work. To lower the TCB, we mention the lively MetaCoq project
that deals with those issues.

2.5. **Loose additional remarks on Coq**

There is much more to say on Coq. On its theoretical background, the
reader has surely noticed the constructive aspects of the logic behind Coq.
It is clear that there is no room for a general principle of excluded middle
(XM), as far as we work in the realm of data formalized by the universes
beyond P. Still, for extraction purposes, XM can be safely used at the
level of P, since justifications at this level are carefully erased in extracted
programs. Notice however that corrupting Coq with a contradictory set of
axioms, even just in the P sort, allows for the construction of non termi-
nating programs in Coq, see Section 2.7 for additional details.
We close this section with a practical remark on the development of functions or proofs in Coq. Coq provides an interactive mode allowing the user to construct a term step by step by the means of tactics. Elementary tactics correspond to basic constructs such as λ-abstraction or pattern-matching. On top of them a large number of high level-tactics are available, allowing the user to automate tedious parts or goals solvable by semi-decision procedures. On the opposite side we have a powerful tactic called refine, allowing to provide an incomplete proof term where some subterms, to be filled later, are represented by a ‘_’ joker. We often use this style in the work presented here, in order to clearly present the function to be extracted.

2.6. Structural recursion

Structural recursion is the very foundation of induction (or recursion) in the inductive type theory of Coq. Except for co-recursion which is somehow dual, every other form of recursion described below ultimately derives from structural recursion. However, at first glance, it looks like it imposes a strong restriction on acceptable fixpoints.

A famous example of structural recursion is the reverse and append of lists of type $L X$, a function characterized by the two recursive equations:

$\text{rev_app}\ l\ [] = l \quad \text{and} \quad \text{rev_app}\ l\ (x::m) = \text{rev_app}\ (x::l)\ m$

It is straightforward to encode those two equations this way in Coq:

```coq
Fixpoint rev_app {X : Type} (l m : L X) {struct m} :=
  match m with
  | []    ⇒ l
  | x :: m' ⇒ rev_app (x :: l) m'
end.
```

Intentionally, the above code is very verbosely presented to help for the comments below. The function rev_app is polymorphic in its $X : \text{Type}$ parameter which is declared implicit by putting braces {...} around it instead of optional parentheses (...). It is a simple exercise to show that the identity $\text{rev_app}\ l\ m = \text{rev}\ m + + l$ holds for any values of $l, m : L X$. However we are not interested in the semantics of the function here but how it illustrates structural recursion.

Let us explain what makes the above Fixpoint definition structurally acceptable. The rule which Coq enforces is that one of the two parameters —here the second one m— must always be structurally smaller on any recursive subcall. In general, Coq is able to detect which parameter may
structurally decrease although it does not always find the right one. Here we forced its hand with the optional \{\texttt{struct} \, m\} declaration. Notice that the rule says that the \texttt{struct} parameter must decrease structurally but it says nothing about the other parameters. Also, beware that on every subcall of a given \texttt{Fixpoint} definition, it is the same parameter that must decrease structurally.

But what does structural decrease mean? Well, this has a precise definition embedded in the \textit{guard condition} that Coq enforces on \texttt{Fixpoint}s. We are not going to describe it in full details but just give the basic intuitions which are sufficient here:

- the \texttt{struct} parameter must be typed in an inductive type;
- in any recursive subcall of the body of the \texttt{Fixpoint}, the value of the \texttt{struct} parameter must be a subterm of the input value, according the inductive structure of the type.\(^d\)

Hence typically, the first parameter \(l\) in \texttt{Fixpoint rev_app} does not decrease because there is a subcall where its value is \(:: l\). More generally, consider a recursive function \(fct\) having \(n \geq 1\) parameters \(x_1, \ldots, x_n\) where \(x_i\) is expected to be structurally decreasing. For the following definition to be accepted:

\[
\texttt{Fixpoint fct} \; x_1 \; \ldots \; (x_i : T) \; \ldots \; x_n \; \{\texttt{struct} \, x_i\} := \\
\ldots \; (\texttt{fct} \; e_1 \; \ldots \; e_n) \; \ldots
\]

the expression \(e_i\) has to reduce at type checking time to a subterm of \(x_i\). To this effect, \(e_i\) may be syntactically smaller (e.g., \(p\) if \(x\) is \(\mathbb{S}\, p\)). But subterm recognition also traverses \texttt{match} constructs, hence a term \(e_i\) of the form \texttt{match} \(e'_i\) \texttt{return} \(T\) \texttt{with} \texttt{patterns} \texttt{end}\) where, again, all cases considered in \texttt{patterns} reduce themselves to a subterm of \(x_i\), is also recognised as a subterm of \(x_i\). The structural decrease requirement in the guard condition ensures that there is a terminating strategy for the reduction of \texttt{Fixpoint}s. This cannot be proved within Coq but has been verified on paper for various versions of the Calculus of (Inductive) Constructions.\(^8\) Intuitively, terms of inductive types can be seen as well-founded trees and the guard condition ensures that recursive subcalls always go down to the leaves of those trees.

The guard condition is safe for termination, but it also imposes very strong restrictions on the kind of \texttt{Fixpoint}s that can be type-checked by Coq. For instance, consider the following equations for the factorial func-

\(^d\)Notice that subterms are recognized up to the convertibility equivalence relation.
tion on \mathbb{N}_b, i.e. positive integers in binary representation.

fact_b \ 0_b = 1_b \quad \text{and} \quad fact_b \ n = n \cdot fact_b \ (n - 1) \quad \text{when} \ n \neq 0_b

Then $n - 1$ (the result of a computation of the minus binary function) cannot be recognized as a subterm of n, even though it is provably smaller for the strict order over \mathbb{N}_b (when $n \neq 0_b$). Hence directly encoding this definition as a Fixpoint would not be accepted by the Coq type-checker.

However, it is possible to write a Coq function fact_b satisfying the same fixpoint equations, and critically, such that the OCaml program automatically extracted from fact_b Coq term is:

```ocaml
let rec fact\_b n = if n = 0 then 1 else n \cdot fact\_b \ (n - 1)
```

In this example, it is not too complicated because we could use measure based or well-founded recursion as explained in Section 4.1, but it can become really tricky when extracting algorithms which are inherently partial algorithms.

Regarding structurally decreasing fixpoints, we will now assume them, i.e. we won’t necessarily write the Coq Fixpoint definition corresponding to structurally decreasing equations and leave this task to the reader. We just make the critical remark that the structurally decreasing parameter $x_i : T$, although it must belong to an inductive type T, does not need to belong to an informative type, i.e. its type T can be of sort \mathbb{P}. In that case, extraction magically removes this parameter: termination is statically ensured at type-checking time of the Coq version, provided that inputs satisfy the expected preconditions, then run-time checks are erased in the extracted version.

2.7. Eliminating (proofs of) the empty proposition (or type)

We discuss the role played by the empty proposition \bot and the empty type Empty_set, both defined as inductive but with no way to construct a closed term:

\[
\begin{align*}
\textbf{Inductive} & \quad \bot : \mathbb{P} := . \\
\textbf{Inductive} & \quad \text{Empty_set} : \text{Type} := .
\end{align*}
\]

in the common/shared Init part of the Coq standard library. Indeed, these predicates have zero/no rule to build a (proof) term for them. Corresponding to this above inductive definition of \bot, Coq automatically builds the (non-dependent) eliminator

\[
\textbf{Definition} \quad \text{False_rect} \ (T : \text{Type}) \ (f : \bot) : T := \\
\text{match} \ f : \bot \ \text{return} \ T \ \text{with} \end
\]
which allows, from a proof \(f : \bot \), to build a term in any given type \(T : \text{Type} \). The optional \texttt{return } \(T \) clause can be omitted when Coq is able to infer the type of the result (\(T \) in this case). Notice that the \texttt{match } \(f : \bot \texttt{ with end} \) construct, which is a pattern matching with zero patterns, types correctly against any given type.

Moreover, this construct has an additional property of outmost importance for us: it is considered as \textit{structurally smaller than any term of type } \(T \) (when \(T \) is an inductive type). This is just a special case of the rule given above in Section 2.6 for \texttt{match } \(e' \texttt{ return } T \texttt{ with patterns end} \): here \(e' \) is \(f \) of type \(\bot \), and as \(\bot \) has zero constructor, the \texttt{patterns} part boils down to nothing.

Notice however that when \(T \) is of sort \texttt{Type}, the construct \texttt{match } \(_ \texttt{ return } T \texttt{ with end} \), and hence \texttt{False_rect}, both contain an elimination from sort \(\mathbb{P} \) to sort \texttt{Type}, a scheme which is permitted only for harmless eliminations, see Section 2.3.

On the other hand, the construct \texttt{match } \(_ \texttt{:Empty_set with end} \) which also types against any given type, is a regular elimination (not a harmless one), because it proceeds from sort \texttt{Type} to sort \texttt{Type}. Also, when considering

\[
\text{Definition False_ind} (P : \mathbb{P}) (f : \bot) : P := \\
\texttt{match } f : \bot \texttt{ return } P \texttt{ with end}.
\]

which is a restriction of \texttt{False_rect} to sort \(\mathbb{P} \) sharing the very same code, the elimination is a regular one from sort \(\mathbb{P} \) to sort \(\mathbb{P} \).

When considering extraction, for all these constructs that match on a term of an empty inductive type, i.e. \texttt{match } \(_ \texttt{: } E \texttt{ with end} \) where \(E \) is either \(\bot \), \texttt{Empty_set} or any other inductive type with no constructor, the extracted code proceeds with raising an exception like in e.g.

\[
\text{let } \texttt{false_rect } _ := \texttt{assert false } (* \texttt{absurd case } *)
\]

witnessing a situation that is not supposed to occur at runtime.

We now switch to another way to interpret the elimination of empty inductive types computationally: by looping forever — at least, by pretending to do so. We define \texttt{False_loop}_\(T \), an alternate elimination scheme of \(\bot \) to \(T : \text{Type} \), this time not involving harmless elimination:

\[
\text{Definition False_loop}_T (T : \text{Type}) (f : \bot) : T := \\
(\text{fix } \texttt{loop } (x : T) \{ \texttt{struct } x \} := \texttt{loop } (\texttt{match } f \texttt{ return } T \texttt{ with end}) \} T.
\]

Recall that \(T \) is a simple inductive proposition with one constructor called \(I \). The pattern matching on \(x \) occurs when building an alternate
proof of \(\top\), a regular elimination from sort \(\mathbb{P}\) to sort \(\mathbb{P}\). Typing succeeds because \texttt{match} \(f\) \texttt{with} \texttt{end} types against any type, including \(\top\). The satisfaction of structural decrease comes from the rule given above. Indeed, notice that using

\[
\text{fix loop } x \{ \text{struct } x \} := \text{loop } x
\]

as a replacement for \texttt{loop} above would have failed because \(x\) is not a (strict) subterm of itself. But in the definition of \texttt{False_loop}_\(\top\), the construct \texttt{match} \(f\) \texttt{return} \(\top\) \texttt{with} \texttt{end} is recognized both as having type \(\top\) and as being structurally smaller than \(x\).

In the above definition of \texttt{False_loop}_\(\top\), \(\top\) can be replaced by any inhabited inductive type. An interesting variant is to take... \(\bot\) itself, since a proof a \(\bot\) is available, namely \(f\). The definition can then be presented in a slightly simplified way as follows.

\[
\text{Definition False_loop}_\bot (T:\text{Type}) : \bot \rightarrow T :=
\text{fix loop } f \{ \text{struct } f \} := \text{loop } (\text{match } f \texttt{return } \bot \texttt{with} \texttt{end})
\]

On the extraction side, \(f\) of sort \(\mathbb{P}\) will be removed. As functions in OCaml have at least one argument, we explicitly provide an additional one of type \texttt{unit}, the inductive type with one element called \texttt{tt}.

\[
\text{Definition False_loop} (T:\text{Type}) : \bot \rightarrow T :=
(\text{fix loop } f \{ \text{struct } f \} := \text{loop } (\text{match } f \texttt{return } \bot \texttt{with} \texttt{end})) \texttt{tt}.
\]

The code extracted from \texttt{False_loop} is now very different from that of \texttt{False_rect}. We get a forever loop

\[
\text{let false_loop } _ := \text{let rec loop } _ := \text{loop } () \text{ in loop } ()
\]

when applied to any argument of any type. Hence, after extraction, we get another possible computational interpretation of the empty type: \texttt{looping forever} instead of abruptly interrupting on an \texttt{error}. These correspond to two usual interpretations of partiality.

The above example of \texttt{False_loop} invites a side discussion about a misleading extrapolation of the normalization property of Coq\(^6\). Indeed, the accuracy of the following inference is sometimes wrongly believed:

\[
\text{Since (axiom free) Coq terms are normalizing, corresponding extracted OCaml terms must also terminate.}
\]

Obviously, the \texttt{False_loop} term above and its extraction directly contradict this belief. And indeed, the belief is wrong: it forgets that while erasing

\(^6\)or even strong normalization on important fragments of Coq.
The extraction process maps Coq terms to partial OCaml functions in which the logical domain arguments disappear. This could lead to errors—including non-termination—if one applies an extracted function to an argument not satisfying its precondition. This is precisely what could happen with the loop above that has any empty domain. Moreover, as we will discover, the Braga method actually relies on this ability to extract partial algorithms, for which partial correctness properties can then be established.

Extracted programs should normally not hit an absurdity, except of course when called on arguments which do not fit their (Coq) precondition, in which case they might return anything, interrupt or loop forever. From a strict programmer’s point of view, exceptions are much better behaved than fake results or loops because you get some control on what went wrong at runtime. However, logically, False_rect \(T \) or a direct \(\text{match} \bot \text{return} T \text{with end} \) both contain a harmless elimination (when \(T : \text{Type} \)), which could be viewed as an issue in some contexts. Can we satisfy both a high programming standard (avoiding loops as much as possible) and a high logical standard (avoiding harmless eliminations)? The answer is yes, using \(\text{Empty_set} \) as an intermediate step:

\[
\text{Definition False_exc} (T : \text{Type}) (f : \bot) : T := \\
\text{match False_loop Empty_set f return T with end.}
\]

In this case, we first eliminate \(\bot \) into \(\text{Empty_set} \) using \(\text{False_loop} \), so without using harmless elimination, and then \(\text{Empty_set} \) into \(T \) using a \(\text{match} \bot : \text{Empty_set} \text{return} T \text{with end} \) construct, again without using harmless elimination because it proceeds from \(\text{Type} \) to \(\text{Type} \). Extraction wise, we obtain the best of both worlds, i.e.

\[
\text{let false_exc_} = \text{assert false (* absurd case *)}
\]

because the infinite loop, recognized as dead code by the extraction process, is just erased.

This discussion can be seen as a bit technical and peculiar to the typing rules of Coq and the required structural decrease, but we will use these features extensively to produce inversion (or projection) lemmas that satisfy the structural decrease constraint.

The section closes on the following take-home lesson: when one needs to eliminate a proof of \(\bot \) against a \(\text{Type} \), one can avoid harmless elimination.

\(^{\dagger} \)This situation might be avoidable, when it makes sense to extract the application of a function to specific closed arguments, instead of extracting the function itself.
using \texttt{False_loop}, or better \texttt{False_exc}. However, when eliminating \bot against a \texttt{Prop}, typically when establishing a domain property, then we advise for \texttt{False_ind} or a direct \texttt{match _ : \bot \rightarrow \text{return _ : P with end}}, especially since these constructs produce terms that are moreover accepted as structurally smaller.

3. The Braga Method

In type-theoretic frameworks such as Coq, where all functions are total, it is still possible to manage partial functions by considering an additional argument in \mathbb{P} containing a proof that the previous arguments are in the expected domain.9,10 A first example was provided with the \texttt{half} function in Section 2.2, which was intended to be defined only on even numbers. In that case, another option was to relax the requirements and to return, for instance the euclidian quotient of the input by 2, or even an arbitrary value on odd inputs, e.g. 10 for 1, 11 for 3, etc. Such (somewhat cheating) options are not always available. For instance, we define here a predicate \texttt{is_cons} on lists and use it to build a function which returns the first element of a non-empty list.

\begin{verbatim}
Implicit Type l : L X.
Definition is_cons l : P := match l with _ :: _ ⇒ ⊤ | _ ⇒ \bot end.
Definition head l : is_cons l → X :=
 match l with
 | x :: t ⇒ λG,x
 | _ ⇒ λG,match G with end end.
\end{verbatim}

In this common pattern, it is important to see that the second argument of \texttt{head}, acting as a precondition (or a guard) is pushed in the result returned by the match construct, which is typical of dependent pattern matching where not only the output value depends on the pattern, but also the output type. Each branch is then a function taking a guard as an argument, whose type is made specific according to the case considered. In the first case ($x :: t$), the specialized type of G is \top and is not used. In all remaining cases (denoted by the _ joker), the type of G is \bot, an empty type, allowing us to use \texttt{match G with end} as a fake inhabitant of X. Avoiding the (sometimes reluctantly accepted) elimination from \mathbb{P} to Type here, one could alternatively get a fake inhabitant of X as \texttt{False_exc X G} from Section 2.7. In both cases, the term G acts like a \textit{Trojan horse} silently
carrying an information about the original contents of l, to be revealed and used when needed. We will see many other uses of this idea.

Coming back to recursive functions, we can say that the domain of a partial recursive function corresponds to input values such that the computation actually returns an output, without getting lost in an infinite loop for instance.

The first central idea of the Braga method is to define this domain (denoted \mathbb{D} with subscripts) using an inductive predicate that mimics the structure of recursive calls.

We will call these *custom inductive domain predicates* and they make it possible to define and reason on the desired function before getting additional knowledge on its actual domain. Even for total functions, proving totality may require preliminary technical partial correctness lemmas, so a usable formal definition is needed first. Such examples will be presented in the Sections 7 and 8.

3.1. Custom inductive domain predicates

We first illustrate the Braga method on a very simple case where the domain depends on a higher-order argument in a completely uncontrollable way.

Given an arbitrary type X, a function $g : X \rightarrow X$, a halting test function $b : X \rightarrow \mathbb{B}$, and an initial value $x : X$, we would try to count the minimum number n of iterations of g over x needed to get a point where the test holds, that is $b(g^n x) = \text{true}$; but of course, with arbitrary g, b and x, we don’t even know if such an n exists at all. Two algorithms easily come to mind, with or without accumulator, in OCaml syntax:

```ocaml
define ns x = if b x then 0 else 1 + ns (g x)
define nsa x n = if b x then n else nsa (g x) (1 + n)
```

A simple question is: does the tail-recursive call `nsa x 0` always return the same value as `ns x`?

