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Abstract4

We propose weaker but constructively provable variants of the contrapositive of Kőnig’s lemma. We5

derive those from a generalization of the FAN theorem for inductive bars to inductive covers, for6

which we give a concise proof. We compare the positive, negative and sequential characterizations of7

covers and bars in classical and constructive contexts, giving precise accounts of the role played by8

the axioms of excluded middle and dependent choice. As an application, we discuss some examples9

where the use of Kőnig’s lemma can be replaced by one of our weaker variants to obtain fully10

constructive accounts of results or proofs that could otherwise appear as inherently classical.11
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1 Introduction17

Kőnig’s (infinity) lemma, named after Dénes Kőnig, was originally published as a theorem of18

graph theory [14]. Nowadays, it is usually conflated with the following statement:19

Any infinite tree which is finitely branching has an infinite branch.120

The restriction to at most binary trees is of particular importance because it can be stated21

within lightweight foundations like e.g. RCA0 [22], and is usually called weak Kőnig’s lemma22

(WKL). Notice that Kőnig’s lemma is also used in its contrapositive form:23

Any finitely branching tree with only finite branches must be finite.24

Classical mathematicians would not mind switching between the two formulations but25

herein, we refrain from using excluded middle at will, and we adopt a constructivist point26

of view. In this context, that contrapositive form is sometimes referred to as “Brouwer’s27

FAN theorem” [5, p. 13]. Although there is no universal agreement on what constitutes28

constructive mathematics, we use the inductive type theory that is the basis of Coq, free of29

additional axioms, as our constructive foundations.30

Kőnig’s lemma plays critical roles in various fields of mathematics like logic, computability,31

tiling theory, etc. and has been investigated by reverse mathematics, e.g. as WKL0 in [22],32

and constructive reverse mathematics [3, 2]. Although some of our investigations might be33

relevant to the program of reverse mathematicians, we do not follow that approach. We34

favour a more pragmatic perspective: since the lemma does not belong to the realm of purely35

constructive mathematics, can we propose weaker alternatives that could be used, not as36

drop-in, but rather as low cost replacements for Kőnig’s lemma? Of course, we require that37

those alternatives are constructively provable.38

Kőnig’s lemma can (in particular) be used to establish the termination of algorithms,39

typically the decision procedure for implicational relevance logic [8, 16]. It is instrumental to40

1 the original statement rather talks about paths in a graph.
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23:2 Constructive substitutes for Kőnig’s lemma

show the existence of Harvey Friedman’s [10] TREE(n) monster (extremely fast growing)41

function, in combination with Kruskal’s tree theorem, see e.g. [11]. These are two example42

applications of our tools aimed at giving constructive accounts of results and proofs that43

could otherwise look inherently classical.44

As simple as it sounds, Kőnig’s lemma involves the notion of infinite tree. Hence, the trees45

cannot simply be understood as the inductively defined structure to be found in computer46

science (these are always finite). Also, the notion of infinite is not as straightforward in the47

constructive world. In reverse mathematics, where the usage of versatile data structures may48

be constrained, a tree is often conflated with its set of finite branches (so finite sequences49

of nodes where the next node is a son of the current node). As such, trees are non-empty,50

prefix closed, sets of finite sequences, possibly with a computable membership predicate.51

And infinite branches are sequences for which every finite prefix belongs to the tree, i.e. the52

upper limit of a growing sequence of finite branches of the tree.53

In that context, one can prove Kőnig’s lemma using excluded middle and a weak form of54

the axiom of choice (e.g. dependent choice). If a canonical choice can be made over the sons,55

typically when there is a total order that can sort the sons at every node of the tree, the56

infinite construction process in the proof can be determinized (by choosing the least son) and57

the reliance on the axiom of choice is avoidable in that case. However, excluded middle is58

more critical, in particular to show that when the union of finitely many subtrees is infinite,59

it must be because one of them is infinite. “Being infinite” is not a decidable property so the60

selection performed by excluded middle cannot be turned into a computable value.61

Kleene [15] famously gave a counterexample to a computational interpretation of weak62

Kőnig’s lemma: he builds a computable infinite binary tree, so a decidable set of finite63

sequences of Booleans,2 for which there exists no computable infinite branch, i.e. no infinite64

sequence of Booleans of which every finite prefix belongs to the tree. This gives a very65

strong argument against the constructive acceptability of Kőnig’s lemma, at least when one66

“interprets Bishop’s mathematics in a recursive way” [6].367

Not only Kőnig’s lemma could be rejected from a constructivist point of view, but some68

of its consequences suffer similar defects. Consider the compactness result for Wang tilings:69

A finite set of tiles can tile the plane if and only if it can tile any finite square.70

Similarly to Kleene’s result, Hanf [12] and Myers [21] famously gave examples of finite sets71

of tiles that can tile the whole plane, but only in a nonrecursive way. This invalidates a72

computational understanding of the compactness result. Hence no constructive account of73

the proof of the compactness result can be given, otherwise it would entail the existence of a74

recursive tiling.475

So there is no real hope at a drop-in constructive replacement for Kőnig’s lemma because76

some of its consequences might live outside the realm of constructive or computable math-77

ematics. Nevertheless, we argue that it might be used in contexts where weaker alternatives78

would also fit. And it is our aim here to explore some of those alternatives.79

For instance, there is an interpretation of its contrapositive form, i.e. “any finitely80

branching tree with only finite branches must be finite,” where the notion of infinity is81

replaced by finitary notions. Notice that the referred statement still relies on arbitrary (finite82

2 choices between the left or the right son.
3 as said earlier, the notion of what is constructively acceptable is not universally agreed on.
4 Notice that the tileability of a finite square is a decidable property.