Due to the structural decrease requirement, there is no straightforward way to write down `ns` and `nsa` in Coq, then to state the expected theorem, not to mention proving it. However it is clear that `ns` and `nsa` have the same domain \mathbb{D}_{ns}, which can be inductively expressed because, looking at the definitions, if $b x$ is `true` then x is in \mathbb{D}_{ns} and, if $b x$ is `false` and $g x$
is in D_{ns}, then x is in D_{ns} as well.

\[
\begin{align*}
\text{Inductive } D_{ns} : X \rightarrow \mathbb{P} := \\
& b x = \text{true} \quad D_{ns} x [D_{tt} x] \\
& b x = \text{false} \quad D_{ns} (g x) [D_{ff} x]
\end{align*}
\]

We then look at Coq terms with the following shape:

\[
\begin{align*}
\text{Fixpoint } fct x (D : D_{ns} x) \{ \text{struct } D \} : \mathbb{N} := \\
& \text{match } b x \text{ with} \\
& \quad | \text{true } \Rightarrow \ldots \\
& \quad | \text{false } \Rightarrow \ldots \quad fct (g x) (\text{proj } D) \ldots
\end{align*}
\]

The point is to find a suitable expression for $\text{proj } D$, which is expected to be a proof of $D_{ns} (g x)$ structurally smaller than D. We have to be very accurate here. This projection only makes sense for the second inductive rule called D_{ff} and, in this case, D is $D_{tt} x E D_{gx}$, where E is a proof of $b x = \text{false}$ and D_{gx} a proof of $D_{ns} (g x)$; $\text{proj } D$ must then be D_{gx} itself.\footnote{A term isomorphic to D_{gx} would not be enough, Coq is quite fussy about structural ordering. For instance in \mathbb{N}, $y := S x$ is a subterm of $t := S y$ as expected, but $S x$ is not a subterm of $t := S (S x)$, because here $S x$ is reconstructed from x.} However, as for head above, an additional guard argument is needed in order to have a properly defined function even in the irrelevant cases. Looking at the rules for D_{ns}, we can take $b x = \text{false}$ for the guard and, in the rest of this chapter, $\text{proj } D$ will be written $\pi_{D_{ns}} D G$. The guarded projection $\pi_{D_{ns}}$ is defined as follows, with the help of a basic lemma stating that a Boolean cannot be simultaneously equal to true and to false.

\[
\text{Fact } \text{true_false } \{ x : \mathbb{B} \} : \quad x = \text{true } \rightarrow x = \text{false } \rightarrow \bot.
\]

\[
\text{Definition } \pi_{D_{ns}} \{ x \} \{ D : D_{ns} x \} : b x = \text{false } \rightarrow D_{ns} (g x) := \\
\text{match } D \text{ with} \\
\quad | D_{tt} x E \Rightarrow \lambda G, \text{match } \text{true_false } E G \text{ with end} \\
\quad | D_{ff} x E D_{gx} \Rightarrow \lambda G, D_{gx}
\end{align*}
\]

The Trojan horse used here is different from the former one used for head, that was a term whose type reduced to \bot in the branch, whereas the Trojan horse used for $\pi_{D_{ns}}$ reduces to a proof G of $b x = \text{false}$, where x is actually the first component of D when D is $D_{tt} x E$. Here, G happens to allow us to derive again a proof of \bot but, in general, the purpose of a Trojan horse is to prove specific propositions other than \bot. Also, the reader might
Fixpoint ns \(x \) (\(D : \mathbb{D}_{\text{ns}} x \)) \{ \text{struct} \} D : \mathbb{N} :=
\begin{align*}
\text{match } b x \text{ as } b x \text{ return } b x = b x \rightarrow _ \text{ with} \\
\mid \text{true } \Rightarrow \lambda c, 0 \\
\mid \text{false } \Rightarrow \lambda G, \text{ns} \ (g x) \ (\pi_{\mathbb{D}_{\text{ns}}} D G) \\
\end{align*}
end eq_refl.

Fixpoint nsa \(x \) (\(n : \mathbb{N} \)) (\(D : \mathbb{D}_{\text{ns}} x \)) \{ \text{struct} \} D : \mathbb{N} :=
\begin{align*}
\text{match } b x \text{ as } b x \text{ return } b x = b x \rightarrow _ \text{ with} \\
\mid \text{true } \Rightarrow \lambda c, n \\
\mid \text{false } \Rightarrow \lambda G, \text{ns} \ (g x) \ (\pi_{\mathbb{D}_{\text{ns}}} D G) \\
\end{align*}
end eq_refl.

Figure 2. Coq terms for \(\text{ns} \) and \(\text{nsa} \), by structural recursion on \(D : \mathbb{D}_{\text{ns}} x \).

Here recognise the pattern \text{match} \ldots : \bot \text{ return } P \text{ with} \end\text{match} discussed in Section 2.7 that is both of arbitrary type, here \(\mathbb{D}_{\text{ns}} (g x) : \mathbb{P} \), and structurally smaller than any term which inhabits an inductive type. Here \(P \) is \(\mathbb{D}_{\text{ns}} (g x) \), whereas \(P \) was e.g. \(\top \) in \text{False_loop} \(\top \) in Section 2.7.

Now, we can write recursive calls by feeding an additional argument containing a proof of \(b x = \text{false} \). To this effect, we use again a Trojan horse which is here a proof of \(b x = b x \), where \(b x \) is going to be the constructor (true or false) corresponding to each case, as specified in the first line of the \text{match} construct.\(^b\) We then write \(\text{ns} \) and \(\text{nsa} \) as in Figure 2.

That is it! We can then prove the expected lemma as a corollary of a statement generalized on all \(n \).

\begin{itemize}
\item \textbf{Lemma} \(\text{ns}_{\text{ns}}_{\text{n}}_{\text{d}}_{\text{i}}_{\text{r}}_{\text{e}}_{\text{c}}_{\text{i}}_{\text{t}}_{\text{i}}_{\text{e}}_{\text{n}} \): \(\forall x \; n \; D, \; \text{nsa} \ x \ n \ D = \text{ns} \ x \ D + n. \)
\item \textbf{Corollary} \(\text{ns}_{\text{ns}}_{\text{s}}_{\text{d}}_{\text{i}}_{\text{r}}_{\text{e}}_{\text{n}}_{\text{i}}_{\text{c}}_{\text{t}}_{\text{i}}_{\text{e}}_{\text{n}} \): \(\forall x \; D, \; \text{nsa} \ x \ 0 \ D = \text{ns} \ x \ D. \)
\end{itemize}

\begin{proof}
The main lemma \(\text{ns}_{\text{ns}}_{\text{s}}_{\text{a}}_{\text{n}}_{\text{d}}_{\text{i}}_{\text{r}}_{\text{e}}_{\text{n}}_{\text{i}}_{\text{c}}_{\text{t}}_{\text{i}}_{\text{e}}_{\text{n}} \) is proved by dependent induction on \(D \), implemented as a \textbf{Fixpoint}. The proof is very short because the above definitions of \(\text{ns}/\text{nsa} \) provide the following equalities (even conversions, actually) for free.
\begin{align*}
\text{ns} \ 0 \ \mathbb{D}_{\text{ns}}^\text{tt} &= 0 \\
\text{nsa} \ 0 \ n \ \mathbb{D}_{\text{ns}}^\text{tt} &= n \\
\text{ns} \ x \ (\mathbb{D}_{\text{ns}}^\text{ff} y \ D) &= S (\text{ns} \ (g x) \ D) \\
\text{nsa} \ x \ n \ (\mathbb{D}_{\text{ns}}^\text{ff} y \ D) &= \text{ns} \ (g x) \ (S n) \ D \tag{1}
\end{align*}
\end{proof}

The guarded projection \(\pi_{\mathbb{D}_{\text{ns}}} \) can also be obtained in a cheap but (possibly) mysterious way, using the \texttt{inversion} tactic of Coq. The reader is
\begin{itemize}
\item\(b\)This corresponds to the trick used for a long time in Coq for the implementation of the tactic \texttt{case_eq}.
invited to display the rather heavy term produced by inversion and to guess why the result is structurally smaller as desired (even though Coq says it is so). The explicit yet small version shown above is yet another variation on small inversions. As the needed guarded projection is a special case of inversion, we use indifferently for it the name guarded projection (in general, omitting “guarded” for brevity) or inversion in the rest of this chapter. The algorithm considered here in LISP style, with a recursive call inside an else branch. However in most situations, recursive calls are inside a branch of a more general pattern matching. A more appropriate technique for writing suitable projections will be presented in Section 3.

3.2. Inductive definition of the graph of a recursive function

Notice that the argument \(D \) for the domain is involved in a deep way in the above formalization, which makes it very easy to get lost in a dead end. For instance, the value returned by \(ns x D \) seem to depend on the particular proof \(D \) given in input. Though it cannot be the case, because informative values do not depend on proofs in the \(\mathbb{P} \) universe, this metatheoretical knowledge cannot be directly exploited and for more complex functions, the presence of \(D \) becomes very troublesome. In general, there is no convenient way to derive recursive equations such as the ones given in (1), which provide crucial inference steps.

For this reason, and another related to nested recursion to be developed later, we introduce an additional inductive definition (denoted here by \(G \) with subscripts).

Now the second central idea of the Braga method: as for its domain \(D \), the inductive relation \(G \) mimics the structure of recursive calls, but in contrast with \(D \), the relation \(G \) takes the output as well into account, providing a description of the input-output relation between arguments and result.

We call this relation the computational graph of the function.

3.2.1. The algorithm without an accumulator

For instance in the case of \(ns \), we have the following inductive rules, with the infix notation \(x \mapsto_{ns} y \) for \(G_{ns} xy \) used as:

\[
\text{Inductive } G_{ns} : X \rightarrow N \rightarrow \mathbb{P} := \\
b x = \text{true} \quad b x = \text{false} \\
x \mapsto_{ns} 0 \\
x \mapsto_{ns} S 0
\]
Observe that G_{ns} is nothing but a relational and agnostic presentation of ns, without any claim about termination and partial correctness properties. On the other hand D_{ns} is obtained from G_{ns} just by removing the output. Indeed, favouring the prefix notation $G_{ns} x o$ over the infix $x \mapsto \text{ns} o$, as side by side comparison gives:

\[
\frac{b x = \text{true}}{G_{ns} x 0} \quad \frac{b x = \text{false}}{G_{ns} (g x) o}
\]

\[
\frac{b x = \text{true}}{D_{ns} x} \quad \frac{b x = \text{false}}{D_{ns} (g x)}
\]

The prefix notation makes it particularly straightforward to infer the custom domain predicate D_{ns} from computational graph G_{ns}: for each rule of G_{ns}, map it to a rule of D_{ns} by erasing the output/right argument of the G_{ns} predicate.

Then a property which is both very useful and easy to show is that the computational graph is the graph of a (partial) function, i.e. a deterministic relation.

Fact $G_{ns}_\text{fun} x o_1 o_2 : \ x \mapsto \text{ns} o_1 \rightarrow x \mapsto \text{ns} o_2 \rightarrow o_1 = o_2$.

Proof. Rewrite it as $\forall x o_1, x \mapsto \text{ns} o_1 \rightarrow \forall o_2, x \mapsto \text{ns} o_2 \rightarrow o_1 = o_2$ and proceed by induction on $x \mapsto \text{ns} o_1$ and inversion of $x \mapsto \text{ns} o_2$. \qed

In most practical situations, one first defines the computational graph, then derives the inductive domain from it. The point of defining G_{ns} is to enable us to state the type of a slightly enriched version of ns, where the type of the result embeds a postcondition expressing that inputs and outputs are related according to G_{ns}:

\[
\forall x, D_{ns} x \rightarrow \{ o : N \mid x \mapsto \text{ns} o \}.
\] (2)

A function having this type, called ns_pwc (for packed with conformity to the computational graph), can then be defined as in Figure 3. The heart of this code is inside the refine tactic, where we can recognize the contents of the expected function and additional stuff related to the structural decrease of D on the one hand, outputting a Σ-type instead of a natural number on the other hand. The positions marked by O_1 and O_2 denote terms for postconditions to be filled later, using very basic tactics in this case:

\footnotetext{1}{Notice that this simple idea of erasing fails with nested recursive algorithms but can be nonetheless circumvented using the graph to recover lost outputs, see Section 7.}
Fixpoint ns_pwc x (D : D_{ns} x) : \{ o \mid x \mapsto ns o \}.
Proof. refine(
 match bx as b x return b x = b x -> with
 | true \Rightarrow \lambda G, exist _ 0 O_1'
 | false \Rightarrow \lambda G, let (o, C_o) := ns_pwc (g x) (\pi_{D_{ns}} D G) in exist _ (S o) O_2'
end eq_refl).
[O_1'] : now constructor 1.
[O_2'] : now constructor 2.
Qed.

Figure 3. Coq proof term ns_pwc of the conform-by-construction ns algorithm.

- for O_1': constructing a proof of x \mapsto ns 0 from a proof of the guard G of type b x = true;
- and for O_2': constructing a proof of g x \mapsto ns S o from a proof G of b x = false and a proof C_o of x \mapsto ns o.

Notice that in the actual Coq code, these marks O_1'/O_2' are replaced with the _ joker that the refine tactic interprets as a hole to be filled later on.

As for the above mentioned direct definition of ns, the domain argument in the recursive call is \pi_{\Sigma_{ns}} D G, we already know that it is structurally smaller than D. This termination certificate can also be delayed with a _ joker if needed!

Using the projections \pi_1 and \pi_2 of the standard library available on \Sigma-types, we derive

Definition ns x (D : D_{ns} x) := \pi_1(ns_pwc x D).
Fact ns_spec x (D : D_{ns} x) : x \mapsto ns ns x D.

where \pi_2(ns_pwc x D) is used as witness of conformity of the output value. The OCaml code automatically extracted from ns is as expected\(^6\)

let rec ns x = match bx with true \rightarrow 0 | false \rightarrow S (ns (g x))

\(^1\)see e.g. the example of depth-first search in Figure 17 on page 45.
\(^6\)Non essential remark: this is the case if g and b are declared with the keyword Parameter, making them constants to be realized at extraction time. Otherwise, parameters g and b are added to ns according to a scoping feature of Coq called Section and then appear in the actual extracted code.
26

D. Larchey-Wendling and J.-F. Monin

Fixpoint nsa_pwc x n (D : Dns x) : {o | x; n ↦ nssa o}.
Proof. refine(
 match bx as b return b x = b x → with
 | true ⇒ λG, exist n O₁
 | false ⇒ λG,
 let (o, C) := ns_pwc (gx) (S n) (πDns DG)
 in exist o O₂
 end eq_refl).
Qed.

Figure 4. Coq proof term nsa_pwc of the conform-by-construction nsa algorithm.

3.2.2. The algorithm using an accumulator

Next we proceed in the same way with the second function. Its recursive equations are encoded in the computational graph:

Inductive Gnsa : X → N → N → P :=
| bx = true x; n ↦ nssa n |
| bx = false g x; S n ↦ nssa o |

We show that Gns and Gnsa are related as follows:

\[x \mapsto nssa o \rightarrow x; 0 \mapsto nssa o. \] (3)

This is a special case of \(x \mapsto nssa o \rightarrow \forall n, x; n \mapsto nssa o + n \), which we prove by induction on \(x \mapsto nssa o \).

The domain of nsa does not depend on \(n \), so we still use \(Dns \) to define a function nsa_pwc : \(\forall x n, Dns x \rightarrow \{ o | x; n \mapsto nssa o \} \), fully displayed in Figure 4, and along the same lines as for ns_pwc. Then we get nsa : \(\forall x n, Dns x \rightarrow N \) which satisfies \(\forall x n D, x; n \mapsto nssa x n D \) by projecting the output \(\Sigma \)-type.

Finally we can reason on \(G_{nsa} \) to prove properties on nsa. A first useful property of \(G_{nsa} \) is its determinism, i.e.,

Fact Gnsa.fun x n o₁ o₂ : x; n \mapsto nssa o₁ \rightarrow x; n \mapsto nssa o₂ \rightarrow o₁ = o₂.

Proof. By induction on \(x; n \mapsto nssa o₁ \) and inversion of \(x; n \mapsto nssa o₂ \).

In addition to the conformity of nsa w.r.t. \(G_{nsa} \), we also need its completeness, that is, \(x; n \mapsto nssa o \rightarrow \forall D, o = nsa x n D \). This is an easy
consequence of the determinism of G_{nsa} and of the conformity of nsa w.r.t. G_{nsa}. The desired theorem $\forall x D, \text{nsa} x 0 D = \text{ns} x D$ follows by combining the conformity of ns, property (3) and the completeness of nsa.

3.3. Low-level and high-level properties

We can now prove the low-level termination property of ns: the domain D_{ns} is as large as possible, encompassing exactly the input values x for which an output value o such that $x \mapsto o_{\text{ns}}$ exists, i.e. the projection of the computational graph G_{ns}.

Fact $\text{ns}_p G_{\text{ns}}$: $\forall x : X, D_{\text{ns}} x \iff \exists o : Y, x \mapsto o_{\text{ns}}$.

Proof. For the only if direction, the required value is obviously $\text{ns} x D$ where $D_{\text{ns}} x$, i.e., because of ns_{spec}, a value o s.t. $x \mapsto o_{\text{ns}}$ is precisely what ns outputs on its domain. For the if direction, it is enough to show $\forall x o, x \mapsto o_{\text{ns}} o \rightarrow D_{\text{ns}} x$ and we proceed by induction on the proof of the graph predicate $x \mapsto o_{\text{ns}}$. \square

The process we followed so far is somehow automatic, meaning that we only use the syntactic information available for the algorithm ns. As a consequence, manipulating D_{ns} either directly through its constructors or as the projection of G_{ns} are not high-level ways to manipulate the domain.

Of course, one needs human intervention to design interesting/useful alternative characterizations. In the case of D_{ns}, we can for instance show:

Fact $\text{ns}_\text{high-level} (x : X) : D_{\text{ns}} x \leftrightarrow \exists n : \mathbb{N}, b(g^n x) = \text{true}.$

since a call to g on x generates a sequence of subcalls $g^0(x), g^1(x), g^2(x), \ldots$ until the first of those input values gives b the value true. Notice that the above result could be strengthened further because ns actually computes the first possible match for $b(g^n x) = \text{true}$, if there is one at all; see $\text{ns}_{\text{partially-correct}}$ in the Coq code.

4. Accessibility, Well-foundedness and Induction-Recursion

The main tool for ensuring termination in the Braga method is the inductive definition of a suitable domain D derived from the code of a functional algorithm under study f, together with associated structurally decreasing projection functions π_D as illustrated in the previous sections. However a traditional approach to recursion is to guess a well-founded relation R which is expected to support the termination of f in all cases. These two views can
be reconciled to some extent by focussing on the constructive definition of a generic accessibility predicate Acc parameterized by R, which is the main ingredient in Coq for defining well-founded relations. The usual approach to defining well-founded recursive functions in Coq consists in providing a suitable R as an eureka, then to prove that R is well-founded and finally to feed a standard high-level feature of Coq (e.g. Program Fixpoint or Equations) with R.

Instead of directly writing the domain D as a custom inductive predicate, an alternate approach is possible, by defining first a binary relation \preceq^{sc}_f along similar lines, again by looking at the shape of the recursive calls in f. When \preceq^{sc}_f happens to be well-founded, tools inspired by the traditional approach can be used as well. Once again, a strong point of the Braga method is that it works even when \preceq^{sc}_f is not well-founded.