Dominique Larchey-Wendling 23:3

or infinite) trees: when saying “only finite branches,” one must consider the possibility that it83

contains infinite branches otherwise this hypothesis is vacuous:84

one classical way to understand “only finite branches” is by saying that no infinite sequence85

can have all its finite prefixes in the tree. Hence even though the statement does not refer86

to infinity, it is hidden in this unfolding;87

another way is to understand “only finite branches” is to give a characterization of the88

finiteness of branches using the inductive acc(essibility) predicate, see Section 3.2:89

∀y, F x y → acc F y

acc F x
90

where F x y means that x is the father of y in the tree (or y is a son of x). If nodes are91

conflated with finite branches/sequences, then F x y simply means that y has the shape92

x ++ [_], i.e. x followed by a single choice of branching/son.93

In that later case, finiteness can be defined by (acc R root), and thus understood as the94

unavoidable termination of the nondeterministic process of expending branches by adding95

sons after sons, starting from the root. In that inductive understanding of “only finite96

branches,” the contrapositive of Kőnig’s lemma can be established by well founded induction,97

see e.g. [1, p. 15]. We will derive it as a corollary in Section 5.3.98

Intuitionists have compared (weak) Kőnig’s lemma with Brouwer’s Fan theorem [23, 24],99

itself a consequence of the Bar theorem, originally designed to grasp the full continuum in100

an intuitionistic approach to real analysis [5, 23].101

We do not assume Brouwer’s real thesis on bars [23]: one way to understand the thesis is102

to say that every bar is an inductive bar. Rather, following Coquand [6] (see discussion in103

Section 3.5), we choose to work directly with inductive bars (on finite sequences), avoiding104

Brouwer’s axiom completely. Actually, we start working with the more general notion of105

inductive cover [4] on (transition) relations.106

As for our contributions, in Section 3 we show that notion of inductive cover generalizes107

both inductive bars and (inductive) accessibility, w.r.t. its definition as well as w.r.t. the108

results that it entails. We then give a detailed comparison between the constructive and109

classical strength of three characterizations of covers: positive, negative and sequential. In110

particular, for the classical part of the comparison, we separate the role played by excluded111

middle (XM) and dependent choice (DC) and show the key role played by the intermediate112

negative characterization. This negative characterization will also play an important role113

in a constructive context, as a substitute to the sequential characterization, when used in114

combination with the FAN theorem.115

In Section 4, we give a type theoretic interpretation of the FAN theorem for inductive116

covers, with a concise proof. The central argument, the stability of upward closed inductive117

covers under binary union, differs from that of the proof of Fridlender’s FAN theorem for118

inductive bars [9] which relies on the stability of monotone inductive bars under binary119

intersection. However, we derive the FAN for bars as an instance of the FAN for covers, to120

make the generalization explicit.121

In Section 5, we exploit the FAN for inductive covers, followed by an application of the122

negative characterization of covers, to give several weaker versions of (the contrapositive of)123

Kőnig’s lemma, showing how relations can be represented by rose trees (hence finitary). This124

includes an extra covering assumption, or an extra bar assumption, or else an extra almost125

fullness assumption.126

CVIT 2016
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In Section 6, we give two examples where Kőnig’s lemma can successfully be replaced127

with one of these weaker variants to give constructive accounts of results of which the former128

proofs where using the classical form of the lemma.129

Additionally, we contribute a mechanization of all the results of the paper in a Coq script130

that can of course be type checked for correctness, but was especially designed to be read131

by humans, not only by computers. The script is mostly self contained, largely commented,132

with concise proofs: the longest is 25 loc but most of them are shorter than 10 loc. It is133

accessible under a free software license at134

https://github.com/DmxLarchey/Constructive-Konig135

2 Coq preliminaries136

We denote by P the type of propositions and simply by Type the Coq hierarchy of types, as137

usual with this framework. We write ⊥ : P for the empty proposition and use the standard138

notations for logical connectives. Recall that the logic of Coq is intuitionistic hence the139

negation is defined by ¬P := P → ⊥. Following the BHK interpretation, X → Y more140

generally denotes the type of maps from X to Y , and write ∀x : X, P x for the dependent141

product, irrelevant of whether P : X → P or P : X → Type. Whenever it can be guessed,142

the type annotation in x : X is simply avoided. The dependent sum has several flavors in143

Coq: for P : X → P we have the proposition ∃x, P x : P and the type {x | P x} : Type which144

behave somewhat similarly but are however fundamentally different because proposition145

cannot systematically be eliminated to build terms of sort Type.5146

The type of Peano natural numbers N is inductively defined in Coq as N : n ::= 0 | S n and147

arithmetic in Coq, which we assume, is build on this type. We will mainly use it as indices148

for infinite sequences and we favor writing 1 + n over S n (they are identical by definition).149

We will manipulate finite sequences as lists, polymorphic over the carrier type X,6 in150

the inductive type list X : l ::= [] | x :: l where x : X. The constructors are [] : list X151

for the empty list and · :: · : X → list X → list X. These notations []/:: correspond to152

the names nil/cons in vanilla Coq. Additionally, list concatenation (resp. membership)153

is named app (resp. In), denoted infix by · ++ · : list X → list X → list X (resp.154

· ∈ · : X → list X → P), and defined by a guarded fixpoint. Moreover, we use the reverse155

rev : list X → list X and the length ⌊·⌋ : list X → N functions as well as the permutation156

relation · ∼p · : list X → list X → P.7157

We define finiteness as a property finite P : P of unary relations (view as sets):8158

finite {X} (P : X → P) := ∃l, ∀x, P x ↔ x ∈ l159

i.e. there exists a list spanning the relation P . This characterization of finiteness as listability160

is equivalent Kuratowski finiteness but much easier to manipulate formally. The list l is not161

unique in general, unless P is empty. The finite property is P-bounded herein, so the list l162

can only be recovered when building a value of sort P, and not when of sort Type.163

We manipulate relations as functions outputting propositions, hence we denote by164

rel2 X Y := X → Y → P the type of heterogeneous binary relations between X and Y . In165