In this variant of the Braga method, Acc is seen as a generic D predicate parameterized by \preceq^{sc}_f. An interesting benefit of this variant in that the key projection function, to be used in recursive calls for building a structurally smaller domain argument, is defined once for all: it is just Acc_inv of the standard Coq library. In the opposite direction, one can also consider Acc as a special inductive relation and Acc_inv as a particular (though important) case of a projection function π_D. Things are partly simplified because Acc has a single constructor. However, a light contribution of the second author to the Coq standard library (in Logic/ConstructiveEpsilon.v) shows that a dedicated domain predicate sometimes provides code which can compete with Acc.

This section ends with an introduction to induction-recursion, which can be used in association with the Braga method to write fixpoint equations of the recursive function under study.

4.1. Well-founded recursion

Well-founded recursion is a principle that allows to justify termination of recursive calls based on a well-founded order (or relation). Considering a relation $R : X \to X \to P$, it is well-founded if no infinite descending chain of the form $\ldots R x_n R \ldots R x_1 R x_0$ exists in the type X. This can be refined by defining the well-founded part of the relation R as the x_0 which are not the starting points of infinite descending chains, and then simply characterizing well-founded relations as those where the well-founded part is the whole type X.

The classical characterization of the well-founded part of R is given an
inductive counterpart in Coq using the accessibility predicate:

\[\text{Inductive Acc \{X : Type\} \ (R : X \rightarrow X \rightarrow \mathbb{P}) \ (x : X) : \mathbb{P} := } \]
\[\forall y : X, \ R y x \rightarrow \text{Acc} R y \]
\[\text{Acc} R x \]

and one can indeed show that \(\text{Acc} R x_0 \) entails no infinite descending chain starts at \(x_0 \). However the converse only holds under some classical assumptions, typically excluded-middle and dependent choice. Hence the \(\text{Acc} \) predicate is usually considered the proper way to characterize well-foundedness in inductive type theory.

Definition well_founded \{X\} \ (R : X \rightarrow X \rightarrow \mathbb{P}) := \forall x : X, \text{Acc} R x.

Defined this way, \(\text{well_founded} \) satisfies most of the closure properties of (the classical characterization of) well-foundness including the (transfinite) recursion principle:

**Theorem well_founded_induction_type \{XR\} (_ : \text{well_founded} R) : \forall P : X \rightarrow \text{Type}, \ (
\forall x : X, \ (\forall y : X, \ R y x \rightarrow P y) \rightarrow P x) \)
\[\rightarrow \forall x : X, P x. \]

A way to read this statement is the following: each time one needs to show \(\forall x, P x \), i.e. provide a dependent function mapping \(x : X \) to a value in type \(P x \), one can further assume the induction hypothesis \(\text{IH} x : \forall y, R y x \rightarrow P y \) at \(x \), which provides \(P y \) for all the values \(y : X \) that are \(R \)-smaller than \(x \).

In many cases, the programmers seek a simple relation \(R \) of the form \(R := \lambda x y : X, \lfloor x \rfloor < \lfloor y \rfloor \) where \(\lfloor \cdot \rfloor : X \rightarrow \mathbb{N} \) is a \(\mathbb{N} \)-based measure and \(< : \mathbb{N} \rightarrow \mathbb{N} \rightarrow \mathbb{P} \) is the strict natural order. For instance, \texttt{fact} algorithm of Section 2.6 or breadth-first search algorithms can be implemented using measure based induction.\(^{12}\)

Notice that although it is a very common strategy, it is not always applicable, e.g. the decreasing measure might simply not be computable, as in the case of the \texttt{Tortoise and the Hare} algorithm.\(^{13}\)

Although well-founded recursion via \texttt{well_founded_induction_type} is more general than measure based recursion to define non-structurally recursive functions in Coq, it has a major drawback: one needs to devise the well-founded relation \(R \) \emph{before} actually defining the recursive function.

First of all, it might be the case that no such well-founded relation exists, typically for partial algorithms. But even for totally defined functions, complications might become unbearable when writing nested recursive functions that call themselves on their own output values like e.g. McCarthy’s \texttt{F91} function.\(^{14}\)
4.2. **Accessibility based recursion**

Coming to theoretical foundations of the herein called Braga method, we revert back to the definition of the Acc predicate. It allows to implement and extract not only total functions but also partial functions via its fully-dependent recursor:

Theorem \(\text{Acc_rect'} X R (P : \forall x, \text{Acc}_Rx \to \text{Type}) : \)

\[
\left(\forall x A_x, \left(\forall y (H_{yx} : R_{yx}), P y (\text{Acc_inv} A_x y H_{yx}) \right) \to P x A_x \right) \to \forall x A_x, P x A_x.
\]

which reads quite differently than \text{well_founded_induction_type} above.

But before describing the interpretation of the type of \text{Acc_rect'}, let us recall \text{Acc_inv}, the inversion/projection lemma for the \text{Acc} predicate implemented with a trivial pattern matching:

Definition \(\text{Acc_inv} \{ X R \} x (A_x : \text{Acc}_Rx) : \forall y, R_{yx} \to \text{Acc}_Ry := \)

\[
\text{match } A_x \text{ with } \text{Acc_intro } H \Rightarrow H \text{ end.}
\]

This definition ensures that whenever one applies \text{Acc_inv} \(A_x \) to any \(y \) such that \(R_{yx} \) one can get a proof of \(\text{Acc}_Ry \) which is also structurally smaller than \(A_x : \text{Acc}_Rx \).

Now we give a possible interpretation of \text{Acc_rect'} as an induction principle for defining a partial function \(f \). Let us assume that we can somehow ensure the identity \(Df = \text{acc}_R \) between the intended domain \(Df \) of \(f \) and the accessibility predicate \(\text{Acc}_R \). We then write \(D_x : Df x \) instead of \(A_x : \text{Acc}_Rx \) and we are in position to define a partial, dependent function

\[
f : \forall x (D_x : Df x), P x D_x.
\]

In this case, applying \text{Acc_rect'} reads as following: provided \(x \) and a proof \(D_x : Df x \), while building a value in \(P x D_x \) we can further assume the induction hypothesis at \(x \):

\[
IH_x : \forall(y : X) (H_{yx} : R_{yx}), P y (\text{Acc_inv} D_x y H_{yx}).
\]

That is, we can assume a value in \(Py D_y \) for every \(y \) that is \(R \)-below \(x \), where \(D_y := \text{acc_inv} D_x y H_{yx} \) is a particular proof for \(Df y \) built from \(D_x \) and \(H_{yx} : R_{yx} \). Further notice that the type family \(P \) may depend not only on \(x \) but also on the proof \(D_x \) of \(Df x \).

We follow up with a detailed review of the code of \text{Acc_rect'} because it contains important ideas that the Braga method also makes use of. For \(P : \forall x, \text{Acc}_Rx \to \text{Type} \) satisfying the assumption

\[
H_P : \forall x A_x, \left(\forall y (H_{yx} : R_{yx}), P y (\text{Acc_inv} A_x y H_{yx}) \right) \to P x A_x
\]
we may define $\text{acc}_{\text{rect}}'$ as the following fixpoint:

$$\text{Fixpoint } \text{acc}_{\text{rect}}'\ x\ (A_x : \text{Acc} R x) \{ \text{struct } A_x \} : P x A_x := H_P x A_x (\lambda y H_{yx}, \text{acc}_{\text{rect}}' y (\text{acc}_{\text{inv}} A_x y H_{yx})).$$

We insist on reviewing this code which is a slight variant of the one occurring in Coq's standard library module Wf under the name Fix_F because it shows precisely how structural recursion is used to achieve acc based recursion and a fortiori well-founded recursion. The structurally decreasing argument in the definition of $\text{acc}_{\text{rect}}'$ is the proof $A_x : \text{Acc} R x$ and the guardedness condition is ensured by the pattern-matching on A_x performed inside the acc_{inv} term: $\text{acc}_{\text{inv}} A_x y H_{yx}$ is recognized as a subterm of A_x. For Coq specialists, we also point out that $\text{acc}_{\text{rect}}'$ does not perform harmless elimination, i.e. there is no elimination from P to Type because acc_{inv} is applied only when building the struct argument of sort P.

All these nice (and a bit complicated) theoretical considerations put aside, aren’t we back to square one? We still need to find R such that D_f and $\text{acc} R$ match, or at least that $\text{acc} R$ covers the domain D_f.

However, concrete algorithms like those defined by recursive equations always contain a canonical relation that can be used for R. This is the recursive subcall/call relation below denoted by the \preceq^sc infix symbol. To understand this characterization of the domain $\mathbb{D}_f = \text{acc} \preceq^\text{sc}_f$ of f, one could think in classical terms where $\text{acc} \preceq^\text{sc}_f x$ holds for the values x such that no infinite \preceq^sc_f-decreasing sequence exists. As $(\cdot) \preceq^\text{sc}_f x$ captures precisely the direct recursive subcalls that can be triggered by a call at x, $\text{acc} \preceq^\text{sc}_f x$ means termination of any sequence of recursive subcalls starting from x, hence the termination of the computation at x.

4.3. The domain as subcall/call accessibility

We illustrate this characterization of the domain $\mathbb{D}_f = \text{acc} \preceq^\text{sc}_f$ on the previous example of ns of Section 3.1, and we later show why this example challenges well-founded recursion. Consider the following algorithm described by the OCaml program:

```ocaml
let rec ns x = if bx then 0 else 1 + ns (gx)
```

where $b : X \to \mathbb{B}$, $g : X \to X$ are already defined total functions. If one picks R a relation for which $R gx x$ holds for any $x : X$, then using via $IH_x (gx)$, one can access the value $\text{ns} (gx)$ while defining $\text{ns} x$.

Of course, one cannot simply choose any such relation R because it may well be that $Rx x$ holds for any x and thus $\text{acc} R$ would give an empty
To avoid such a situation, we pick the smallest possible relation \(\preceq_{\text{ns}} : X \to X \to P \) linking calls with subcalls that actually occur, here simply defined by the single inductive rule:

\[
\text{Inductive } \preceq_{\text{ns}} : X \to X \to P := \begin{align*}
b x &= \text{false} \\
g x &\preceq_{\text{ns}} x
\end{align*}
\]

Notice the \(b x = \text{false} \) premise which restricts the rule on the actual recursive calls, i.e. the subcall \(\text{ns}(g x) \) does not occur when \(b x = \text{true} \).

Given this definition of \(D'_{\text{ns}} \) as \(\text{Acc} \preceq_{\text{ns}} \), we can use \(\text{Acc}_\text{rect}' \) to give a first implementation in proof style:

\[
\text{Definition } \text{ns}_{\text{Acc}} : \forall x, D'_{\text{ns}} x \to \mathbb{N}.
\]

Proof.

\[
\text{induction 1 as } [x \cdot IH_D] \text{ using } \text{Acc}_\text{rect}'.
\]

\[
\text{case } eq(b x); \text{ intros } G.
\]

+ \text{ exact } 0.

+ \text{ apply } S, (IH_D(g x)).

\text{now constructor.}

Defined.

However, this definition makes it really hard to prove any property of the resulting term \(\text{ns}_{\text{Acc}} \). For instance, we would like to be able to show the fixpoint equation \(\text{ns}_{\text{Acc}} x D = 0 \) whenever \(b x = \text{true} \) holds. Also, the above term somehow hides the fixpoint computation behind \(\text{Acc}_\text{rect}' \) of which, unless inlined, the code is not visible.

To solve both of these problems, we use the computational graph \(G_{\text{ns}} : X \to \mathbb{N} \to P \) as defined in Section 3.2 encoding the relation \(x \mapsto_{\text{ns}} o \) to be read as \(\text{ns} \) terminates on input value \(x \) and outputs the value \(o \), or \(\text{ns} x = o \) for short. Instead of just outputting a value of type \(\mathbb{N} \), we write the fully specified \(\text{ns}_{\text{pwc}}_{\text{Acc}} \) version of \(\text{ns} \), packed with correctness as

\[
\text{ns}_{\text{pwc}}_{\text{Acc}} : \forall x : X, D'_{\text{ns}} x \to \{ o : \mathbb{N} \mid x \mapsto_{\text{ns}} o \}.
\]

We furthermore inline \(\text{Acc}_\text{rect}' \) inside the definition of \(\text{ns}_{\text{pwc}}_{\text{Acc}} \) to fully display the computational content of the term in Figure 5. We can then project the output \(\Sigma \)-type to get

\[
\text{Definition } \text{ns } x \ (D : D'_{\text{ns}} x) := \pi_1(\text{ns}_{\text{pwc}}_{\text{Acc}} x D).
\]

and its specification

\[
\text{Fact } \text{ns}_{\text{spec}} x \ (D : D'_{\text{ns}} x) : \ x \mapsto_{\text{ns}} \text{ns } x \ D.
\]

\footnote{Think e.g. \(g x = x \).}
Fixpoint ns_pwc_{\text{Acc}} x (D : D'_{\text{ns}} x) : \{ o \mid x \mapsto o \}.

Proof. refine(
 match b x as b x return b x = b x \rightarrow _\text{with}
 | true \Rightarrow \lambda G, \text{exist } o \ O'_1
 | false \Rightarrow \lambda G,
 \text{let } (o, C_o) := \text{ns_pwc}_{\text{Acc}} (g x) \ T'_1
 \text{in } \text{exist } (\overline{S} \ o) \ O'_2
 end eq_refl).

1, 2 : cycle 1. (* reordering of proof obligations *)
[T'_1] : \text{apply Acc_inv with } (l := D); \text{now constructor}.
[O'_1] : \text{now constructor 1}.
[O'_2] : \text{now constructor 2}.
Qed.

Figure 5. Coq fixpoint for \text{ns_pwc}_{\text{Acc}} with D'_{\text{ns}} := \text{Acc} \leq_{\text{ns}}.

with \pi_2(\text{ns_pwc}_{\text{Acc}} x D) containing the conformity proof of the output value.

We can also recover the “natural” constructors mimicking those of the custom domain predicate \text{D_{ns}} as two constructors \text{D'_{1 ns}} and \text{D'_{2 ns}} below which serve as an alternative to the \text{Acc_intro} constructor implied by the definition \text{D'_{ns}} := \text{Acc} \leq_{\text{ns}}:

\text{D'_{1 ns}} : \forall x, b x = \text{true} \rightarrow D'_{\text{ns}} x \\
\text{D'_{2 ns}} : \forall x, b x = \text{false} \rightarrow D'_{\text{ns}} (g x) \rightarrow D'_{\text{ns}} x

The fixpoint equations can easily be deduced by combining \text{ns_spec} and the functionality of \text{G_{ns_fun}}. As \text{ns_pwc}_{\text{Acc}} is packed with its conformity with \text{G_{ns}}, there is no need to unfold or evaluate its expression to get these next two equations

\text{ns} x (D'_{1 ns} \ x \ E) = 0 \quad \text{and} \quad \text{ns} x (D'_{2 ns} \ x \ E \ D) = S (\text{ns} (g x) \ D)

as witnessed by the Coq \text{Qed} directive ending the proof term of Figure 5, intended to be \text{opaque} to evaluation.

This construction with \text{D'_{ns}} defined as \text{Acc} \leq_{\text{ns}} provides exactly the same tools as the construction with custom domain predicates. We could now proceed with the study of the high-level properties of \text{ns} in a similar way.

4.4. A failure of well-founded recursion

In the section, we discuss how this particular algorithm scheme of \text{ns} challenges well-founded recursion, contrary to \text{Acc}-based recursion. Let us consider \(b : \mathbb{N} \rightarrow \mathbb{B}\) to be the identity test with 1, i.e. \(b x := x = 1\) and \(g : \mathbb{N} \rightarrow \mathbb{N}\)
to be defined such that
\[gn := \begin{cases}
 n/2 & \text{if } n \text{ is even} \\
 3n + 1 & \text{if } n \text{ is odd.}
\end{cases} \]

Then the computation of \(ns \) generates the Syracuse sequence \(g^0 x, g^1 x, g^2 x, \ldots \) until it eventually reaches the value 1. It is easy to show that the domain of \(ns \) in this case is exactly the values \(x \) for which the Syracuse sequence from \(x \) ends up in the cycle 1, 4, 2, 1. This follows directly from \(D_{ns} \text{.high_level} \) (see page 27).

Hence \(D_{ns}/D'_{ns} \) is a predicate of which the totality problem is still unresolved at the present time and b.t.w., despite its very simple statement, a highly difficult mathematical problem.\(^{15}\) \textit{A fortiori}, there is no known measure nor well-founded order that could be used to justify the eventual termination of the Syracuse sequence into the length 3 cycle.

Given that well-founded recursion assumes the domain to be total, there would be no way to define this instance of \(ns \) unless at some point, someone comes up with a totality proof for \(D'_{ns} \) moreover based on a well-founded relation. On the contrary, \(\text{Acc} \preceq \text{sc}_{ns} \) based recursion (or custom domain predicates) are perfectly at ease with partial functions and the implementation of the Syracuse sequence can trivially be extracted as the above instance of \(ns \).

\subsection*{4.5. Inductive-Recursive schemes}

Induction-recursion consists in the simultaneous definition of a predicate and a fixpoint such that the predicate might make reference to the fixpoint values. The concept was formally introduced by Dybjer\(^{16}\) and used widely for the representation of partial recursion in type theory, e.g. in the seminal work of Bove and Capretta.\(^{10}\)

A bit at odds with the Coq understanding of accessibility characterized by the specific but parametric \text{Acc} predicate, the domain predicates used for inductive-recursive scheme by Bove and Capretta\(^{10}\) are also called accessibility predicates. To us, they look much more like our custom inductive domain predicates, however with the main difference that their accessibility predicates must belong to sort \text{Type} because the fixpoints to which they are attached proceed by pattern matching and recursion on them.

Anyway, Coq does not currently implement inductive-recursive schemes. Also, in the peculiar distinction between “non-informative” propositions in \(\text{P} \) and “informative” \(\text{Types} \) that is crucial for extraction in Coq, pattern
matching based on domain constructors in P would not be accepted: it is already forbidden for regular fixpoints definitions.\footnote{With the exception of the debatable \textit{singleton elimination rule}, see Section 2.3.}

Following Bove and Capretta\footnote{With the exception of the debatable \textit{singleton elimination rule}, see Section 2.3.} and the fully predicative world view of Agda,\footnote{With the exception of the debatable \textit{singleton elimination rule}, see Section 2.3.} one could of course consider \textit{Type} based domain predicates in which case pattern matching on them would be allowed. However, this approach would lead to terms with an entirely different computational contents: computation would proceed by matching on domain predicates instead of matching on input parameters. This would of course reflect into the extracted terms which would contain those informative domain arguments. But erasing the non-informative domain argument is precisely the feature we are using to get clean extracted terms.\footnote{With the exception of the debatable \textit{singleton elimination rule}, see Section 2.3.}

Nonetheless, our approach is compatible with induction-recursion in the sense that we can simulate those schemes in Coq. In fact, they form a quite convenient approach at proving partial correctness properties as an alternative to induction on the computational graph predicate. In practice, they allow to work with partial functions instead of relational reasoning.