5 For P : X → Type, Coq also defines the variant {x : X & P x} but we will not need this one.
6 Operators on lists are parametric in X and this first argument is nearly always left implicit.
7 as inductively defined in the Permutation module of the Coq standard library.
8 Like lists based results, finite is parametric in X and the braces around it specify an implicit argument.

https://github.com/DmxLarchey/Constructive-Konig
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the homogeneous case, we simply write rel2 X := X → X → P, and rel1 X := X → P in the166

unary case. We use the letters P, Q : rel1 _ to denote unary relations and R, T : rel2 _ _167

to denote binary relations. We write P ⊆ Q or R ⊆ T for the inclusion between relations.168

Except for commonly found notations like ∈, ∼p or ⊆, we generally write related pairs with169

a letter for the relation name, in prefix order, e.g. like in T x y. Hence, we refrain from170

using infix order or using symbols for naming relations. If we want to refer to the relation171

corresponding to an infix notation like e.g. membership, we may write e.g. · ∈ ·. We mostly172

avoid infix notations because of the constraints in rendering notations in Coq scripts that173

would make them diverge too much from the paper rendering, especially when e.g. composing174

operators that are rendered as subscripts or superscripts.175

For complex inductive predicates, we rather present the constructors using rules with a176

horizontal line separating the premises from the conclusion. As an example, we below display177

those of Forall P : rel1 (list X) (denoted ∧1P ) and Forall2 R : rel2 (list X) (list Y )178

(denoted ∧2R) which are finitary conjunctions defined in the List module of the standard179

library, for P : rel1 X and R : rel2 X Y :180

∧1P []
P x ∧1P l

∧1P (x :: l) ∧2R [] []
R x y ∧2R l m

∧2R (x :: l) (y :: m)
181

The free symbols x, y : X and l, m : list X can be instantiated by any value in their182

respective types. In the corresponding Coq constructors, they are universally quantified over.183

3 Inductive covers184

We recall the notion of inductive cover [4]. Our motivation for using covers is not topological185

but rather, such inductive covers conveniently subsume both accessibility and bar inductive186

predicates; see Sections 3.2 and 3.3. We discuss three characterizations of covers, the positive,187

the negative and the sequential, from the strongest to the weakest (constructively), but also188

explain in some details how to get their classical equivalence, separating the roles played by189

the axioms of excluded middle and dependent choice. We discuss these characterizations in190

the context Brouwer’s intuitionistic understanding of infinite sequences.191

But before we switch to covers, we import the standard notion of being upward closed192

to be encountered in order or lattice theory, however not requiring partial orders but any193

binary relation instead.194

▶ Definition 1 (Upward closed). Given a type X and a binary relation T : rel2 X, we say195

that a unary relation P : rel1 X is T -upward closed if P is stable under direct T -images.196

We define: upclosed T P := ∀x y, T x y → P x → P y.197

For instance, the finitary conjunction ∧1P is upward closed for permutations, formally198

stated as upclosed (· ∼p ·) ∧1P . Upward closed unary relations will be preserved by covers,199

and some results about covers (incl. the FAN theorem) assume upward closed relations.200

3.1 Inductive covers definition, basic results201

As in [4], we work with the particular class of singleton inductively generated formal topologies,202

as opposed to the more general (e.g. indexed) presentation of [7]. They are defined by the203

notion of inductive cover of a set (i.e. unary relation) along a (transition) binary relation.204

CVIT 2016
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▶ Definition 2 (Inductive cover [4]). Given a type X, a binary relation T : rel2 X and a205

unary relation P : rel1 X, we define the inductive T -cover of P , denoted cover T P : rel1 X206

by the two following inductive rules:207

P x

cover T P x
[cover_stop]

∀y, T x y → cover T P y

cover T P x
[cover_next]208

Notice that P x (resp. T x y and cover T P x) is denoted by x ∈ P (resp. y ∈ T (x) and209

x◁P ) in [4] but we favor prefix notations to infix ones. Remark that the transition relation T210

is hidden in the infix notation x◁P used for the cover whereas we keep it in coverT P x. Also211

in [4], the constructor cover_stop (resp. cover_next) is called reflexivity (resp. infinity).212

The non-dependent induction principle (or eliminator, depending on your preferred213

terminology) generated for the cover T P predicate has the following type:214

cover_ind T P : ∀Q, P ⊆ Q → (∀x, T x ⊆ Q → Q x) → (∀x, cover T P x → Q x).215

Coq auto-generates a slight variant of it9 but they are equivalent as non-dependent eliminators.216

We choose to present the above one because of its direct link with the positive, negative217

and sequential characterizations of the cover that we compare and analyze in upcoming218

Section 3.4. In our Coq code, we give a straightforward implementation of cover_ind as a219

guarded Fixpoint, very similar to the one auto-generated by Coq.220

Using the cover_ind induction principle in combination with the constructors, we show221

how a morphism can be used to transfer covers between different types and relations.222

▶ Proposition 3 (cover_morphism). Let X, Y be two types, R : rel2 X and T : rel2 Y be223

binary relations, and P : rel1 X and Q : rel1 Y be unary relations. We further assume a224

map f : Y → X which is supposed to be a morphism w.r.t. P/Q and R/T , i.e. satisfying225

∀y, P (f y) → Q y and ∀y1 y2, T y1 y2 → R (f y1) (f y2).226

Then we have ∀x y, x = f y → cover R P x → cover T Q y.227

Proof. We prove cover R P x → ∀y, x = f y → cover T Q y by induction on cover R P x228

using cover_ind. ◀229

For the rest of the section, we assume a fixed type X to be used as carrier for binary230

relations R, T : rel2 X and unary relations P, Q : rel1 X. The monotonicity of cover can231

be obtained as a particular case, using the identity morphism f := λ x, x. More precisely,232

cover (·) (·) is antitonic in its first argument and monotonic in its second argument.233

cover_mono R T P Q : T ⊆ R → P ⊆ Q → cover R P ⊆ cover T Q.234

Additionally to be increasing (by cover_stop) and monotonic (by cover_mono), cover T is235

also an idempotent operator making it a closure operator:236

cover_idempotent T P : cover T (cover T P ) ⊆ cover T P.237

Proof. Assuming an arbitrary x, the proof of coverT (coverT P ) x → coverT P x proceeds238

by induction on cover T (cover T P ) x. ◀239

9 namely ∀Q, P ⊆ Q → (∀x, T x ⊆ cover T P → T x ⊆ Q → Q x) → (∀x, cover T P x → Q x).
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Then we get that the cover T operator preserves T -upward closed unary relations:240

cover_upclosed T P : upclosed T P → upclosed T (cover T P ).241

Proof. We assume upclosed T P and an arbitrary x and show cover T P x → ∀y, T x y →242

cover T P y by induction on cover T P x. ◀243

3.2 Inductive cover and accessibility244

In this section, we fix a type X to serve as carrier for relations below. We recall that the245

cover predicate is a generalization of the accessibility predicate, also called R-founded in [4].246

▶ Definition 4 (acc (essibility), R-founded). Given a binary relation R : rel2 X, the247

acc(essibility) predicate10 for R and the R-founded predicate11 are defined inductively,248

each with one single rule:249

∀y, R x y → acc R y

acc R x
[acc_intro]

¬R x x ∀y, R x y → founded R y

founded R x
250

A simple observation shows that the shape of the constructor acc_intro is the same as251

the second constructor cover_next of the cover predicate. Furthermore, the first constructor252

cover_stop can be neutralized by setting P as the empty relation ∅ := λ _, ⊥. Hence we253

immediately derive the equivalence:254

▶ Proposition 5. The acc(essibility) predicate is an instance of the cover predicate.255

acc_iff_cover_empty R x : acc R x ↔ cover R ∅ x.256

Moreover, accessible elements are necessarily irreflexive. Indeed, we show ∀x, acc R x →257

R x x → ⊥ by induction on acc R x. Hence it follows that the left premise ¬R x x of the258

constructor of R-founded is superfluous:259

▶ Proposition 6. R-founded and accessibility define equivalent notions:260

founded_iff_acc R x : founded R x ↔ acc R x.261

As a corollary we get founded R x ↔ cover R ∅ x, a result already established in [4,262

Theorem 3.2] but, seemingly, the authors did not observe that the left premise (¬R x x i.e.263

irreflexivity) of the introduction rule for R-founded was superfluous.264

3.3 Inductive cover and inductive bars265

Let X be a carrier type for lists. We consider unary relations on the type list X that we266

use to represent finite sequences. We show that inductive covers, in addition to generalizing267

accessibility predicates (see Section 3.2), also generalize inductive bar predicates [9, 6].268

▶ Definition 7 (Inductive bar). Let P : rel1 (list X) be a unary relation on lists. We define269

the inductive bar P : rel1 (list X) unary relation with the two following inductive rules:270

P l

bar P l
[bar_stop]

∀x, bar P (x :: l)
bar P l

[bar_next]271

10 The variant Acc as defined in the Coq standard library module Prelude, simply uses the reversed
relation R−1 instead of R for acc. So we have Acc R ≃ acc R−1 and Acc R−1 ≃ acc R.

11 R-foundness is defined in [4, Definition 3.1].

CVIT 2016
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Compared to [9, Definition 6], there are two slight differences. First our lists expand from272

the left, whereas often in the literature [9, 6, 23], finite sequences expand from the right.273

Hence rule bar_next would be written274

∀x, bar P (l ++ [x])
bar P l

275

with such a reversed convention. However, this difference can be viewed as just of matter276

of ordering the display of the arguments of the list constructor ::. Another more important277

difference compared to [9, Definition 6] or else [23], is the absence of the inductive rule278

bar P l

bar P (x :: l)
[bar_monotone]279

in Definition 7. We discard rule [bar_monotone] because it is admissible for monotone unary280

relations on finite sequences.281

▶ Definition 8 (Monotone unary relation). A unary relation P : rel1 (list X) is monotone282

if it satisfies monotone P := ∀x l, P l → P (x :: l).283

The (discarded) [bar_monotone] rule/constructor would ensure that bar P is a monotone284

predicate even when P is not monotone. However, as an instance of cover_upclosed, if P285

is monotone then so is bar P ; see bar_monotone below. We observe that monotone unary286

relations are those which are upward closed under list extension:287

▶ Definition 9. The extends : rel2 (listX) binary relation on lists is defined by the single288

inductive rule:
extends l (x :: l)

289

Alternatively, we could have defined extends using extends l m ↔ ∃x, m = x :: l. With290

this notion, we get the equivalence291

upclosed_extends_iff_monotone P : upclosed extends P ↔ monotone P292

as an immediate consequence but the specialization goes further:293

▶ Proposition 10 (bar_iff_cover_extends). Given a unary relation P : rel1 (list X)294

and a list l : list X, we have the equivalence bar P l ↔ cover extends P l.295

Thanks to Proposition 10 and upclosed_extends_iff_monotone, the two below results296

are specializations of respectively cover_upclosed and cover_mono.297

bar_monotone P : monotone P → monotone (bar P );
bar_mono P Q : P ⊆ Q → bar P ⊆ bar Q.

298

More generally, the analysis that we are going to present for inductive covers in the next299

section can be specialized to either accessibility predicates and inductive bar predicates.300

3.4 Positive, negative and sequential characterizations301

We now discuss other characterizations of covers, which are not constructively equivalent to302

the inductive one, but however are classically equivalent, hence the abusive use of the word303

“characterization.” We present a detailed analysis of those characterizations and under which304

classical axioms their equivalence depends on.305
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The results of this section that assume classical axioms are not used elsewhere in this306

paper: these axioms are (propositional) excluded middle (XM), giving us De Morgan laws307

for logical connectives and quantifiers, and dependent choice (DC):308

xm : ∀ A : P, A ∨ ¬A;
dc : ∀ X (R : rel2 X), (∀x∃y, R x y) → ∀x∃ρ : N → X, ρ0 = x ∧ ∀n, R ρn ρ1+n.