Simulating induction-recursion consists in the implementation of a (proof irrelevant) eliminator (i.e. induction principle) for the domain predicate and of fixpoint equations for the function. This approach is favored in Sections 6 and 8 while inductive-recursive schemes and computational graph based induction are compared in Section 7. In this work, we do not provide a systematic description of induction-recursion but instead favor examples to hint at how it behaves in practice.

5. Odd Functions on Lists

\textit{Objectives and disclaimer.} In most cases, recursive calls are inside branches of a pattern-matching construct, rather than in a simple \texttt{if-then-else} construct. The components of the constructor currently analyzed can then be directly exploited in the projections π_i introduced with the first central idea of the Braga method, see Section 3. To illustrate this, we consider here basic functions on lists, that are neither complicated nor efficient in any way. But they happen to provide an unusual and in some sense natural reference for well-known functions, especially OCaml \texttt{fold_left} which seems never to be formally specified. We even consider a version which is not even directly programmable in OCaml. This becomes the case after a simple transformation but anyway, the reference program obtained in this way, though simple, does not fit the simple scheme by structural recursion.

...
Thanks to the Braga method we can reason on these functions (and even their ideal non-programmable version) and show that they are related as expected with the standard efficient versions.

5.1. On the correctness of fold_left

Let us start with a well-known example, reverting a list, which is traditionally presented in two ways: a simple version naive_rev which recursively uses an auxiliary function consr, such that consr u y; also denoted by u+y, is the list u postfixed by the single element y and a more sophisticated version eff_rev using an accumulator. It is well known that eff_rev is better behaved: it is linear-time in the length of the input, whereas naive_rev is quadratic-time. However, naive_rev is simpler and better at proving algebraic properties. So it is common to consider it as a specification of revert, and to prove that eff_rev returns the same result as naive_rev. In this approach the associativity of the append function ++ plays a crucial role, given the fact u+y = u++[y]. On the other hand, eff_rev is a special case of the fold_left function. But what should be the specification of fold_left? Things become clearer if we (attempt to) write the recursive equations of naive_rev in the converse way.

$$\text{naive_rev}\;[\;] = []$$
$$\text{naive_rev}\; (y :: u) = \text{naive_rev}\; u + : y$$

$$\text{naive_rev_conv}\;[\;] = []$$
$$\text{naive_rev_conv}\; (u ++ y) = y :: \text{naive_rev_conv}\; u$$

Similarly, a reference version of foldl_ref f b₀ would be:

$$\text{foldl_ref}\; f\; b₀\;[\;] = b₀$$
$$\text{foldl_ref}\; f\; b₀\; (u + : z) = f\; (\text{foldl_ref}\; f\; b₀\; u)\; z$$

These equations, which formalize common informal explanatory drawings, correspond to nothing but the mirror version of fold_right. Note that, in these equations, f and b₀ are constants. In particular, b₀ is not an accumulator. Therefore in the rest of this chapter, we consider that f and b₀ are given once for all and we simplify the previous equations as follows.

$$\text{foldl_ref}\;[\;] = b₀$$ and $$\text{foldl_ref}\; (u + : z) = f\; (\text{foldl_ref}\; u)\; z$$

Figure 6 contains a program in OCaml syntax which reflects those equations, but this is not a regular program because the second pattern is written with a function call instead of constructors. From an algebraic perspective,
let rec foldl_ref l = match l with (* fake *)
| [] → b₀
| u :+: z → f (foldl_ref u) z

Figure 6. A fake ideal reference program for fold_left.

let rec foldl_ref l = match l2r l with
| Nilr → b₀
| Consr u, z → f (foldl_ref u) z

Figure 7. A regular reference program for fold_left.

the pair ([],+:) shares the same desired properties (injectivity, discrimination and covering) as ([],::) for decomposing a list. But beyond algebraic meaningfulness, an explicit way to get the components of each “constructor” is needed.

Nonetheless it is possible to recover a regular functional program after a small additional work. Let us introduce an auxiliary non-recursive type lr defined in OCaml syntax as follows.

type α lr = Nilr | Consr of α list * α

The first argument of Consr is purposefully a list, and not a lr. We then consider the regular reference OCaml program foldl_ref (without parameters f and b₀) given in Figure 7. In this program, l2r is the obvious bijective function from α list to α lr, whose inverse is the even more obvious function r2l which interprets Nilr by the [] constant and Consr by the :+: operator.

In other words, the constructor Consr is a concrete reflection of the :+: function. The regular pattern matching on the left hand side of Figure 8 can be seen as the actual meaning of the fake scheme on the right hand side which is suggested by the above recursive equations.

match l2r l with
| Nilr → ...
| Consr u, z → ...

match l with (* fake *)
| [] → ...
| u :+: z → ...

Figure 8. Implementation of a fake match.

Note that naive_rev_conv can be implemented using the same pattern, yielding a program having the same complexity as naive_rev.
Inductive $G_{\text{foldl}} : \mathbb{L} A \rightarrow B \rightarrow \mathbb{P}$ and $G_{\text{lr}} : \mathbb{lr} A \rightarrow B \rightarrow \mathbb{P}$:=

\[
\begin{align*}
\text{Nilr} & \mapsto_{gr} b_0 \\
\text{Consr} & \ z \mapsto_{gr} f b z \\
\end{align*}
\]

Figure 9. Basic relational presentation of \texttt{fold_left}.

Inductive $G_{\text{foldl}} : \mathbb{L} A \rightarrow B :=$

\[
\begin{align*}
[] & \mapsto f b_0 \\
u & \mapsto f b z \\
\end{align*}
\]

Figure 10. High-level relational presentation of \texttt{fold_left}.

Inductive $D_{\text{foldl}} : \mathbb{L} A \rightarrow \mathbb{P} :=$

\[
\begin{align*}
D_{\text{foldl}} [] & \\
D_{\text{foldl}} u & \ (u +: z) \\
\end{align*}
\]

Figure 11. Inductive definition of the domain of \texttt{fold_left}, based on Figure 10.

On the same model, \texttt{foldl_ref} can serve as an inefficient, but clear reference program for the usual \texttt{fold_left}. In order to provide a formal Coq proof of the equivalence between them, a suitable definition of \texttt{foldl_ref} in Coq is required, as well as tools for reasoning about it. The above recursive function does not fit into the usual scheme of definitions by structural recursion, but we can use the Braga method.

First, we introduce in Figure 9 a relational presentation G_{foldl} for the graph of \texttt{foldl_ref}. We consider G_{foldl} as a binary relation \mapsto_{gr} between an input in $\mathbb{L} A$ and an output in B, with additional constant parameters f and b_0. In situations where more details are needed we will use the heavier notation G_{f,b_0}^{foldl}. In order to define G_{foldl}, a Coq version of lr and lr is needed first. This is an easy exercise, as well as the definition of r2l and the proofs that lr and r2l are inverse of each other.

This presentation is a straightforward translation of the program given in Figure 7. However in the present case, it is more naturally described in Figure 10, with $+:$ instead of Consr, pretending that we are going to directly implement the fake match of Figure 6 without the artificial intermediary of lr.

The next step is to write the inductive definition of the domain D_{foldl} of G_{foldl}. We just ignore its last (output) argument. The constant parameters f and b_0 are irrelevant here since they are only used for computing the output. A first definition of D_{foldl} is given in Figure 11. Actually, an equivalent predicate D_{lr} is used in order to fulfill an objective of this section.
Let \texttt{Fixpoint foldl_pwc} \(l \ (D : D_{1z} l) : \{ b \mid l \mapsto_{r2l} b \} \).

\textbf{Proof.}

\begin{verbatim}
gen_help l G_{foldl}; apply up_llP in D; revert D.
refine (match l2r l with
 | Nilr ⇒ λD T, exist . b₀ O₁
 | Consr u z ⇒ λD T,
 let (b, Cₐ) := foldl_pwc u (π₁ D) in exist . (f b z) O₂
end).

[O₁]: apply T; constructor 1.
[O₂]: apply T; constructor 2; exact Cₐ.
\end{verbatim}

Qed.

Figure 12. Coq proof term foldl_pwc of the conform-by-construction foldl algorithm.

Note that these predicates are suitable to all functions which visit lists from right to left. A projection \(π_{D_{1z}} : D_{1z}(u +: z) \rightarrow D_{1z}u \) returning a structurally smaller term can then be blindly defined using the \texttt{inversion} tactic of Coq, however an explicit definition will be given in Section 5.2.

A conform-by-construction \texttt{fold_left} can then be defined as in Figure 12. As for \texttt{ns}, the heart of this code is inside the \texttt{refine} tactic, with a crucial use of \(π_{D_{1z}} \) in the recursive call and two proof obligations for the postcondition. A technical difference is that here we have two Trojan horses. The first one is \(D \) whose type \(D_{1z} l \) has been replaced by \(D_{1z}(r2l \ (12r \ l)) \) using \texttt{up_llP}, and the second one is \(T : ∀y, r2l \ (12r \ l) \mapsto_{r2l} y \mapsto l \mapsto_{r2l} y \), introduced by \texttt{gen_help}. Lemmas \texttt{up_llP} and \texttt{gen_help} are justified by a simple rewriting step. In this way, the pattern-matching of \(12r \ l \) changes expressions \(r2l \ Nilr \) and \(r2l \ (Consr \ u \ z) \) in the two branches. In the first we get \(D : D_{1z}[] \) and \(T : ∀y, [] \mapsto_{r2l} y \mapsto l \mapsto_{r2l} y \).

In the second we get \(D : D_{1z} \ (u +: z) \) and \(T : ∀y, u +: z \mapsto_{r2l} y \mapsto l \mapsto_{r2l} y \), so everything is in place for feeding \(π_{D_{1z}} \) and proving the postconditions.

As for \texttt{ns}, we easily get a Coq version of \texttt{fold_ref} and a proof that it satisfies \(G_{foldl} \) using the standard projections on Σ-types \(π₁ \) and \(π₂ \). The extraction of \texttt{fold_ref} yields exactly the expected OCaml code.

In this case study, we are interested in proving that the usual (linear-time) implementation of \texttt{fold_left} returns the same result as \texttt{fold_ref}. To this effect we first define this function (where \(f \) is a hidden parameter) by easy structural recursion in the list in input, and we prove that it is
D. Larchey-Wendling and J.-F. Monin

Inductive $\mathbb{D}_{1z} : \text{LA} \rightarrow \mathbb{P}$ and $\mathbb{D}_{lr} : \text{lrA} \rightarrow \mathbb{P}$:=

\[
\begin{align*}
\mathbb{D}_{1r} \text{Nilr} & \quad \mathbb{D}_{lr} (\text{Consr} u z) \\
\mathbb{D}_{1z} u & \quad \mathbb{D}_{imb} (12r l) \\
\mathbb{D}_{1z} \text{u} & \quad \mathbb{D}_{1z} l \\
\mathbb{D}_{1z} \text{u} & \quad \mathbb{D}_{1z} l
\end{align*}
\]

Figure 13. Inductive definition of the domain of fold_left, based on Figure 9.

Complete w.r.t. $\mathbb{G}_{\text{foldl}}$.

Fixpoint foldl b l : B :=

\[
\text{match l with } \begin{cases}
[] \Rightarrow b & | \ | x :: l \Rightarrow \text{foldl (f b x) l end.}
\end{cases}
\]

Theorem $\text{foldl_compl b l : l \mapsto \rightarrow f \mapsto b \Rightarrow b = \text{foldl b l}$.}

The proof is by trivial induction on $l \mapsto \rightarrow f \mapsto b$, using a simple lemma saying that $\text{foldl f b (u +: z)}$ is always equal to $f (\text{foldl f b u}) z$. Finally, we get the expected corollary, expressed with an explicit f.

Theorem $\text{foldl_equiv_partial f b l (D : \mathbb{D}_{1z}) :}$

\[
\text{foldl f b l = foldl_ref f b l D.}
\]

Actual termination is obtained separately and total correctness of fold_left is just a special case of $\text{foldl_equiv_partial}$. As expected for such a very simple case study, the proofs are very light, between one and three lines of elementary explicit scripts without automation or heavy machinery.

Back to the revert function, we can prove, along the same approach, that eff_rev returns the same result as $\text{naive_rev_converse}$, without referring to an alien function $(++)$ and its algebraic properties. In particular the graph is nicely symmetric. Its domain is \mathbb{D}_{1z}, the same as for foldl_ref.

5.2. Projections

We define here the projection used in order to have a clearly structurally smaller domain argument in the recursive call of foldl_pwc. Though $\mathbb{D}_{\text{foldl}}$ can indeed be used, we replace it with the equivalent definition given in Figure 13, which is based on the graph of Figure 9. The main reason is that the auxiliary \mathbb{D}_{lr} illustrates a situation which is close to most common examples, where the pattern-matching is expressed against the main argument of the function (l here). The projection is then easier to define, without interference with additional equality proofs. We first focus on this part by defining $\pi_{\text{Dlr}} : \mathbb{D}_{lr} (\text{Consr u z}) \rightarrow \mathbb{D}_{1z} u$ as in Figure 14. The term returned in the interesting case is D_{u0} which is clearly the intended subterm of D. Notice the use of a Trojan horse $G : \text{shape} r$, where $\text{shape} r$ plays the same
role as is_cons at the beginning of Section 3. When \(D \) is \(D_{lr}^{r} \), then its type is \(D_{lr}^{r} \) with \(r = \text{Nilr} \), so that \(\text{shape} \, r \), the type of \(G \), reduces to \(\bot \).

There is a subtle point about the \(u \) component of \(\text{Consr} \, u \, z \). In the course of the pattern matching of \(D \), the type of \(D \) is originally considered as being \(D_{lr}^{r} \) and the identity \(r = \text{Consr} \, u \, z \) is lost: \(r \) becomes either \(\text{Nilr} \) (the fake case handled by the Trojan horse \(G \)), or \(\text{Consr} \, u_{0} \, z_{0} \), so we need to reconnect \(u_{0} \) with \(u \). This is performed by stating that the type of the result in the return clause is \(D_{lz}^{u_{0}} \), where \(u_{0} \) is the first component of \(r \) when \(r \) is \(\text{Consr} \, u_{0} \, z_{0} \). However \(u_{0} \) has to be defined in all cases for \(r \), so a default value has to be provided. In the case of the type \(lr \) we could take the ad-hoc \(\text{Nilr} \). For the sake of generality it is much better to make no assumption on the type of \(u_{0} \), but we just remark, as in\(^{19} \) that a suitable candidate is necessarily available at this stage: \(u \) itself.

\[
\text{Definition \, \text{shape} \, (r : \text{lr} \, A) : \mathbb{P} :=}
\text{match} \, r \, \text{with} \, \text{Consr} \, u \, z \Rightarrow \top \mid _ \Rightarrow \bot \end{match}
\]

\[
\text{Definition \, } \pi_{D_{lr}} \{u \, z\} \, (D : D_{lr} \,(\text{Consr} \, u \, z)) : D_{lz} \, u :=
\text{match} \, D \, \text{in} \, D_{lr} \, r \, \text{return}
\text{let} \, u_{0} := \text{match} \, r \, \text{with} \, \text{Consr} \, u_{0} \, z_{0} \Rightarrow u_{0} \mid _ \Rightarrow u \end{match}
\text{in} \, \text{shape} \, r \Rightarrow D_{lz} \, u_{0} \, u \end{match}
\mid D_{lr}^{G} \, u_{0} \, z_{0} \, D_{u_{0}} \Rightarrow \lambda G, D_{u_{0}}
\mid D_{lr}^{G} \Rightarrow \lambda G, \text{match} \, G \, \text{with end}
\text{end I.}
\]

Figure 14. Projection function for \(D_{lr} \).

Another option for \(\pi_{D_{lr}} \) is to first define an auxiliary function \(\text{lrleft} \) along the same lines as for \(\text{head} \) at the beginning of Section 3, as illustrated in Figure 15. In addition to \(r \), this function takes a guard argument \(G \) of type \(\text{shape} \, r \). In the absurd case where \(r \) is \(\text{Nilr} \), we don’t mind to find a value, using for False Elim one of the functions detailed in Section 2.7. This option is especially valuable if a safe version like False_loop or False_exc is chosen, avoiding harmless Prop to Type eliminations issue.\(^{6} \)

However, as for \(\text{ns} \) in Section 3.1, in the target algorithm, the pattern-matching is expressed not against the argument of the function (\(l \) here), but on a function of \(l \), which is here \(12r \). A similar work is done with an auxiliary equality proof. The expression same \(G \, D_{r} \) just says that in

\(^{6} \)This issue is not raised in the first version of \(\pi_{D_{lr}} \) presented in Figure 14 since there is no need to eliminate \(G \) to describe the type returned by the match \(G \) construct.
42. \textit{D. Larchey-Wendling and J.-F. Monin}

\textbf{Definition } lr \rightarrow A := \quad \text{match } r \text{ with } \text{Cons } u \ z \Rightarrow \lambda \ _, \ u \ | _ \Rightarrow \lambda G, \ \text{False} _ _ \ G \ \text{end}.

\textbf{Definition } \pi_{Dlr} \{u \ z\} (D : D_{lr} (\text{Cons} \ u \ z)) : D_{lz} u := \quad \text{match } D \in D_{lr} r \ \text{return } \forall G, D_{lz} (lr \left \rightarrow G) \text{ with} \\
| D_{lr} u_0 \ z_0 D_{u_0} \Rightarrow \lambda G, D_{u_0} \text{ with end} \\
| D_{lr} \Rightarrow \lambda G, \text{match } G \text{ with end end I.}

Figure 15. Projection function for D_{lr} with an auxiliary function.

the type of D_{lr}, $12r l$ can be rewritten as $\text{cons} \ u \ z$ in the presence of $G : l = u + z$.

\textbf{Definition } \pi_{Dlz} \{u \ z\} (D : D_{lz} (u + z)) : D_{lz} u := \quad \text{match } D \in D_{lz} l \ \text{return } l = u + z \Rightarrow _ _ \text{ with} \\
| D_{lz} l \ D_r \Rightarrow \lambda G, \pi_{Dlr} (\text{same } G \ D_r) \\
\text{end eq_refl.}

6. \textit{Potentially Non-terminating Depth-First Search}

The standard dfs algorithm is generally presented using the recursive equations of Fig. 16 on page 43 leading to potential non-termination on some inputs; see the discussion ending the section for a non-terminating example on an infinite graph. The structure of dfs is similar to that of our initial example ns introduced in Section 3.1 but it has two input parameters instead of only one.

Despite its apparent simplicity and its lack of nested calls, we consider dfs to be a particularly interesting algorithm to implement as an illustration of the Braga method because of this potential non-termination, leading to a quite non-trivial characterization of its (termination) domain, based on invariants to be discussed later on. The ability to manipulate the partial algorithm and derive partial correctness properties will be critical to the characterization of its termination domain.

6.1. \textit{Preliminaries}

We consider a potentially infinite graph described by a type $\mathcal{V} : \text{Type of vertices}$ and a function $\text{succs} : \mathcal{V} \rightarrow \mathcal{L} \mathcal{V}$ finitely enumerating the successors of a vertex. These assumptions restrict the study to finitely branching directed graphs but these are standard assumptions for depth-first search.
The Braga Method: Extraction of Complex Recursive Schemes in Coq

43

dfs v [] = v
dfs v (x :: l) = dfs v l if x ∈ l
dfs v (x :: l) = dfs (x :: v) (succs x ++ l) if x ∉ l

Figure 16. Equations describing the dfs algorithm.