309

The names of the results that depend on these added axioms are suffixed with _XM or _DC or310

both for an unambiguous exposition.311

We start with the following definitions of the positive characterization cover_pos, the312

negative characterization cover_neg and the sequential characterization cover_seq.313

▶ Definition 11 (Nonequivalent characterizations of cover).

cover_pos T P x := λ Q : rel1 X, P ⊆ Q → (∀y, T y ⊆ Q → Q y) → Q x

cover_neg T P x := λ Q : rel1 X, Q x → (∀y, Q y → ∃z, Q z ∧ T y z) → ∃y, P y ∧ Q y

cover_seq T P x := λ ρ : N → X, ρ0 = x → (∀n, T ρn ρ1+n) → ∃n, P ρn.

314

Although not equivalent, the constructive strength of these characterizations can be compared:315

they are displayed from the strongest (cover_pos) to the weakest (cover_seq). Beware that316

both Q and ρ are universally quantified over in the characterizations below.317

The positive characterization cover_pos is really just a reordering of the implications in318

the induction principle cover_ind, so we get the following equivalence purely constructively:319

cover_iff_cover_pos T P x : cover T P x ↔ ∀Q, cover_pos T P x Q.320

The positive characterization is constructively stronger that the negative one:321

cover_pos__cover_neg T P x : (∀Q, cover_pos T P x Q) → (∀Q, cover_neg T P x Q).322

Proof. We use ∀Q, cover_pos T P x Q as the formulation of an induction principle. ◀323

The negative characterization is constructively stronger than the sequential one. The below324

proof argument anticipates the intuition behind the definition of the negative characterization.325

cover_neg__cover_seq T P x : (∀Q, cover_neg T P x Q) → (∀ρ, cover_seq T P x ρ).326

Proof. Assuming a T -sequence ρ : N → X, we instantiate Q with the direct image ρ(N) :=327

λ y, ∃n, ρn = y. We show cover_neg T P x ρ(N) → cover_seq T P x ρ and conclude. ◀328

We now explain the intuition behind those definitions by turning to a classical interpreta-329

tion where all those characterizations are equivalent, discussing the precise roles played by330

XM and DC. The negative characterization cover_neg is central to our analysis and can be331

understood in two ways, either as deriving from cover_pos or generalizing cover_seq:332

The first understanding of cover_neg is as contrapositive form of cover_pos:333

cover_pos_iff_neg_XM T P x Q : cover_pos T P x Q ↔ cover_neg T P x (¬Q).334

The proof involves excluded middle but first-order De Morgan transformations are enough335

to get the equivalence.12 The converse implication of cover_pos__cover_neg above is336

unlikely to be constructively provable (see Section 3.5), but it is a direct corollary to337

cover_pos_iff_cover_neg_XM,13 however assuming XM as an added axiom;338

12 In the Coq script, we insist on obtaining that equivalence via De Morgan rewriting and congruence only.
13 see cover_neg__cover_pos_XM.
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The second way to understand the negative characterization cover_neg is to view it as a339

generalization of the sequential characterization cover_seq. Notice that the statement340

∀ρ, cover_seq T P x ρ is the usual intuitive definition of being a T -cover for P :341

Any infinite T -sequence starting at x meets P .14
342

However this interpretation depends on what are the inhabitants of the type N → X of343

which ρ is a member; see Section 3.5. In the proof of cover_neg__cover_seq, we used344

the direct image ρ(N) as a particular instance of Q in cover_neg. Q represents a set345

of values containing x and over which T is a total binary relation, which generalizes346

T -sequences by removing the requirement of determinism. The quantification over T -347

sequences ρ : N → X is replaced by quantification over Q which is an T -unstoppable348

non-deterministic process: indeed any point in Q has at least T -image in Q. This property349

of unstoppability ∀y, Q y → ∃z, Q z ∧ T y z is shared also by Brouwer’s notion of spread.350

As a consequence of the above discussion, constructively already, the positive characteriz-351

ation is equivalent to the inductive one, and stronger than the negative one, which is itself352

stronger than the sequential one. Hence we derive:353

cover_negative T P x : cover T P x → ∀Q, Q x → (∀y, Q y → ∃z, Q z ∧ T y z) → ∃y, P y ∧ Q y
cover_sequences T P x : cover T P x → ∀ρ, ρ0 = x → (∀n, T ρn ρ1+n) → ∃n, P ρn

354

If one is interested in the converse implications, then, on the one hand, XM would be355

used to prove that ∀Q, cover_neg T P x Q implies cover T P x. On the other hand, to356

recover ∀Q, cover_neg T P x Q from ∀ρ, cover_seq T P x ρ, one uses DC {x | Q x} which357

is dependent choice specialized on the Σ-type {x | Q x} where Q : rel1 X. Indeed, the358

statement of DC X, i.e. dependent choice specialized on type X is:359

DC X := ∀ R : rel2 X, (∀x∃y, R x y) → ∀x∃ρ : N → X, ρ0 = x ∧ ∀n, R ρn ρ1+n.360

When Q : rel1 X, we reformulate the instance DC {x | Q x} as15
361

∀R, (∀x, Q x → ∃y, Q y ∧ R x y) → ∀x, Q x → ∃ρ, ρ0 = x ∧ ∀n, Q ρn ∧ R ρn ρ1+n362

which is exactly what is needed to extract a sequence ρ : N → X out of the T -unstoppable363

process Q starting at x.364

cover_seq__cover_neg_DC T P x : (∀ρ, cover_seq T P x ρ) → (∀Q, cover_neg T P x Q).365

▶ Theorem 12 (in the spirit of Brouwer’s bar theorem). Assuming xm and dc, the inductive366

and the sequential characterizations of covering are equivalent:367

cover T P x ↔ ∀ρ, ρ0 = x → (∀n, T ρn ρ1+n) → ∃n, P ρn.368

Hence under XM+DC, any cover is an inductive cover while Brouwer’s “bar theorem”369

states that “any bar is inductive bar,” or, quoting [6], for sequences of natural numbers:370

∀P : rel1 (listN), bar P [] ↔ ∀α : N → N, ∃n, P [αn−1; . . . ; α0]371

The bar theorem statement is an instance of Theorem 12 where T := extends. Indeed, an372

extends-sequence of lists in N → list X corresponds to the n-prefixes of a sequence N → X;373

see Brouwer_bar_XM_DC in the Coq code.374

14 Such formulation are more commonly found for the “intuitive” (read sequential) definition of “being a
bar for P ” [6]. See bar_sequences in Section 3.5 for the corresponding specialization.

15 see DC_sig__DC_Σ in the Coq code.
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3.5 Discussion375

We have explained how the inductive predicates bar and acc are just specializations of the376

notion of inductive cover so the remarks below also apply to those restricted notions. For377

instance we get the following specializations for R : rel2 X and P : rel1 (list X):378

acc_negative x : acc R x → ∀Q, Q x → (∀y, Q y → ∃z, Q z ∧ R y z) → ⊥;
acc_sequences x : acc R x → ∀ρ, ρ0 = x → (∀n, R ρn ρ1+n) → ⊥;

bar_negative : bar P [] → ∀Q, Q [] →
(
∀l, Q l → ∃x, Q (x :: l)

)
→ ∃l, P l ∧ Q l;

bar_sequences : bar P [] → ∀α : N → X, ∃n, P [αn−1; . . . ; α0].

379

The negative characterization is intermediate between the inductive/positive characteriz-380

ation (strongest) and the sequential characterization (weakest). We isolate the role played381

by XM (in fact rewriting using De Morgan laws) and DC. While it avoids DC, the negative382

characterization, using a notion of unstoppable non-deterministic process instead of the383

notion of sequence, still likely requires XM to be equivalent with the positive characterization.384

Indeed, were the negative characterization be constructively equivalent to positive/inductive385

characterization, such a result would instantly give us Theorem 12 (and Brouwer’s bar386

theorem) using DC alone, hence avoiding XM.387

The discussion on what is nature of (infinite) sequences is central to the sequential388

characterization of bars, and of course, as the infinite itself, is very much debated in389

constructive mathematics. Clearly, adjoining XM and DC populates the type N → X with390

enough lawless sequences. Brouwer however rejected XM and DC and instead justifies his bar391

theorem using “Brouwer’s thesis” [23] which is not as strong as an axiom as XM+DC. In [6],392

Coquand criticizes the use of the type N → X to cover “all” sequences in the sequential393

characterization of bars:394

“This example is paradigmatic: by replacing systematically the intuitive notion of395

bar by the notion of inductive bar, we can now prove Brouwer’s fan theorem. More396

generally, we can think of bar P [] as the correct format expression of a universal397

quantification over all sequences, not necessarily given by a law.” (emphasis added)398

To be more specific, absent of extra axioms, the type N → X of lawlike sequence (on which399

the sequential characterization is based) cannot account for sequences that do not evolve400

according to a predetermined law, see e.g. Veldman [23]:401

“the intuitionistic mathematician [...] admits the possibility of sequences α0, α1, α2, . . .402

that are created step-by-step and thus, in some sense, are given by a black box. He is403

very much aware that he is unable to make any kind of survey of the totality of all404

infinite sequences of natural numbers.” (emphasis added)405

In a way, we follow and extend to covers the program proposed by Coquand [6] to406

systematically replace the intuitive (understand sequential) notion of cover by the inductive407

version, avoiding axioms altogether. But we can still use the sequential or negative versions,408

in a limited way, at the end of a constructive deduction, e.g. following the FAN theorem.409

4 The FAN theorem for inductive covers410

In this section, we present another interpretation of the FAN theorem in type theory,411

generalizing the FAN theorem for inductive bars [9] to inductive covers [7, 4] instead. We412

give a concise proof for this result, which differs significantly from that of [9, Theorem 6].413

Hence, as an specialization, we get an alternate proof of that former result as well.414
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In this section, let us fix a type X and a binary relation T : rel2 X. We extend the415

binary relation T to lists (viewed as finite sets), as T † : rel2 (list X) using the direct image416

and this way, we can view FANs over T as T †-sequences over finite sets.417

4.1 Lifting a relation to finite sets418

We define the finitary image relation on list X viewed as finite sets, i.e. permutations and419

contractions are admissible for lists used in that context.420

▶ Definition 13 (Finitary image). We define the finitary image binary relation on lists,421

denoted T † : rel2 (list X), by T † := λ l m, ∀y, y ∈ m → ∃x, x ∈ l ∧ T x y, i.e. T † l m holds422

when m is included in the direct image of l.423

The finitary image relation T † is increasing w.r.t. its first argument and decreasing w.r.t. the424

second, i.e. l1 ⊆ l2 → m2 ⊆ m1 → T † l1 m1 → T † l2 m2 holds.425

One critical observation for the proof of the FAN theorem below is how T † behaves when426

splitting its first/source argument in two halves. Then there is a corresponding splitting427

of the second/image argument, but since T † ignores the order on the elements of lists, this428

splitting only holds up to a permutation of the image list:429

fimage_split_inv l1 l2 m : T † (l1 ++ l2) m → ∃ m1 m2, ∧


m ∼p m1 ++ m2
T † l1 m1
T † l2 m2.