To convert equations of Figure 16 into a definitive algorithm, we need to assume a membership test function over lists of egdes mem : V → L V → B that we denote infix x ∈? l := mem xl, and with the specification:

Parameter mem_true_iff : ∀xl, x ∈? l = true ↔ x ∈ l.

Then we can show that

Corollary mem_iff : ∀xl, \{ x ∈? l = true ↔ x ∈ l
x ∈? l = false ↔ x ∉ l. \}

Notice that mem could be derived from an equality decider o over V, but we refrain from specifying it more: the particular implementation might depend on the specific structure of vertices to be more efficient than a sequence of identity tests.

6.2. The computational graph and the domain

We define the computational graph Gdfs of the dfs algorithm as a ternary relation Gdfs v l o between the inputs (v l : L V) and the output o : L V, denoted with the mixfix notation v l →d o, and to be read as "dfs v l outputs o." It is composed of the three following inductive rules that mimic the equations of Fig. 16:

Inductive Gdfs : L V → L V → L V → P :=
v ⊔ [] →d v
x ∈ v ⊔ x :: l →d o
x ∉ v ⊔ x :: l →d o
v ⊔ l →d o

The graph Gdfs is a mostly straightforward formal encoding of the otherwise informal equations defining dfs. For simplicity, here we assume Gdfs to faithfully encode those equations in its three rules, but this will not matter at all for total correctness. It might only be of relevance when considering the operational semantics of the extracted code.

We show that the computational graph Gdfs of dfs is functional, i.e. it outputs at most one value on any given pair of inputs:

Fact Gdfs_fun v l o1 o2 : v ⊔ l →d o1 → v ⊔ l →d o2 → o1 = o2.

"usually implementable for data-types but, contrary to OCaml, not available in any type in Coq, e.g. typically not available over function types."
Proof. The proof is by induction on the first predicate of type \(v \sqcup l \mapsto o_1 \) and inversion on the second predicate of type \(v \sqcup l \mapsto o_2 \).

We characterize the domain \(D_{dfs} \) of \(dfs \) with a custom inductive predicate following the three rules of the graph \(G_{dfs} \) but ignoring/erasing the third (output) argument:\(^p\)

\[
\begin{align*}
\text{Inductive } & \quad D_{dfs} : \mathbb{L}V \to \mathbb{L}V \to \mathbb{P} := \\
\text{Inductive } & \quad [D_{dfs}^1 v] \quad [D_{dfs}^2 v x l] \quad [D_{dfs}^3 v x l] \\
& \quad \frac{x \in v \quad D_{dfs} v l}{D_{dfs} v (x :: l)} \\
& \quad \frac{x \notin v \quad D_{dfs} (x :: v) (\text{success } x + l)}{D_{dfs} v (x :: l)} \\
& \quad \frac{E}{D_{dfs} v l}
\end{align*}
\]

The correctness of this characterization of \(D_{dfs} \) w.r.t. the projection of \(G_{dfs} \) on its two inputs will be established later on.

6.3. A term for \(dfs \) that conforms to its computational graph

We have enough structure to build the fully specified \(dfs \), that is the algorithm packed with conformity to the computational graph \(G_{dfs} \) of type

\[
dfs_{pwc} : \forall v l, D_{dfs} v l \to \{ o | v \sqcup l \mapsto o \}
\]

of which the exhaustive term reported in Fig. 17 on page 45. It is implemented as a Fixpoint of which the struct argument is the non-informative domain predicate \(D : D_{dfs} v l \). Using the handy refine tactic, we mostly separate the computational contents presented in programming style, from the logical contents presented in proof style (i.e. as combinations of tactics).

The computational contents strictly follows the intended OCaml algorithm that we wish to extract. Some of the logical contents, essentially names for introduced hypotheses, must be reported in there but we try to keep it as minimal as possible.

The logical contents — composed of proof obligations, — splits into, on the one hand termination certificates such as \(T_1 \), and on the other hand postconditions such as \(O_1 \). In real Coq code, these names all collapse to the wildcard _ (or joker) associated with the refine tactic but we distinguish them in here to better document them.

For instance, the termination certificate \(T_1 \) corresponds to the subgoal:

\[
[T_1] : \ldots, x : V, v l ; \mathbb{L}V, D : D_{dfs} v (x :: l), E : x \in v l = \text{true} \vdash D_{dfs} v l
\]

\(^p\)This works in the case of \(dfs \) because it is not a nested recursive algorithm, but it will fail and must be refined in the case of e.g. Paulson’s normalization algorithm of Section 7.
Let `Fixpoint dfs_pwc v l (D : Ddfs v l) {struct D} : \{o \mid v \cup l \rightarrow_o o\}.
Proof.
refine (match l with
 | [] \Rightarrow \lambda D, exist _ v O1_i
 | x :: l \Rightarrow \lambda D,
match x \in^\exists l as b return x \in^? l = b \rightarrow _, with
 | true \Rightarrow \lambda E,
 let (o,G_o) := \text{dfs_pwc} v l T'_1
 in exist _ o O2_i
 | false \Rightarrow \lambda E,
 let (o,G_o) := dfs_pwc (x :: v) (\text{succs} x + + l) T'_2
 in exist _ o O3_i
end eq_refl
end D).
1,2,4: cycle l. (* reordering of proof obligations *)
[T'_1]: now apply \pi_{\text{dfs-1}} with (1 := D).
[T'_2]: now apply \pi_{\text{dfs-2}} with (1 := D).
[O1_i]: now constructor 1.
[O2_i]: constructor 2; auto; apply mem_iff; auto.
[O3_i]: constructor 3; auto; apply mem_iff; auto.
Qed.

Figure 17. Coq proof term `dfs_pwc` of the fully specified `dfs` algorithm.

We remark that the proof term for the inversion lemma below

\textbf{Lemma} \ \pi_{\text{dfs-1}} v x l : \ Ddfs v (x :: l) \rightarrow x \in^? v = \text{true} \rightarrow Ddfs v l

must be carefully crafted because, used in the proof of the termination certificate \(T'_1\), its output value of type \(Ddfs v l\) must type-check as a subterm of its first (unnamed) parameter of type \(Ddfs v (x :: l)\). In modern versions of Coq, one can safely rely on the inversion tactic to satisfy such a constraint. However, the obtained term might not be short and if a cleaner implementation of such an inversion lemma is required, one could for instance switch to small-inversions based on dependent pattern matching as discussed in Section 3.1 and page 40 of Section 5.2. We finally remark that it is usual to call such a result inversion lemma because it corresponds to the inversion of the second inductive rule defining \(Ddfs\), i.e. it implements pattern matching on a term with this (second) outer constructor. Here we also call these results projections because they recover the structural components of constructors.
The second projection lemma \(\pi_{\text{dfs}} \) -2 is used as termination certificate \(T_2 \) and must thus satisfy the same structural decrease property.

Lemma \(\pi_{\text{dfs}} \) -2 \(v \ x \ l \):

\[
D_{\text{dfs}} v (x :: l) \rightarrow x \in^? v = \text{false} \rightarrow D_{\text{dfs}} (x :: v) (\text{succs} x + l).
\]

Turning to postconditions like e.g. \(O_2 \):

\[
\vdash \exists o, v \cup l \rightarrow o.
\]

these are much simpler to establish and their proofs consist mainly in the application of the corresponding rule/constructor of the graph \(G_{\text{dfs}} \).

Now we can define \(\text{dfs} \) by projecting on the first component of the \(\Sigma \)-type \(\{ o | v \cup l \rightarrow o \} \) that is the output of \(\text{dfs}_{\text{pwc}} \) and we get its specification with the second \(\pi_2(\text{dfs}_{\text{pwc}} v l D) \).

Definition \(\text{dfs} v l \) \(D : D_{\text{dfs}} v l \) := \(\pi_1(\text{dfs}_{\text{pwc}} v l D) \).

Fact \(\text{dfs}_{\text{spec}} v l \) \(D : D_{\text{dfs}} v l \) : \(v \cup l \rightarrow \text{dfs} v l D \).

Since \(\text{dfs} \) is inherently a partial algorithm, let us pause a bit and consider again our definition of the domain predicate \(D_{\text{dfs}} v l \) used to define \(\text{dfs} \). Of course, one could naturally consider the projection of the graph \(G_{\text{dfs}} \) on its inputs \(v \) and \(l \) as a definition of the domain, i.e. the pair of values \(v \) and \(l \) for which there is an output value \(o \) such that \(v \cup l \rightarrow o \).

It turns out that those two characterizations are equivalent:

Theorem \(D_{\text{dfs}} \) -eq \(G_{\text{dfs}} v l \):

\[
D_{\text{dfs}} v l \leftrightarrow \exists o, v \cup l \rightarrow o.
\]

Proof. The only if direction is trivial as an \(o \) satisfying \(v \cup l \rightarrow o \) is precisely what \(\text{dfs} v l D \) outputs (according to \(\text{dfs}_{\text{spec}} \)). For the if direction, we show by induction on the graph predicate \(v \cup l \rightarrow o \) that \(D_{\text{dfs}} v l \) holds. For this, we just use the constructors of \(D_{\text{dfs}} \).

6.4. Reasoning about \(\text{dfs} \) and its domain

We now complete our construction with a simulated induction-recursion scheme for \(\text{dfs} \)\(^{10,16} \) that will allow us to reason about \(D_{\text{dfs}} / \text{dfs} \). First a proof-irrelevant recursor/eliminator for the domain \(D_{\text{dfs}} \), leaving out guessable arguments\(^9 \) as a joker \(_ \) for concision:

Theorem \(D_{\text{dfs}} \) -rect \(P : \forall v l, D_{\text{dfs}} v l \rightarrow \text{Type} \):

\[
\begin{align*}
\rightarrow (\forall v l D_1 D_2, P v l D_1 \rightarrow P v l D_2) \rightarrow (\forall v, P _ _ (D_{\text{dfs}} v)) \\
\rightarrow (\forall v x l H D, P _ _ D \rightarrow P _ _ (D_{\text{dfs}} v x l H D)) \\
\rightarrow (\forall v x l H D, P _ _ D \rightarrow P _ _ (D_{\text{dfs}} v x l H D)) \\
\rightarrow (\forall v l D, P v l D).
\end{align*}
\]

\(^9\)by guessable, we mean that they are recovered by Coq through unification.
Then the proof-irrelevance of dfs, and finally the fixpoint equations:

Facts:

- $dfs_pirr : \forall v l D_1 D_2, dfs v l D_1 = dfs v l D_2.$
- $dfs_fix_1 : \forall v, dfs _\perp (D_{dfs}^1 v) = v.$
- $dfs_fix_2 : \forall v x l H D, dfs _\perp (D_{dfs}^2 v x l H D) = dfs _\perp D.$
- $dfs_fix_3 : \forall v x l H D, dfs _\perp (D_{dfs}^3 v x l H D) = dfs _\perp D.$

Proof. Direct consequences of dfs_spec and G_{dfs_fun}. \qed

With the tools that simulate an inductive-recursive scheme, we can study dfs and give a more abstract characterisation of its domain, and of what it computes using invariants.

6.5. High-level correctness results and termination

Even though this example is discussed in Krauss, we do not follow his outline. Indeed, his reasoning assumes finiteness of the type V of vertices. Here we manage dfs as a partial algorithm, hence assuming finiteness of V is unnecessary, and we get a high-level termination characterization independent of that assumption. Only in the end do we specialize dfs on a finite type of vertices, deriving totality nearly for free in that case.

We establish a first partial correctness result: a property of the output of $dfs v l$ under the hypothesis of its termination on that particular input ($v l : L V$). Here, we show that on its domain D_{dfs} of termination, dfs computes a least invariant as follows:

Definition $dfs_invariant (v l : L V) (i : L V) :=

$v \subseteq i \land l \subseteq i \land (\forall x, x \in i \rightarrow x \in v \lor \text{succs} x \subseteq i).$

Theorem $dfs_invariant v l (D : D_{dfs} v l) :$

$\land \{ dfs_invariant v l (dfs v l D) \land \forall i, dfs_invariant v l i \rightarrow dfs v l D \subseteq i.$

Proof. By induction on D with D_{dfs_rect}, and then rewriting using dfs_pirr and the fixpoint equations $dfs_fix_[123].$ \qed

Then we switch to the most difficult result to establish, i.e. the characterisation of the domain D_{dfs} of termination of dfs using invariants:

Theorem $D_{dfs_domain} v l : D_{dfs} v l \leftrightarrow \exists i, dfs_invariant v l i.$

Proof. According to the first conjunct of $dfs_invariant$, dfs outputs an invariant when called on its domain D_{dfs}, thus the only if part is trivial.
On the other hand, showing that the existence of an invariant implies the termination of dfs is much more complicated.

Assuming a fixed $i : \mathbb{L} \mathcal{V}$, we want to show

$$\forall v l, \text{dfs_invariant}, v l i \rightarrow D_{\text{dfs}} v l.$$

We proceed by a nested induction:

1. first on v using reverse strict list inclusion \sqsupseteq as a well-founded relation;
2. second by structural induction on l.

The relation \sqsupseteq between the lists $(v w : \mathbb{L} \mathcal{V})$ is defined as

$$v \sqsupseteq w := w \subseteq v \land \exists x : \mathcal{V}, x \in v \land x \not\in w.$$

Of course this relation \sqsupseteq is not well-founded in general, but it is when restricted to the sublists of some given fixed list, here the assumed global invariant i. We show that the binary relation $\lambda v w, v \sqsupseteq w \land v \subseteq i$ is indeed well-founded; this involves in particular the pigeon hole principle.

As a consequence, computing $\text{dfs} v (x :: l)$, the recursive subcalls to $\text{dfs} v l$ (when $x \in v$) and $\text{dfs} (x :: v)$ (sucs $x + l$) (when $x \not\in v$) are both lesser in this nested scheme: in particular when $x \not\in v$ holds, we have $v \sqsubset x :: v \subseteq i$.

Since the first parameter $(x :: v)$ is \sqsupseteq-smaller than v, the second parameter has no influence in the nested inductive scheme.

Using the characterisation by invariants, it is then almost straightforward to establish the monotonicity of D_{dfs}:

Fact $D_{\text{dfs_mono}} v v' l l' : v \subseteq v' \rightarrow l' \subseteq v' + l \rightarrow D_{\text{dfs}} v l \rightarrow D_{\text{dfs}} v' l'$

whereas, on the other hand, trying to show $D_{\text{dfs_mono}}$ by e.g. direct induction on $D_{\text{dfs}} v l$ is a painful endeavor that is bound to end in misery.

We finish with the characterisation of the domain of $\text{dfs} []$, which is the standard way to call dfs on an empty list $v = []$ of already visited vertices.

Defn. $\text{dfs_nil_invariant}, v l i := l \subseteq i \land (\forall x, x \in i \rightarrow \text{sucs} x \subseteq i)$.

Corollary $\text{dfs_nil_invariant} l (D : D_{\text{dfs}}[] l) :$

$$l \sqsubseteq i \land (\forall x, x \in i \rightarrow \text{sucs} x \subseteq i) \land$$

Coro. $D_{\text{dfs_nil_domain}} l : D_{\text{dfs}}[] l \leftrightarrow \exists i, \text{dfs_nil_invariant}, l i.$

Hence $\text{dfs} [] l$ terminates and computes the least list i containing l and invariant/stable under sucs, precisely when such an invariant exists. We

\[\text{as } x :: l \subseteq i \text{ is a property of the invariant } i. \]
\[
\begin{align*}
\text{nm } & \alpha = \alpha \\
\text{nm } (\omega \alpha y z) = \omega \alpha (\text{nm } y) (\text{nm } z) \\
\text{nm } (\omega (\omega ab c) y z) = \text{nm} (\omega a (\text{nm } (\omega by z)) (\text{nm } (\omega cy z)))
\end{align*}
\]

Figure 18. Equations describing \(\text{nm}\), Paulson’s normalisation algorithm.

can further specialize the termination result \(D_{\text{dfs-domain}}\) and prove totality for \(\text{dfs}\) in case the type \(V\) of vertices is finite, i.e. listable.

\textbf{Fact}. \(D_{\text{dfs-total}} : (\exists l : L \ V, \ \forall x : V, x \in l \ V) \rightarrow \forall vl, \ D_{\text{dfs}} vl.\)

\textbf{Proof}. Use \(D_{\text{dfs-domain}}\) and pick \(i := l \ V\) as invariant. \(\square\)

6.6. Concluding remarks and extraction

Notice that in case \(V\) is not finite, e.g. \(V = \mathbb{N}\), then it is possible for \(D_{\text{dfs}}[]\) not to cover the whole input type \(L \ V\). Indeed, with \(\text{succs } n := [1 + n]\), then any invariant must be stable under successor, which means \(\text{dfs}[][l]\) terminates when and only when \(l = []\).

To finish, the extracted OCaml code confirms the operational behaviour of \(\text{dfs}\) as we expected:

```ocaml
let rec dfs v l = match l with 
| [] -> v 
| x::l -> if mem x v 
    then dfs v l 
    else dfs (x::v) (app (succs x) l)
```

Remember that the global parameters \(\text{mem} : \alpha \rightarrow \alpha \text{ list } \rightarrow \text{ bool}\) and \(\text{succs} : \alpha \rightarrow \alpha \text{ list}\) are not extracted and have to be provided for this code to work.\(^8\) An alternative approach would have been make \(\text{mem}\) and \(\text{succs}\) parameters of \(\text{dfs}\) with the disadvantage of bloating the above code a bit without significantly improving the explanations of what is going on.

7. Paulson’s if-then-else Normalisation Algorithm

Paulson’s normalisation algorithm was the example which we choose to introduce the basics of the herein called Braga method at the TYPES 2018 conference.\(^2\) It is described by the equations of Fig. 18. In this section, we both enter more in the details of the implementation of \(\text{nm}\) while we also develop four possible variants of the Braga method, characterized by:

\(^8\)However, \(\text{app/+}\) is extracted but not displayed here.
• defining the domain of \texttt{nm} either as a \textit{custom inductive predicate}, or as the \textit{accessibility predicate} of the subcall/call relation of \texttt{nm};

• proving partial correctness either with the simulated proof-irrelevant \textit{inductive-recursive scheme} of \texttt{nm}, or proceeding by induction on the \textit{computational graph predicate} of \texttt{nm}.

These two binary choices give rise to four possible variants of the method and we discuss/compare all of them in this section.

7.1. The computational graph and the inductive domain

First we define the inductive type of \texttt{if _ then _ else _} expressions

\[a, b, c : \Omega ::= a \mid \omega a b c \]

where \(\alpha\) represents atomic expressions and \(\omega a b c\) is a short notation for \texttt{if a then b else c} where \(a, b\) and \(c\) are expressions themselves. This type is idealized for the purpose of simplifying the explanations here: there is only one atomic expression. Of course, a more realistic implementation would involve a type parameter for atomic expressions but this would not fundamentally change the discussion which follows in the section.