430

Proof. We proceed by induction on m. ◀431

Additionally, we show that T † (·) k is upward closed for permutations for any k, which432

can be written as upclosed (· ∼p ·) (T † · k). And to conclude this section, if P is upward433

closed for T then the finitary conjunction ∧1P of P (over lists) is upward closed for T †, i.e.434

upclosed T P → upclosed T † ∧1P .435

4.2 Proof of the FAN theorem for inductive covers436

We give a proof of the statement of the FAN theorem for inductive covers, using the finitary437

image relation T † to represent FANs over the relation T .438

▶ Theorem 14 (FAN for inductive covers). Assume P : rel1 X is unary relation upward439

closed for T . If x is in the T -cover of P then the singleton list [x] is in the T †-cover of440

∧1P , i.e.441

FAN_cover : upclosed T P → ∀x, cover T P x → cover T † ∧1P [x].442

Using a sequential understanding of covers, the statement could be read as: if any443

T -sequence starting at x meets P then any T †-sequence starting at [x] meets ∧1P , hence444

“any finitary FAN rooted at x meets a monotone P uniformly,” which is a commonly found445

informal statement of the FAN theorem.446

While this sequential understanding cannot be established in our constructive framework447

(for reasons discussed in Section 3.5), we below give a quite compact inductive proof of the448

positive/inductive understanding of the statement of the FAN theorem for inductive covers.449

Proof. Let us assume P with upclosed T P . We first show that cover T † ∧1P is upward450

closed for permutations, stated as upclosed (· ∼p ·) (cover T † ∧1P ). For this, we prove451

cover T † ∧1P l → ∀m, l ∼p m → cover T † ∧1P m by induction on cover T † ∧1P l.452
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Now, we establish the key result that cover T † ∧1P is stable under (binary) union, herein453

represented by the append operation on lists:454

cover_fimage_union l m : coverT † ∧1P l → coverT † ∧1P m → coverT † ∧1P (l++m).455

The proof proceeds by nested induction, first on coverT † ∧1P l and then on coverT † ∧1P m,456

with a critical use of fimage_split_inv to invert two statements of shape T † (· ++ ·) (·)457

where the first argument of T † is a union of lists. As a corollary of cover_fimage_union,458

we get the specialization where l := [x] is a singleton as459

∀ x m, cover T † ∧1P [x] → cover T † ∧1P m → cover T † ∧1P (x :: m)460

and then, as a direct consequence461

cover_fimage_Forall l :
(
∀x, x ∈ l → cover T † ∧1P [x]

)
→ cover T † ∧1P l462

for which we proceed by induction on l.463

We can conclude with the proof of the FAN theorem for inductive covers. We establish464

cover T † ∧1P [x], reasoning by induction on cover T P x:465

the base case where P x holds is trivially solved by giving a proof of ∧1P [x] and then466

deriving cover T † ∧1P [x] with an instance of first constructor cover_stop;467

in the recursive case where ∀y, T x y → cover T † ∧1P [y] is the induction hypo-468

thesis, we show ∀l, T † [x] l → ∀y, y ∈ l → cover T † ∧1P [y] and then combine469

cover_fimage_Forall and an instance of the second constructor cover_next.470

This concludes our proof of the FAN theorem for inductive covers. ◀471

We can immediately derive ∧1(cover T P ) l → cover T † ∧1P l by induction on l and472

then the following characterization of covering for the finitary image:473

cover_fimage_iff : upclosedT P → ∀l, coverT † ∧1P l ↔ (∀x, x ∈ l → coverT P x).474

i.e. the list l is T †-covered for ∧1P if and only if all the member of l are T -covered for P .475

4.3 The FAN theorem for inductive bars476

We recall the interpretation of the FAN theorem in type theory [9] and derive an alternate477

proof of that result as an instance of Theorem 14, which illustrates our claim of generalization.478

We fix a carrier type X for lists and consider relations over list X and list (list X). For479

lc : list (list X), let us first define the480

FAN lc := λ l, ∧2(· ∈ ·) l lc481

i.e. if written as l = [x1; . . . ; xn] and lc = [c1; . . . ; cp], FAN lc l means n = p and x1 ∈ c1, x2 ∈482

c2, . . . , xn ∈ cn. Stated in plain english, l is a list of one-to-one choices for the choice list lc;483

see the inductive definition of ∧2R in Section 2. Using generic tools designed for the finite484

abstraction, we can show that FAN lc is a finite, i.e.485

FAN_finite lc : finite (FAN lc).486

However in [9, page 102], the author gives a specific construction of a list which collects the487

lists of choices l s.t. FAN lc l, that we denote list_fan lc herein, satisfying:488

list_fan_spec lc : ∀l, FAN lc l ↔ l ∈ list_fan lc.489
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Thus the dependent pair (list_fan lc, list_fan_spec lc) is an (explicitly given) inhabitant490

of the type FAN_finite lc. The value of list_fan lc can be viewed as a generalization of491

the exponential function to lists, computing the list of choice sequences for lc.492

The FAN theorem as stated and proved in [9] relies on the particular implementation493

of the exponential list_fan given there, but the result itself only depends on the fact494

that list_fan satisfies list_fan_spec. Theorem 6 of [9] also assumes the added rule495

[bar_monotone] in the inductive definition of the bar predicate but it is admissible for496

monotone relations.497

▶ Theorem 15 (reminder of Theorem 6 of [9]). Let P : rel1 (list X) be unary relation. The498

following statement holds: monotone P → bar P [] → bar
(
λ lc, ∧1P (list_fan lc)

)
[].499

Proof. We first reformulate the result as500

FAN_bar P : monotone P → bar P [] → bar (λ lc, FAN lc ⊆ P ) []501

which is an equivalent statement thanks to the monotonicity bar_mono of the bar predicate.502

Indeed, using list_fan_spec, we get the equivalence ∧1P (list_fan lc) ↔ FAN lc ⊆ P for503

any lc. But the statement FAN_bar P is independent of the implementation of list_fan.504

Using the results of Section 3.3, we replace the hypotheses monotone P and bar P [] by505

upclosedextends P and cover extends P [], and the goal bar (λ lc, FAN lc ⊆ P ) [] becomes506

cover extends (λ lc, FAN lc ⊆ P ) []. Hence, by Theorem 14 we get cover extends† ∧1P [[]].507

Then we transfer the inductive cover using list_fan as a morphism, see Proposition 3:508

cover extends† ∧1P [[]] → cover extends (λ lc, FAN lc ⊆ P ) []509

after having checked that both extends l m → extends† (list_fan l) (list_fan m),510