We define the computational graph reflecting the equations of Fig. 18 into a binary relation \(e \mapsto \rightarrow_n \mathit{n}\) which reads as “\texttt{nm} \(e\) terminates and outputs \(n\).” The choice of the letter \(n\) is to remind that the output is intended to be a normal form (of the input \(e\)).

\[
\text{Inductive } \mathcal{G}_{\text{nm}} : \Omega \rightarrow \Omega \rightarrow \mathbb{P} := \\
\begin{array}{c}
\alpha \mapsto \rightarrow_n \alpha \\
y \mapsto \rightarrow_n y \\
z \mapsto \rightarrow_n z \\
\omega \alpha y z \mapsto \rightarrow_n \omega \alpha n_y n_z \\
\omega \beta y z \mapsto \rightarrow_n \omega \beta n_b n_z \\
\omega c y z \mapsto \rightarrow_n \omega c n_c n_z \\
\omega (\omega a b c) y z \mapsto \rightarrow_n \omega a n_a n_z
\end{array}
\]

In line with the previous sections, \(e \mapsto \rightarrow_n \mathit{n}\) is just a convenient infix notation for the prefix \(\mathcal{G}_{\text{nm}} e \mathit{n} \) notation. We show that the graph \(\mathcal{G}_{\text{nm}} \) is a functional relation.

\textbf{Fact} \ \(\mathcal{G}_{\text{nm}} _ _ _ \mathit{fun} e \mathit{n}_1 \mathit{n}_2 : e \mapsto \rightarrow_n \mathit{n}_1 \rightarrow e \mapsto \rightarrow_n \mathit{n}_2 \rightarrow \mathit{n}_1 = \mathit{n}_2. \)

\textbf{Proof}. As usual, induction on \(e \mapsto \rightarrow_n \mathit{n}_1 \) then inversion on \(e \mapsto \rightarrow_n \mathit{n}_2 \).
We give a first possible characterization of the domain D_{nm} of nm by a custom domain predicate:

$\textbf{Inductive } D_{nm} : \Omega \rightarrow P :=$

$\quad D_{nm} \alpha$

$\quad D_{nm} y \quad D_{nm} z$

$\quad D_{nm} (\omega \alpha y z)$

$\quad \forall n_b, n_c, \omega b y z \mapsto \mapsto n_b \rightarrow \omega c y z \mapsto n_c \rightarrow D_{nm} (\omega a n_b n_c)$

$\quad D_{nm} (\omega (\omega a b c) y z)$

The intuition behind the construction of D_{nm} is to simply erase the right hand side part (i.e. output part) of G_{nm}: when we have $c \mapsto n$, we only keep what is on the left of the \mapsto symbol and we get $D_{nm} e$. This is what we already did in the cases of the ns searching algorithm in Section 3.1, or of the depth first search algorithm dfs of Section 6. However neither ns nor dfs have nested calls while nm has two.

We now explain how to cope with nested calls when designing custom domain predicates. When there is a nested call, then its output is transferred on the left hand side (i.e. the input part) of another premise and we simply cannot leave a dangling variable not referring to anything that way. So we characterize/recover the erased output by using the computational graph G_{nm} combined with universal quantification. This is what happens in the lower premise of the 3rd rule.

The third central idea of the Braga method: when dealing with nested or mutually recursive algorithms, one can use the computational graph predicate to characterize the output values of nested calls than come as input for the domain predicate.

As hinted in introduction of this section, we now discuss a second and alternate construction of the domain, denoted D'_{nm}, and based on a different intuition. First we link calls to nm with the direct recursive subcalls they trigger in the \equiv_{sc}^{nc} binary subcall/call relation:

$\textbf{Inductive } \equiv_{sc}^{nc} : \Omega \rightarrow \Omega \rightarrow P :=$

$\quad y \equiv_{sc}^{nc} \omega \alpha y z$

$\quad \omega b y z \equiv_{sc}^{nc} \omega (\omega a b c) y z$

$\quad z \equiv_{sc}^{nc} \omega \alpha y z$

$\quad \omega c y z \equiv_{sc}^{nc} \omega (\omega a b c) y z$

$\quad \omega a n_b n_c \equiv_{sc}^{nc} \omega (\omega a b c) y z$

$\quad \omega b y z \mapsto n_b \rightarrow \omega c y z \mapsto n_c \rightarrow \omega a n_b n_c$

The relation \equiv_{sc}^{nc} is defined with inductive rules but if you look closely, \equiv_{sc}^{nc} never appears on any premise of any rule, hence induction is just a presentation/programming convenience here, not a requirement. Notice however
Let Fixpoint \(nm_pwc \) \(e \ (D : D_{nm\, e}) \ {\text{struct} \ D} : \{n \mid e \rightarrow_n n\} \).

Proof. \(\text{refine}(\)\)

\[
\begin{align*}
&\quad\text{match} \ e \ \text{with} \nonumber\smallskip
&\quad| \alpha \Rightarrow \lambda D, \text{exist} - \alpha \, O_1' \nonumber\smallskip
&\quad| \omega \alpha y z \Rightarrow \lambda D, \nonumber\smallskip
&\quad\quad\text{let} \ (n_y, C_y) := \text{nm_pwc} \, y \, T_1' \, \text{in} \nonumber\smallskip
&\quad\quad\text{let} \ (n_z, C_z) := \text{nm_pwc} \, z \, T_2' \, \text{in} \nonumber\smallskip
&\quad\quad\text{exist} \ - (\omega \alpha n_y n_z) \, O_2' \nonumber\smallskip
&\quad| \omega (\omega a b c) y z \Rightarrow \lambda D, \nonumber\smallskip
&\quad\quad\text{let} \ (n_b, C_b) := \text{nm_pwc} \, (\omega b y z) \, T_3' \, \text{in} \nonumber\smallskip
&\quad\quad\text{let} \ (n_c, C_c) := \text{nm_pwc} \, (\omega c y z) \, T_4' \, \text{in} \nonumber\smallskip
&\quad\quad\text{let} \ (n_a, C_a) := \text{nm_pwc} \, (\omega a n_b n_c) \, T_5' \, \text{in} \nonumber\smallskip
&\quad\quad\text{exist} \ - n_a \, O_3' \\
&\text{end} \ D). \nonumber\smallskip
\end{align*}
\]

\((* \text{POs: termination certs} T_{1-5}; \text{postconditions} O_{1-3}') \)

\(\text{Qed.} \)

Figure 19. Coq proof term \(nm_pwc \) of the \(nm \) algorithm packed with correctness.

that \(G_{nm} \) is used in the two premises of the rightmost rule, to characterize nested calls similarly to the case of the custom domain predicate \(D_{nm} \).

Having linked recursive subcalls with \(\preceq_{sc}^{nm} \), following the general description of Section 4.3, we state that the domain is composed of the input values from which no infinite descending \(\preceq_{sc}^{nm} \)-chain start, conventionally called the well-founded part of the \(\preceq_{sc}^{nm} \) relation, and inductively characterized by the accessibility predicate \(\text{Acc}_{\preceq_{sc}^{nm}} \).

Definition \(D'_{nm} \) \((e : \Omega) := \text{Acc}_{\preceq_{sc}^{nm}} \, e. \)

Below we simply denote \(D_{nm} \) for the domain predicate but notice that the discussion would be mostly same were we to use the alternate definition \(D'_{nm} \) instead. Only some technical details differ slightly but not the main results we present in here. We will however discuss some of these differences.

7.2. The Coq term packed with a conformity certificate

So with either definition of the domain, be it \(D_{nm} \) or \(D'_{nm} \), we now implement the \(nm \) algorithm packed with a conformity certificate, as a term of type \(nm_pwc : \forall e : \Omega, \ D_{nm} \, e \rightarrow \{n \mid e \rightarrow_n n\} \).

Its computational contents is displayed in Fig. 19 but the contents of proof obligations is not displayed for concision. Theses are divided into three post conditions \(O_{1-3}' \) and five termination certificates \(T_{1-5}' \):
• the post conditions $O_1^2 - O_3^2$ are proved very directly by applying the corresponding constructor/rule of the inductive definition of G_{nm};
• the termination certificates $T_1^2 - T_3^2$ have more complex proofs, in particular if the domain is defined as the custom predicate D_{nm}. In that case, one should be careful with the guardedness condition, e.g. the proof term of T_1^2
 \[[T_1^2] : \ldots, y : \Omega, z : \Omega, D : D_{nm}(\omega \alpha y z) \vdash D_{nm} y \]
should be built as a subterm of D. Because D_{nm} has several constructors, this requires dependent pattern matching which is properly implemented by the inversion tactic and explicit projections by “small inversions” as explained in the previous sections.

In the case of the alternate definition $D_{nm}^\prime := Acc \leq_{nm}^\approx$, a simple pattern matching on $D : D_{nm}^\prime$ (as implemented in the Acc_inv lemma) is sufficient for ensuring structural decrease.

Now we can define nm by projecting on the first component of the Σ-type $\{ n \mid e \mapsto n \}$ containing the output value

\[\text{Definition } nm \ e (D : D_{nm} e) := \pi_1(nm_pwc e D). \]

\[\text{Fact } nm_spec \ e (D : D_{nm} e) : e \mapsto n \ nm e D. \]

and with the second component $\pi_2(nm_pwc e D)$, we get its specification nm_spec expressing the conformity proof of the output value.

7.3. The inductive-recursive scheme

We build tailored inductive-recursive constructors for the domain. As nm is a nested recursive algorithm, the constructors refer to the function itself, more precisely, on the values it outputs in nested calls.

Facts:

\[D_{nm}^1 : \forall y z, D_{nm} \alpha. \]
\[D_{nm}^2 : \forall y z, D_{nm} y \rightarrow D_{nm} z \rightarrow D_{nm}(\omega \alpha y z). \]
\[D_{nm}^3 : \forall a b c y z D_b D_c, D_{nm}(\omega a (nm (\omega b y z) D_b) (nm (\omega c y z) D_c)) \rightarrow D_{nm}(\omega (a b c) y z). \]

Proof. Depending whether one chooses D_{nm} or D_{nm}^\prime, the proofs somewhat differ in here but they are always straightforward.

We follow up on the inductive-recursive scheme for nm with a proof-irrelevant eliminator/induction principle for D_{nm} (or else D_{nm}^\prime). It states
that a predicate $P : \forall e, D_{nm} e \rightarrow \text{type}$ which is both proof-irrelevant and closed under the three constructors $D_{1}\text{nm} - D_{3}\text{nm}$ holds over the whole domain:

Theorem $D_{nm}\text{-rect}$ ($P : \forall e, D_{nm} e \rightarrow \text{Type}$):

$(\forall e D_{1} D_{2}, P e D_{1} \rightarrow P e D_{2})$

$\rightarrow (P - \mathbb{D}_{nm})$

$\rightarrow (\forall y z D_{y} D_{z}, P y D_{y} \rightarrow P z D_{z} \rightarrow P (\mathbb{D}_{nn}^{2} y z D_{y} D_{z}))$

$\rightarrow (\forall a b c y z D_{b} D_{c} D_{a}, P z D_{b} \rightarrow P z D_{c} \rightarrow P (\mathbb{D}_{nn}^{3} a b c y z D_{b} D_{c} D_{a}))$

$\rightarrow (\forall e D, P e D)$.

Proof. The technical details of the proof here depends on the choice of D_{nm} or the alternate D'_{nm}, but in either case, it proceeds by Fixpoints with $D : D_{nm} e$ as struct parameter. Then the pattern matching is on e —not D!— but we later implement careful inversion/projections of D to ensure decrease of the recursive subcalls. It is very similar to the term build for nm_pwc in Fig. 19 except that here we do not need to control the computational contents so tightly because D_{nm}_rect is not intended to be extracted.

We finish the construction of the inductive-recursive scheme for nm with the proof irrelevance of nm and fixpoint equations.

Facts:

$nm_prr : \forall e D_{1} D_{2}, \quad nm e D_{1} = nm e D_{2}$.

$nm_fix_1 : \quad nm \alpha \mathbb{D}_{nm}^{1} = \alpha$.

$nm_fix_2 : \forall y z D_{y} D_{z}, \quad nm (\omega \alpha y z) (\mathbb{D}_{nn}^{2} y z D_{y} D_{z}) = \omega \alpha (nm y D_{y}) (nm z D_{z})$.

$nm_fix_3 : \forall a b c y z D_{b} D_{c} D_{a}, nm (\omega (\omega a b c) y z) (\mathbb{D}_{nn}^{3} a b c y z D_{b} D_{c} D_{a}) = nm (\omega a (nm (\omega b y z) D_{b}) (nm (\omega c y z) D_{c})) D_{a}$.

Proof. The proofs are very short and based on the functionality G_{nm_fun} of G_{nm} and nm_spec. They are the same whether for D_{nm} or D'_{nm}.

7.4. High-level partial correctness results

Now that we have built the inductive-recursive scheme for nm, we can prove partial correctness properties of nm following the outline of Giesl. Here we present three of those partial correctness results, the first one being proved using the full inductive-recursive scheme and the two other results, by graph induction instead. These two approaches are in fact interchangeable in the case of nm.
Let us start by showing that \texttt{nm} outputs expressions in normal form, i.e. when the Boolean condition \texttt{b} in \texttt{if b then else} is always atomic. We characterized this notion inductively as:

\[
\text{Inductive \ normal} : \Omega \to \mathbb{P} := \text{normal} \alpha \quad \text{normal y normal z} \quad \text{normal} (\omega \alpha y z)
\]

With this definition, we prove the following partial correctness result:

\textbf{Theorem} \texttt{nm_normal} \texttt{e (D : D_{nm} e)} : \text{normal (nm e D)}.

\textbf{Proof.} Here we use the full inductive-recursive scheme of \texttt{nm}. The proof proceeds by induction on \texttt{D} using \texttt{D_{nm_rect}}. There are four inductive cases to establish:

1. the proof-irrelevance of \texttt{\lambda e D}, \text{normal (nm e D)}, follows trivially from that of \texttt{nm} proved as \texttt{nm_pirr};
2. for the second inductive case, we rewrite using \texttt{nm_fix_1} and get \text{normal} \alpha which holds by the first rule of \text{normal};
3. for the third inductive case, we rewrite using \texttt{nm_fix_2} and we need to show \text{normal} (\omega \alpha (\text{nm y D_y}) (\text{nm z D_z})) while assuming \text{normal (nm y D_y)} and \text{normal (nm z D_z)} as induction hypotheses. Hence the second rule of \text{normal} does the job;
4. for the fourth inductive case, after rewriting using \texttt{nm_fix_3}, we are invited to show

\[
\text{normal} \left(\text{nm} \left(\omega a \left(\text{nm} \left(\omega b y z \right) D_b \right) \left(\text{nm} \left(\omega c y z \right) D_c \right) \right) D_a \right)
\]

but this is precisely the statement of the third induction hypothesis.

This completes the four cases of the induction on (the proof of) \texttt{D_{nm} e}. \qed

Let us now show that, while \texttt{nm} is normalizing, it also preserves the semantics of \texttt{if _ _ then _ _ else _} expressions. We could do this by explicitly defining a semantic interpretation of \texttt{\Omega} but we proceed otherwise by defining an “equivalence” relation that would be satisfied by any reasonable semantic interpretation of \texttt{\Omega}, i.e. any two equivalent expressions would necessarily have the same interpretation. We use the least congruence which allows for commutation in the composition of Boolean conditions, i.e. identifying \texttt{if (if a _ _ b _ _ else c) _ _ y _ _ else z} and \texttt{if a _ _ _ _ _ if b _ _ y _ _ else _ _ z _ _ _ _ else (if c _ _ _ _ _ y _ _ else z)}. This can be
characterized inductively by the following rules:

\[
\begin{align*}
\text{Inductive} & : \sim : \Omega \to \Omega \to P := \\
\alpha \sim \Omega \alpha & \quad (x \sim \Omega y) (y \sim \Omega z) \quad (x \sim \Omega z) \\
\omega(x y z) \sim \Omega (\omega x y z) & \quad (x \sim \Omega x') (y \sim \Omega y') (z \sim \Omega z') \\
\omega(\omega(a b c) y z) \sim \Omega (\omega(a b y z) (\omega(c y z)) & \\
\end{align*}
\]

The reader might have noticed that we left out the symmetry rule, hence \(\sim\) is only contained in the above mentioned congruence, even strictly b.t.w.\(^1\). However, the symmetry rule is not needed and \(\sim\) is large enough to show the following partial correctness result:

Theorem nm_equiv \(e \in (D : \mathbb{D}_n e) \) : \(e \sim_n e D\).

Proof. We could also proceed by induction on \(D\) using \(\mathbb{D}_n_\text{rect}\) but here we want to illustrate the alternate method of graph induction. In that spirit, thanks to \(\text{nm}_\text{spec}\), it is enough to show

\[
\forall e n, e \mapsto_n n \rightarrow e \sim_n n
\]

and we establish this by induction on (the proof term of) \(e \mapsto_n n\):

1. for the 1st rule of \(\mathbb{G}_n\), we need to show \(\alpha \sim \Omega \alpha\) which is trivial using the first rule of \(\sim\);
2. for the 2nd rule of \(\mathbb{G}_n\), we need to show \(\omega \alpha y z \sim \Omega \omega \alpha n y n z\) while assuming \(y \sim \Omega n y\) and \(z \sim \Omega n z\) as induction hypotheses. We conclude with the third (or congruence) rule of \(\sim\);
3. for the 3rd rule of \(\mathbb{G}_n\), we need to show \(\omega(\omega(a b c) y z) \sim \Omega n a\) while assuming \(\omega b y z \sim \Omega n b, \omega c y z \sim \Omega n c\) and \(\omega a n b, n c \sim \Omega n a\) as induction hypotheses. We use the fourth rule of \(\sim\) combined with transitivity and congruence.

This concludes the three cases of \(\mathbb{G}_n\) graph induction.

We remark that the graph induction method deployed in the previous proof (after having removed the reference to \(\text{nm}_e D\) with \(\text{nm}_\text{spec}\)) does not involve any of the tools of its inductive-recursive scheme any more. In fact, it does not even involve \(\text{nm}\), just its computational graph \(\mathbb{G}_n\).

Actually, graph induction can generally be used as an alternative way to capture extensional properties of \(\text{nm}\), specifically because of \(\text{nm}_\text{spec}\). However, to some users, directly manipulating the output values of \(\text{nm}\) through

\(^1\)e.g., one can prove that \(\omega a(\omega b y z)(\omega c y z) \sim \Omega \omega(a b c) y z\), see \(\text{equiv_not_sym}\).
\textbf{nm} \textbf{e} \textbf{D} might be viewed favourably as opposed to using a relational description of it. It can also be more convenient when combining \textbf{nm} with other functions.

On the other hand, the graph induction method allows to avoid the construction of inductive-recursive scheme of \textbf{nm}, except for the domain constructors (see below \textbf{nm_term}), i.e. with graph induction, one does not need the proof-irrelevant eliminator $D_{\textbf{nn_rect}}$, and neither proof-irrelevance of \textbf{nm} nor its fixpoint equations.

For us, we think both methods are fine and it is up to the user to decide which one he finds more convenient to a particular application.

Let us now prepare the termination proof of \textbf{nm}. For this we need a third partial correctness result stating that \textbf{nm} preserves a particular measure. We define the measure $\langle \cdot \rangle : \Omega \rightarrow \mathbb{N}$ over Ω by structural induction:

\begin{equation*}
\langle \alpha \rangle := 1 \\
\langle \omega \times y \times z \rangle := \langle x \rangle (1 + \langle y \rangle + \langle z \rangle).
\end{equation*}

Observe that this definition ensures that $\langle \textbf{e} \rangle$ is never 0,

\textbf{Fact} \textbf{ce_size_ge_1} \textbf{e} : $1 \leq \langle \textbf{e} \rangle$.

Then we establish the following remarkable strict inequality:

\textbf{Fact} \textbf{ce_size_special} \textbf{a} \textbf{b} \textbf{c} \textbf{y} \textbf{z}:

\begin{equation*}
\langle \omega a (\omega b y z)(\omega c y z) \rangle < \langle \omega (\omega a b c) y z \rangle
\end{equation*}

by a mostly straightforward arithmetic computation. We show the following partial correctness result:

\textbf{Theorem} \textbf{nm_dec} \textbf{e} (\textbf{D} : $\mathbb{D}_{\textbf{nn}} \textbf{e}$) : $\langle \textbf{nm} \textbf{e} \textbf{D} \rangle \leq \langle \textbf{e} \rangle$.

\textbf{Proof}. Using \textbf{nm_spec}, it is enough to show

\begin{equation*}
\forall e n, e \mapsto_n n \rightarrow \langle n \rangle \leq \langle e \rangle
\end{equation*}

and we prove this by induction on the graph predicate $e \mapsto_n n$:

(1) for the 1st rule of $G_{\textbf{nn}}$, we have to show $\langle \alpha \rangle \leq \langle \alpha \rangle$ which is trivial;

(2) for the 2nd rule of $G_{\textbf{nn}}$, while assuming $\langle n_y \rangle \leq \langle y \rangle$ and $\langle n_z \rangle \leq \langle z \rangle$ as induction hypotheses, we have to show $\langle \omega a n_y n_z \rangle \leq \langle \omega a y z \rangle$. This computes into $1 + \langle n_y \rangle + \langle n_z \rangle \leq 1 + \langle y \rangle + \langle z \rangle$ easily solved by an arithmetic tactic;

(3) for the 3rd rule of $G_{\textbf{nn}}$, while assuming $\langle n_b \rangle \leq \langle \omega b y z \rangle$, $\langle n_a \rangle \leq \langle \omega \times a \times n_b \times n_z \rangle$ and $\langle n_a \rangle \leq \langle \omega a n_b n_z \rangle$, we have to show $\langle n_a \rangle \leq \langle \omega (\omega a b c) y z \rangle$. But by monotonicity we have

\begin{equation*}
\langle n_a \rangle \leq \langle \omega a n_b n_z \rangle \leq \langle \omega a (\omega b y z)(\omega c y z) \rangle
\end{equation*}

and we finish with the above remarkable inequality $\textbf{ce_size_special}$.

This concludes the three cases of $G_{\textbf{nn}}$ graph induction. \square
7.5. Termination and total correctness

We conclude the theoretical study of nm with its termination proof, i.e. the domain D_{nm} holds over the whole input type:

Theorem D_{nm}_total: $\forall e : \Omega, D_{nm} e$.

Proof. We proceed by strong induction on $\langle\langle e \rangle\rangle$ while using partial correctness nm_dec. Then we distinguish three cases: $e = \alpha$, $e = \omega \alpha y z$ or $e = \omega (\omega abc) y z$ by pattern matching:

1. of course D_{nm}^1 establishes $D_{nm} \alpha$;
2. with D_{nm}^2, proving $D_{nm} (\omega \alpha y z)$ is reduced into proving both $D_{nm} y$ and $D_{nm} z$ which hold by induction. Indeed, it is easy to show $\langle\langle y \rangle\rangle < \langle\langle \omega \alpha y z \rangle\rangle$ and $\langle\langle z \rangle\rangle < \langle\langle \omega \alpha y z \rangle\rangle$;
3. and finally, we use D_{nm}^3 to establish $D_{nm} (\omega (\omega abc) y z)$. We are thus invited to prove $D_b: D_{nm} (\omega b y z)$, $D_c: D_{nm} (\omega c y z)$ and then $D_{nm} (\omega a (nm _ D_b) (nm _ D_c))$. By D_b and D_c are directly built using the induction hypothesis because $\langle\langle \omega \alpha (nm) _ D_b \rangle\rangle < \langle\langle \omega \alpha (nm) _ D_c \rangle\rangle$.

The three aforementioned cases covering the whole domain, the proof is completed. \(\square\)

Considering this last proof, critically, a partial correctness result is used to establish termination: we need some properties of the output value to be able to establish termination. This is typical of nested recursive schemes and what makes them a priori hard/impossible to implement in the naive approach through structural induction. Even well-founded induction is difficult because the inductive structure of the domain depends on the output of the function itself.

We can conclude with the fully specified and terminating Paulson’s normalisation algorithm, i.e. total correctness of the nm algorithm:

Definition $\text{pnm} (e : \Omega) : \{ n \mid \text{normal} \ n \land e \sim_{\Omega} n \}$.

Extraction works flawlessly giving
\[
\begin{align*}
\text{type } \Omega &= \alpha \mid \omega \text{ of } \Omega \times \Omega \times \Omega \\
\text{let rec } pnm\ e &= \text{match } e \text{ with} \\
&| \alpha \rightarrow \alpha \\
&| \omega(\alpha, y, z) \rightarrow \omega(\alpha, pnm\ y, pnm\ z) \\
&| \omega(\omega(\alpha, b, c), y, z) \rightarrow pnm(\omega(\alpha, pnm(\omega(b, y, z)), pnm(\omega(c, y, z))))
\end{align*}
\]

8. First Order Unification

Considering a type of terms, here binary trees denoted \(\Lambda \), composed using the infix \(\circ \) operator and with leaves decorated either with variables like \(\mu x \) or with constants like \(\phi c \), the unification of two given terms consists in finding a substitution of the variables so that under this substitution, the two terms become identical. Actually unification not only seeks a substitution, it seeks a most general one.

The unification algorithm \(\text{unif} \) (with occur-check) is conventionally presented using the equations of Fig. 20 on page 60. There, the notation \(x \not\prec m \) means that \(x \) does not occur check in \(m \).

\(\text{unif} \) (with occur-check) is quite useful in practice, typically in first order theorem provers, but also Coq itself uses a refinement
Figure 20. Equations describing the unif algorithm.

of (higher-order) unification. This combination of usefulness and tricky
nesting in the recursive scheme makes unif a prime target for applying our
method, and this example would have been put up-front were it not for
the preliminary notions required to present it, and the number of matching
subcases that have to be considered.

8.1. Preliminaries

Let us now completely formalize unif in inductive type theory. We assume
two discrete types V (for variables) and C for (constants). By discrete, we
mean that V and C are each provided with a Boolean equality decider:

$$\begin{align*}
eq_V &: V \to V \to \mathbb{B} \\
\text{eqV} _\text{spec} &: \forall xy : V, x =_V y \leftrightarrow x = y \\
eq_C &: C \to C \to \mathbb{B} \\
\text{eqC} _\text{spec} &: \forall ab : C, a =_C b \leftrightarrow a = b.
\end{align*}$$

Notice that, from these, we also define dependent deciders

$$\begin{align*}
\text{eqV} _\text{dec} &: \forall xy : V, \{x = y\} + \{x \neq y\} \\
\text{eqC} _\text{dec} &: \forall ab : C, \{a = b\} + \{a \neq b\}
\end{align*}$$

that extract as their respective Boolean decider \equiv_V and \equiv_C but are more
convenient to use when combining programming and proving.

Given the types for constants and variables, we build the type Λ of
terms which are binary trees with leaves either in V or C:

$$m, n : \Lambda ::= \mu x \mid \varphi c \mid m \cdot n$$

with $x : V$ and $c : C$

It is trivial to extend equality deciders to Λ as

$$\begin{align*}
\equiv_\Lambda &: \Lambda \to \Lambda \to \mathbb{B} \\
\text{eqT} _\text{spec} &: \forall st : \Lambda, s =_\Lambda t \leftrightarrow s = t.
\end{align*}$$

We define recursively the size $\|\cdot\| : \Lambda \to \mathbb{N}$ and the list of variables
$\langle \langle \cdot \rangle \rangle : \Lambda \to \mathbb{L}$ of terms by the structurally recursive equations:

$$\begin{align*}
\|\mu _\| &:= 0 \\
\|\varphi _\| &:= 0 \\
\|m \cdot n\| &:= 1 + \|m\| + \|n\| \\
\langle \langle \mu x \rangle \rangle &:= [x] \\
\langle \langle \varphi c \rangle \rangle &:= [] \\
\langle \langle m \cdot n \rangle \rangle &:= \langle \langle m \rangle \rangle + \langle \langle n \rangle \rangle.
\end{align*}$$
The occur check decision algorithm \(\prec \) is also defined by structural recursion

\[
\begin{align*}
\prec \mu \colon & \text{false} \\
\prec \varphi & \colon \text{false} \\
\prec m \circ n & \colon \mu x =\Lambda m || \mu x =\Lambda n || \prec m \circ \prec n \end{align*}
\]

and specified by

Fact trm_vars_occ_check \(x m \): \(x \prec m \iff m \neq x \land x \in \llbracket m \rrbracket \).

Notice that to ensure shorter notations, we abusively write \(x \prec m \) for \(x \prec \mu m = \text{true} \) and \(x \not\prec m \) for \(x \prec \varphi m = \text{false} \). Using \(\prec \), we implement the dependent decider which allows both smooth extraction and better behavior w.r.t. proof obligations.

Definition occ_check_dec \(x t \):

\[
\{ x \prec t \} + \{ x \not\prec t \}.
\]

Typically, when \(x \prec m \) holds, which reads “\(x \) occurs check in \(m \),” then \(x \) and \(m \) cannot be unified, i.e. no common substitution will ever make them identical. On the other hand, when \(x \not\prec m \), any substitution that maps \(x \) to \(m \) unifies those two terms.

A (finite) substitution is a list of type \(\Sigma := \mathbb{L}(V \times \Lambda) \) composed of substitution pairs, and for \(\sigma : \Sigma \), we define the substitutions of variables \(\sigma(x) : V \rightarrow \Lambda \) and of terms \(t[\sigma] : \Lambda \rightarrow \Lambda \) with the structural recursive equations:

\[
\begin{align*}
\emptyset[x] & \colon= x \\
\emptyset[(x, t)] & \colon= t \\
(x, \varphi)[\sigma] & \colon= \varphi \sigma \\
\mu x \sigma & \colon= \mu x (x, t) \\
\varphi \sigma & \colon= \varphi \sigma \\
\end{align*}
\]

Remark that the equality decider \(=^\varphi \) is used for comparing \(x \) and \(y \) in the definition of \(\sigma(x) \).

We define the composition \(\sigma \circ \nu \) of two substitutions \(\sigma \nu : \Sigma \) by:

\[
\sigma \circ \nu : \text{map} \ (\lambda(x, t), (x, t[\nu])) \sigma \mapsto \nu
\]

and the composition satisfies the following specification:

Fact subst_comp_spec \(\sigma \nu t \):

\[
\begin{align*}
\nu \sigma \circ \nu t & \colon= t[\sigma][\nu]
\end{align*}
\]

8.2. *The computational graph and the domain predicate*

Given all those preliminary notions, we can at last deploy the Braga method and define the graph of the \texttt{unif} function corresponding to the set of equations of Fig. 20. The graph is described as a purely logical inductive predicate. It relates the inputs with the potential output of \texttt{unif}, and its
inductive description allows to follow the nested recursive scheme quite naturally:

\[
\text{Inductive } G_{\text{unif}} : \Lambda \to \Lambda \to \text{option } \Sigma \to P := \\
\varphi c \times m \circ n \rightarrow_u \text{None} & m \circ n \times \varphi c \rightarrow_s \text{None} & \varphi c \times \mu x \rightarrow_u \text{Some } [(x, \varphi c)] \\
x < m \circ n & x \neq m \circ n & x < m \\
m \circ n \times \mu x \rightarrow_u \text{None} & m \circ n \times \mu x \rightarrow_u \text{Some } [(x, m \circ n)] & \mu x \rightarrow_u m \rightarrow_u \text{None} \\
x \neq m & \varphi a \times \varphi b \rightarrow_u \text{Some } [] & \varphi a \times \varphi b \rightarrow_u \text{None} \\
m \times m' \rightarrow_u \text{None} & m \times m' \rightarrow_u \text{Some } \sigma & n \| \sigma \| \times n' \| \sigma \| \rightarrow_u \text{None} \\
m \circ n \times m' \circ n' \rightarrow_u \text{None} & m \circ n \times m' \circ n' \rightarrow_u \text{None} & m \circ n \times m' \circ n' \rightarrow_u \text{Some } \nu \\
m \circ m' \rightarrow_u \text{Some } \sigma & n \| \sigma \| \times n' \| \sigma \| \rightarrow_u \text{Some } \nu & m \circ m' \rightarrow_u \text{Some } (\sigma \circ \nu) \\
\]

where the mixfix notation \(m \times n \rightarrow_u r\) is favoured over the prefix notation \(G_{\text{unif}} m n r\). We establish the functionality of the graph \(G_{\text{unif}}\):

Fact \(G_{\text{unif}} _ \text{fun} m n r s : m \times n \rightarrow_u r \rightarrow m \times n \rightarrow_u s \rightarrow r \equiv s\).

Proof. Quite typically, by induction on (the proof of) \(m \times n \rightarrow_u r\) and then inversion on \(m \times n \rightarrow_u s\). \qed

We follow with definition of the domain \(D_{\text{unif}}\) using the Accessibility predicate applied to the below defined subcall relation \(\approx_u^{sc}\) of the \textit{unif} recursive algorithm

Definition \(D_{\text{unif}} u v := \text{Acc } \approx_u^{sc} (u, v)\).

critically using the computational graph \(G_{\text{unif}}\) to characterize the nested recursive call in the 2nd rule:

\[
\text{Inductive } \approx_u^{sc} : \Lambda \times \Lambda \rightarrow \Lambda \times \Lambda \rightarrow P := \\
(m, m') \approx_u^{sc} (m \circ n, m' \circ n') & (n \| \sigma \|, n' \| \sigma \|) \approx_u^{sc} (m \circ n, m' \circ n')
\]

8.3. The Coq term packed with conformity

We are now in position to build the unification function

\[
\text{unif_pwc} : \forall u, v, D_{\text{unif}} u v \rightarrow \{r \mid u \times v \rightarrow_u r\}
\]

packed with conformity to \(G_{\text{unif}}\), of which the proof term is reported in Fig. 21 on page 63. We first point out that although the two arguments \(u\)
Let \texttt{Fixpoint unif_pwc} \(u \; v\) \((D : \mathbb{D}_{\text{unif}} \; u \; v)\) \{\texttt{struct} \(D\) \}: \{r \mid u \bowtie v \rightarrow_r r\}.

Proof. \texttt{refine(match u as u' return u = u' \rightarrow_r).}

\[\mu x \Rightarrow \lambda E \; D.\; \texttt{match occ_check_dec x \; v with}\]
\[\text{left} \; H \Rightarrow \texttt{exist} \; \text{None} \; O_1^x\]
\[\text{right} \; H \Rightarrow \texttt{exist} \; \text{Some} \; [x,v] \; O_2^x\]
\end{align*}

\texttt{end}\]
\[\varphi \; c \Rightarrow \lambda E \; D.\; \texttt{match} \; v \; \texttt{with}\]
\[\mu y \Rightarrow \lambda D.\; \texttt{exist} \; \text{Some} \; [(y,u)] \; O_3^y\]
\[\varphi \; d \Rightarrow \lambda D.\; \texttt{match} \; \texttt{eqC_dec} \; c \; d \; \texttt{with}\]
\[\text{left} \; H \Rightarrow \texttt{exist} \; \text{None} \; O_4^c\]
\[\text{right} \; H \Rightarrow \texttt{exist} \; \text{None} \; O_5^c\]
\end{align*}

\texttt{end}\]
\[m \circ n' \Rightarrow \lambda D.\; \texttt{exist} \; \text{None} \; O_6^c\]
\end{align*}

\texttt{end D}\]
\[m \circ n \Rightarrow \lambda E \; D.\; \texttt{match} \; v \; \texttt{with}\]
\[\mu y \Rightarrow \lambda D.\; \texttt{match} \; \texttt{occ_check_dec} \; y \; u \; \texttt{with}\]
\[\text{left} \; H \Rightarrow \texttt{exist} \; \text{None} \; O_7^y\]
\[\text{right} \; H \Rightarrow \texttt{exist} \; \text{None} \; O_8^y\]
\end{align*}

\texttt{end}\]
\[\varphi \; d \Rightarrow \lambda D.\; \texttt{exist} \; \text{None} \; O_9^d\]
\[m' \circ n' \Rightarrow \lambda D.\; \texttt{let} \; (r,G_r) := \texttt{unif_pwc} \; m \; m' \; T_1'\; \texttt{in}\]
\[\texttt{match} \; r \; \texttt{with}\]
\[\text{Some} \; \sigma \Rightarrow \lambda G_r.\; \texttt{let} \; (s,G_s) := \texttt{unif_pwc} \; n \; n' \; T_2'\; \texttt{in}\]
\[\texttt{in match} \; s \; \texttt{with}\]
\[\text{Some} \; \nu \Rightarrow \lambda G_s.\; \texttt{exist} \; \text{Some} \; (\sigma \circ \nu) \; T_1'_{10}\]
\[\text{None} \Rightarrow \lambda G_s.\; \texttt{exist} \; \text{None} \; O_1'_{11}\]
\end{align*}

\texttt{end G_s}\]
\[\text{None} \Rightarrow \lambda G_r.\; \texttt{exist} \; \text{None} \; O_1'_{12}\]
\end{align*}

\texttt{end G_r}\]
\texttt{end D}\]
\texttt{end eq_refl \; D})\].

(* POs: termination certs \(T_1'_{12}\); postconditions \(O_1'_{12}\) *)

Qed.

Figure 21. Coq proof term \texttt{unif_pwc} packed with conformity.

and \(v\) are packed in a pair \((u,v)\) in the definition of the domain predicate \(\mathbb{D}_{\text{unif}} \; u \; v\), there is no need to pack these two arguments in the definition of \texttt{unif_pwc}. This will reflect in the extracted term that will not pack \(u\) and \(v\) in a pair either. And \(D : \mathbb{D}_{\text{unif}} \; u \; v\), in which \(u\) and \(v\) are packed as the \((u,v)\) pair, will simply be erased because its type is purely logical.

Then, we remark that proof obligations in Fig. 21 are very easy to establish and only lightly discussed here: termination certificates \(T_1'_{12}\) and \(T_2'\)
use Acc_inv to safely ensure the structural decrease for the fixpoint, as in Section 4.3; postconditions O'_1–O'_2 have trivial proofs, basically consisting in applying the corresponding rule/constructor of G_{unit}.

Then, by projecting the Σ-type $\{ r \mid u \preceq v \mapsto r \}$, we get unif as

Definition $\text{unif} m n (D : \mathcal{D}_{\text{unit}} m n) := \pi_1(\text{unif}_\text{pwc} m n D)$.

Fact $\text{unif}_\text{spec} m n D$:

$\forall m n D : m \preceq n \mapsto \text{unif} m n D$.

dependent on the domain predicate $D : \mathcal{D}_{\text{unit}} m n$, whereas the projection $\pi_2(\text{unif}_\text{pwc} m n D)$ provides conformity.

8.4. The inductive-recursive scheme

We implement suitable constructors for the domain $\mathcal{D}_{\text{unit}}$ which, for the last two of them, depend on the unif function themselves. This is what typically happens when simulating the induction-recursion scheme of a nested recursive algorithm.

Facts:

- $D^1_{\text{unif}} : \forall m n, \mathcal{D}_{\text{unit}} (\varphi c)(m \circ n)$.
- $D^2_{\text{unif}} : \forall m n, \mathcal{D}_{\text{unit}} (m \circ n) (\varphi c)$.
- $D^3_{\text{unif}} : \forall x m, \mathcal{D}_{\text{unit}} (\mu x) m$.
- $D^4_{\text{unif}} : \forall m n x, \mathcal{D}_{\text{unit}} (m \circ n) (\mu x)$.
- $D^5_{\text{unif}} : \forall m n m' n' D$, $\text{unif} m m' D = \text{None} \rightarrow \mathcal{D}_{\text{unit}} (m \circ n) (m' \circ n')$.
- $D^6_{\text{unif}} : \forall m n m' n' D \sigma, \text{unif} m m' D = \text{Some} \sigma \rightarrow \mathcal{D}_{\text{unit}} (m \circ \sigma) (m' \circ \sigma)$.
- $D^7_{\text{unif}} : \forall m m' n n' D$, $\text{unif} m m' D \rightarrow \mathcal{D}_{\text{unit}} (m \circ n) (m' \circ n')$.

Proof. With Acc_intro for $\mathcal{D}_{\text{unit}}$, then unif_spec and G_{unit}.

We continue with the eliminator/recursion principle which expresses that any proof-irrelevant predicate $P : \forall m n, \mathcal{D}_{\text{unit}} m n \rightarrow \text{Type}$ holds over the whole domain $\mathcal{D}_{\text{unit}}$ when it is closed for the constructors:

Theorem $\mathcal{D}_{\text{unit}} \text{rect} (P : \forall m n, \mathcal{D}_{\text{unit}} m n \rightarrow \text{Type})$:

- $(\forall m n D_1 D_2, P m n D_1 \rightarrow P m n D_2) \rightarrow (\forall m n, P - (D^1_{\text{unif}} m n))$
- $(\forall m n, P - (D^2_{\text{unif}} m n))$
- $(\forall c x, P - (D^3_{\text{unif}} c x))$
- $(\forall m n x, P - (D^4_{\text{unif}} m n x))$
- $(\forall x m, P - (D^5_{\text{unif}} x m))$
- $(\forall a b, P - (D^6_{\text{unif}} a b))$
- $(\forall m m' n n' D_1 (_ : P - D_1 H) \rightarrow P - (D^7_{\text{unif}} m n m' n' D_1 H))$
- $(\forall m m' n n' D_1 (_ : P - D_1 \sigma H D_2), P - D_2 \rightarrow P - (D^8_{\text{unif}} m n m' n' D_1 H D_2))$
- $(\forall m n D, P m n D)$.
We finish the construction of the induction-recursion scheme of unif and establish proof-irrelevance and fixpoint equations:

Facts:

\[\begin{align*}
\text{unif} & \; \mid \; : \forall m \; n \; D_1 \; D_2, \; \text{unif} \; m \; n \; D_1 = \text{unif} \; m \; n \; D_2, \\
\text{unif} & \; \mid \; : \forall c \; m \; n, \; \text{unif} \; (\text{unif} \; c \; m \; n) = \text{None}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall c \; m \; n, \; \text{unif} \; (\text{unif} \; c \; m \; n) = \text{None}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall c \; x, \; \text{unif} \; (\text{unif} \; c \; x) = \text{Some} \{ (x, \varphi, c) \}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall m \; n, \; x \; \prec \; m \; n \; \rightarrow \; \text{unif} \; (\text{unif} \; m \; n \; x) = \text{None}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall m \; n, \; x \; \prec \; m \; n \; \rightarrow \; \text{unif} \; (\text{unif} \; m \; n \; x) = \text{Some} \{ (x, \varphi, m \; n) \}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall x, \; \forall m, \; x \; \prec \; m \; \rightarrow \; \text{unif} \; (\text{unif} \; x \; m) = \text{None}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall x, \; \forall m, \; x \; \prec \; m \; \rightarrow \; \text{unif} \; (\text{unif} \; x \; m) = \text{Some} \{ (x, m) \}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall c, \; \forall \text{unif} \; (\text{unif} \; c \; c) = \text{Some} \{ [] \}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall c, \; \forall \text{unif} \; (\text{unif} \; c \; d) = \text{None}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall m \; n \; m’ \; D \; H, \; \text{unif} \; (\text{unif} \; m \; n \; m’ \; D \; H) = \text{None}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall m \; n \; m’ \; D_1 \; \sigma \; H \; D_2, \; \text{unif} \; (\text{unif} \; m \; n \; m’ \; D_1 \; \sigma \; H \; D_2) = \text{None}
\rightarrow \; \text{unif} \; (\text{unif} \; m \; n \; m’ \; D_1 \; \sigma \; H \; D_2) = \text{None}.
\end{align*} \]

\[\begin{align*}
\text{unif} & \; \mid \; : \forall m \; n \; m’ \; D_1 \; \sigma \; H \; D_2 \; \nu, \; \text{unif} \; (\text{unif} \; m \; n \; m’ \; D_1 \; \sigma \; H \; D_2 \; \nu) = \text{Some} \{ \nu \}
\rightarrow \; \text{unif} \; (\text{unif} \; m \; n \; m’ \; D_1 \; \sigma \; H \; D_2 \; \nu) = \text{Some} \{ \sigma \; \nu \}.
\end{align*} \]

8.5. **High-level partial correctness**

Once the inductive-recursive schemes in place, we can establish the partial correctness of unif, i.e. an abstract specification of what it computes on its domain. By abstract, we mean that we would get more information on $\text{unif} \; m \; n \; D$ than just the low-level result $\text{unif} \; \text{spec}$ that expresses conformity with the computational graph, i.e. that $m \; n \; \rightarrow_a \; \text{unif} \; m \; n \; D$ holds.

Equivalence denoted $\sigma \approx \nu$ means that the two lists σ and ν of substitution pairs, despite being two potentially different lists, have the same extensional behaviour:

\[\text{Infix} \; \approx : \Delta \rightarrow \Sigma \rightarrow P. \; \forall \sigma \; \nu : \Sigma, \; \sigma \approx \nu \leftrightarrow \forall t : \Lambda, \; t[\sigma] = t[\nu]. \]

Non-unifiability denoted $m \not\equiv n$ means no substitution can unify m and n:

\[\text{Infix} \; \not\equiv : \Lambda \rightarrow \Lambda \rightarrow P. \; \forall m \; n : \Lambda, \; m \not\equiv n \leftrightarrow \forall \sigma : \Sigma, \; m[\sigma] \neq n[\sigma]. \]

and $\text{mgu} \; m \; n \; \sigma$ means σ is a most general unifier for m and n:

\[\text{Definition} \; \text{mgu} \; (m : \Lambda) \; (n : \Lambda) \; (\sigma : \Sigma) : P := \]

\[m[\sigma] = n[\sigma] \land \forall \nu : \Sigma, \; m[\nu] = n[\nu] \rightarrow \exists \tau : \Sigma, \; \nu \approx \sigma \circ \tau. \]

Notice that two mgus need not be (extensionally) equivalent (i.e. w.r.t. \approx) because the definition of mgu does not characterize their behaviour for the
variables not occurring inside of m or n, hence one can freely permute those outside variables while preserving the mgu property.

The mechanized proof below follows the script described by Krauss20 which first establishes partial correctness results to conclude with totality/termination. This feature is recurrent with nested algorithms: proving termination involves some knowledge of what the function computes, a vicious cycle for Coq that can be broken with the Braga method.

Hence we first establish partial correctness: on its domain of termination D_{unif}, unif outputs either $\text{Some} \sigma$ where σ is an mgu of m and n, or else None in which case m and n cannot be unified.

Theorem $\text{unif}_\text{partial_correct}$ m n ($D : \text{D}_{\text{unif}} m n$):

\[
\begin{align*}
\text{match } \text{unif}_\text{m n} D & \text{ with } \text{Some} \sigma \Rightarrow \text{mgu}_\text{m n} \sigma \mid \text{None} \Rightarrow m \not\equiv n \text{ end.}
\end{align*}
\]

Proof. By direct induction on D using $\text{D}_{\text{unif}}_\text{rect}$ and the other components of the proof-irrelevant inductive-recursive scheme of unif. \qed

This illustrates that we can study the output value of unif in Coq, without and independently of having to establish termination/totality. Moreover, we can also get refined partial correctness results such as, the output of $\text{unif}_\text{m n}$, if it is $\text{Some} \sigma$, then applying the substitution σ does not produce any new variable:

Lemma $\text{mgu}_\text{trm_vars_incl}$ m n ($D : \text{D}_{\text{unif}} m n$):

\[
\begin{align*}
\text{match } \text{unif}_\text{m n} D & \text{ with } \text{Some} \sigma \Rightarrow \forall t, \langle t\{\sigma\} \rangle \subseteq \langle m \rangle + + \langle n \rangle + + \langle t \rangle \mid \text{None} \Rightarrow \top \text{ end.}
\end{align*}
\]

Another important partial correctness result states that the output of $\text{unif}_\text{m n}$, if it is $\text{Some} \sigma$, (extensionally) different from the identity substitution $[,]$, then σ erases at least one variable from those of m or n:

Lemma $\text{mgu}_\text{trm_vars_dec}$ m n ($D : \text{D}_{\text{unif}} m n$):

\[
\begin{align*}
\text{match } \text{unif}_\text{m n} D & \text{ with } \text{Some} \sigma \Rightarrow \sigma \approx [] \lor \exists x : \mathcal{V}, x \in \langle m \rangle + + \langle n \rangle \land \forall t : \Lambda, x \not\in \langle t\{\sigma\} \rangle \mid \text{None} \Rightarrow \top \text{ end.}
\end{align*}
\]

These two partial correctness lemmas are both established by induction on $D : \text{D}_{\text{unif}} m n$ using $\text{D}_{\text{unif}}_\text{rect}$.
let rec unify u v =
 match u with
 | Var x -> if occ_check_b x v then None else Some [(x,v)]
 | Cst c -> (match v with
 | Var y -> Some [(y,u)]
 | Cst d -> if eqC c d then Some [] else None
 | App (_,_) -> None)
 | App (m, n) -> (match v with
 | Var y -> if occ_check_b y u
 then None
 else Some [(y,u)]
 | Cst _ -> None
 | App (m',n') -> (match unify m m' with
 | Some r -> (match unify (subst r n) (subst r n') with
 | Some s -> Some (subst_comp r s)
 | None -> None)
 | None -> None))

Figure 22. Extracted OCaml code for the unify algorithm.

8.6. Termination

These three partial correctness results give us enough feedback properties to allow the proof of totality for \(D_{\text{unif}} \), i.e. termination of unify \(mn \) for any input values \(m \) and \(n \):

Theorem unif_total : \(\forall m n, D_{\text{unif}} mn \).

Proof. By a lexicographic (or nested) induction on:

(a) first, the list \(\langle m \rangle \downarrow \langle n \rangle \) ordered by strict list inclusion;
(b) second, the size \([m] \) ordered by the strictly less relation \(<\).

Starting from the call unify \((m \circ n) (m' \circ n') \), the termination of the first subcall unify \(mn m' \) is ensured by (b). Then, thanks to mgu_trm_vars_dec, in the case unify \(mn m' = \text{Some} \sigma \) where there is a second (nested) subcall unify \(n \sigma n' \sigma \):

- either \(\sigma \approx [] \) in which case the subcall is identical to unify \(nn' \), terminating because of (b) again;
- or there is a variable \(x \), outside of both \(n \sigma \) and \(n' \sigma \), ensuring that condition (a) holds and we get termination again.

In any case, termination is thus ensured by the induction hypotheses. □
We trivially derive the fully specified terminating unification algorithm

\[
\text{Definition } \text{unify } m \; n : \\
\{ r \mid \text{match } r \text{ with Some } \sigma \Rightarrow \text{mgu } m \; n \; \sigma \mid \text{None } \Rightarrow m \not\approx n \text{ end} \}.
\]

which extracts gracefully in Fig. 22 as the expected OCaml code that reflects faithfully on the equations of Fig. 20. Notice that the identity deciders for variables \(\text{eqV} : \alpha \rightarrow \alpha \rightarrow \text{bool}\) and constants \(\text{eqC} : \beta \rightarrow \beta \rightarrow \text{bool}\) are not extracted in the OCaml code because they are global Parameters for the whole project of this section and thus should be properly instantiated before using \text{unify}. Alternatively, they could be declared as Variables, in which case they would appear as extra arguments for \text{unify}, \text{occ_check_b}, \text{subst} and \text{subst_comp}.

9. Related Works

In this chapter, we have described the Braga method. Mostly through examples, we explain how to systematically encode partial recursive schemes into Coq while, at the same time, ensuring a tight control over the computational contents of terms. The method is friendly to extraction while allowing to build the tools to define and reason about partial recursive functions in Coq.

Our own contribution is based on a very rich literature that originates in the mid-90s and concerned with the mechanized study of recursive algorithms. Of course, the formal study of the properties of recursive algorithms is much older with e.g. the work of Manna and Pnueli\(^{14}\) in the early 70s. Also, the mechanization of reasoning and the verification of proofs of mathematical theorems by computers can be traced back in the 70s with the work of de Bruijn on Automath.\(^{22}\) But here, we only collect and briefly describe some of the references that were influential in the design of the Braga method.

Foremost, maybe it is the seminal paper of Giesl\(^{21}\) that gave us the good foundation for approaching the difficult cases of nested algorithms where the properties of the output have an impact on the study of the domain. Hence separating the study of termination from the study of correctness is a critical insight. Building on this idea, Krauss\(^{20}\) gave an approach to be able to define and manipulate functions implementing algorithms, independently of their termination or correctness properties. His approach however relies on Hilbert’s description operator in HOL, a highly non-constructive feature that typical users of Coq extraction mechanism want to avoid because there
is no way to extract this operator. Moreover, as it is incompatible with many propositional axioms, assuming it makes it easy to silently corrupt the internal logic of Coq. Nonetheless, the examples we develop in this chapter mostly come from Giesl21 and Krauss.20

These two previous authors do not consider constructive frameworks like type theory or Coq, and in this context, the landmark reference is Bove and Capretta10 that use inductive-recursive schemes to model partiality. However, we do not really follow their approach, but we can retrieve their tools as convenient ways to manipulate termination domains and partial functions in one of the variants of the Braga method. In contrast, our custom domain (or accessibility) predicates are critically implemented as non-informative propositions, allowing their erasure at extraction. Moreover, we also remark that induction on the computational graph can often be used as a cheaper alternative to inductive-recursive schemes, provided one accepts working with relations in place of equations. Actually, by reasoning on the computational graph, one could prove properties of the partial function and its domain without even writing the function.a In that context, the Coq implementation of the function would only matter from extraction purposes.

The idea of defining the domain as the projection of the computational graph on its inputs can at least be traced back to Dubois and Donzeau-Gouge.9 This idea is revisited by Bove18 but there, the domain predicate is informative. Hence the way termination is proved would leak into the extracted program, thus failing to separate code definition from correctness and termination study. By projecting the computational graph on its inputs to get the domain predicate, these two references pick up an approach that does not naturally capture the structure of recursive calls over the domain.

Bove, Krauss and Sozeau23 propose a quite recent overview of recursion in the context of interactive theorem provers, illustrated with typical examples. They focus mainly on higher-order logics, either the constructive type theories of Agda and Coq, or the more classical Higher Order Logic (HOL). Putting aside co-inductive examples, we have successfully tested the Braga method on most of the examples they list. It is our intention to complement our distributed code with these examples later on.

Concerning Coq, Sozeau and Mangin24 proposed the “Equations” package that allows the definition of recursive functions with a much more flex-

aThis idea can be pushed further to functions written with non-existent features in Coq and OCaml, such as a pattern-matching on virtual constructors, as illustrated with our reference “fold-left from the tail” function.
ible syntax. **Equations** has many advantages over the **Fixpoint** primitive or the more elaborate **Program Fixpoint** declaration. However, it is difficult to tightly control its behavior w.r.t. extraction when dealing with somewhat complicated schemes.12 Also for termination, it is based on well-founded recursion and thus, not always suitable for partial algorithms or else algorithms that are better manipulated as partial, typically nested ones. However, it is our hope that the Braga method will one day find its way into the Equations framework.

At TYPES 2018, Andreas Abel pointed us to the contemporary work of Wieczorek and Biernacki25 on normalization by evaluation implemented in Coq. In there, independently of our work, they use some tools belonging to the herein called Braga method like custom inductive domains and induction on the computational graph. In their Section 3.2 on page 269, they compare their approach to the existing literature at the time, mostly the work of Bove and Capretta.10,18 As they also aim at extraction, they make similar observations to our own w.r.t. induction-recursion and informative domain predicates.

They only reason on the computational graph, actual definitions of partial functions are there only for program extraction. Additionally, they do not notice that inductive-recursive schemes can be inferred in Coq using the restriction to proof-irrelevant predicates illustrated here on \texttt{dfs}, \texttt{nm} and \texttt{unif}, so that the two approaches — induction on the computational graph and equational reasoning using inductive-recursive schemes — turn out to be equivalent.

Moreover Section 3.3 of Wieczorek and Biernacki25 don’t explain how their projection/inversion functions actually provide structurally smaller arguments in recursive calls though this is a key aspect of the method. We consider that this structural decrease can be shown very clearly in different situations, as illustrated from our introduction to custom inductive domain predicates in 3.1, then more typically on Figure 14, or in the encoding of Paulson’s \texttt{nm}. Because they aim at solving a complex problem with an algorithm, their recursive scheme reflects this complexity and (to us) is not ideal as an illustration of their method. They seem to consider it somehow ad-hoc while on the contrary, we have the conviction that the Braga method is very versatile.

More recently, Jan Bessai kindly wrote us to explain how the Braga method, as outlined in the two pages TYPES 2018 abstract2 and the accompanying code, helped him to implement his correct by construction algorithm for fast BCD subtyping.26 On this example, he also extended
the method to be able to capture some properties related to a measure of complexity of his algorithm. This gives us even more conviction that simple/short examples help at the understanding of the Braga method. That is why we insisted on these examples in this chapter, and in the future, we intend to populate our available Coq code with even more well documented illustrations of the method.

References

10.1017/S0960129505004822.