∧1P (list_fan lc) → FAN lc ⊆ P , and [[]] = list_fan [] hold.16 ◀511

The above result, and its proof, even though it uses one particular implementation of512

list_fan both in the proved statement and inside the arguments, can be adapted to work for513

any implementation of list_fan as soon as it satisfies list_fan_spec. The reason is that514

we pass through FAN_bar which is independent of the actual implementation of list_fan.515

This is how the proof is actually implemented in the Coq code.516

Besides the previous remark and the detour via inductive covers, the proof we give differs517

from that of [9] in an important way. Indeed, the core argument of the later proof is the518

closure of monotone inductive bars under binary intersection [9, Proposition 3]:519

monotone P → monotone Q → bar P l → bar Q l → bar (P ∩ Q) l520

which is there established by nested inductions on bar P l, and then on bar Q l. On the521

contrary, the core argument in the proof of Theorem 14 lies in cover_fimage_union, i.e. the522

closure of cover T † ∧1P under binary union (the append operator on lists). In a way, it523

generalizes to upward closed inductive covers the stability under binary unions of finiteness.524

5 Weaker variants of Kőnig’s lemma525

Recall the contrapositive form of Kőnig’s lemma: any finitely branching tree without infinite526

branches is finite. We introduce (inductive) rose trees, i.e. finite trees but with arbitrary (but527

finite) branching at each node.528

16 Notice that to obtain [[]] = list_fan [], we use an implementation of list_fan which satisfies this
property, in addition to the specification list_fan_spec.
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We give a type theoretic variant which has stronger assumptions (e.g. the covering529

assumption below), and which replaces the notion of possibly infinite tree that is implicit in530

formulation “any ... tree without infinite branches” with that of a relation:531

Assume a finitely branching relation T : rel2 X and P : rel1 X which is T -upward532

closed. If x belongs to the T -cover of P then the finite paths along T starting at x533

and avoiding P are the branches of a rose tree rooted at x.534

Notice that we use equivalence between paths and branches to express that (part of) a535

relation is “the same” as a rose tree. Because we only view the relation via its paths, the536

acyclicity assumption, as used when (infinite) trees are viewed as graphs, can be dropped.537

But before we formalize this statement, we must define paths, rose trees and their branches.538

5.1 Path, rose trees and their branches539

Let us fix a type X as carrier for relations and indices of rose trees below.540

▶ Definition 16 (Inductive path). For a relation T : rel2 X, the paths in T are described by541

a ternary relation path T : X → list X → X → P defined by two inductive rules:542

path T x [] x

T x y path T y p z

path T x (y :: p) z
543

Intuitively, path T x p y means that p is the sequence of values encountered on a path544

from x to y, following the relation T , including the endpoint y but excluding starting point545

x. The existence of a T -path from x to y is equivalent to the reflexive and transitive closure546

of T (we do not use this characterization however), and hence we have:547

upclosed_path T P : upclosed T P → upclosed (λ x y, ∃p, path T x p y) P.548

▶ Definition 17 (Inductive rose tree). The type of X-indexed rose trees denoted tree X : Type549

is inductively defined by a single rule:550

x : X l : list (tree X)
⟨x|l⟩ : tree X

[node]551

where we denote ⟨x|l⟩ as a shortcut for (node x l). The root of t = ⟨x|l⟩ is indexed by x552

and we write root t = x, and l is the list of the sons of t. We define the height of a rose553

tree, denoted tree_ht : tree X → N, using the fixpoint equation tree_ht ⟨x|[t1; . . . ; tn]⟩ =554

1 + list_max [tree_ht t1; . . . ; tree_ht tn].555

The branches of a rose tree (the paths starting at the root) are characterized using a556

ternary relation branch : tree X → list X → X → P inductively defined by two rules:557

branch ⟨x|l⟩ [] x

⟨y|m⟩ ∈ l branch ⟨y|m⟩ p z

branch ⟨x|l⟩ (y :: p) z
558

Hence a branch is either empty, stopping at the root, or the choice of a son (i.e. sub-tree)559

and of a branch in that son. The predicate branch t p y relates a tree t, a list of visited560

indices p up to the index y of the root of a sub-tree of t.561
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5.2 Representing binary relations using rose trees562

We give a formal definition for the statement “a binary relation is a finite tree.” This is563

required indeed because the type of binary relations and the type of rose trees are very564

different. We use paths in relations and branches in rose trees as a mean to define the notion565

of representation by a rose tree, for the part of a relation T : rel2 X rooted at x of which566

the paths from x satisfy the property P : list X → X → P.567

▶ Definition 18 (Representation). Assume a binary relation T : rel2 X, a property for paths568

P : list X → X → P and a point x : X. We say that P in T at x is strongly represented569

by t : tree X and write strongly_represents T P x t if:570

strongly_represents T P x t := root t = x ∧ ∀ p y, branch t p y ↔ (path T x p y ∧ P p y).571

We say that P in T at x : X is represented by t : tree X and write represents T P x t if:572

represents T P x t := root t = x ∧ ∀ p y, P p y → (branch t p y ↔ path T x p y).573

The property P for paths is applied only to those originating at x but can depend on the574

destination as well as on the sequence of visited nodes on the path to the destination.575

We observe that strongly_represents T P x t → represents T P x t. While the strong576

notion would be a first/natural choice to formalize the idea that the relation T starting577

at x and restricted by P “is a tree,” this choice can however be questioned in the light of578

decidability issues. Indeed, when X is equipped with a (propositionally) decidable equality,17
579

e.g. when X = N, then both branch t p y and path T x p y become decidable predicates. In580

that case, strongly_represents T P x t implies that P is decidable as well, an assumption581

we want to avoid for building representations. In the case of represents, P does not need582

to be decidable but the representing tree may contain branches which do not satisfy P .18
583

We assume a fixed T : rel2X which is furthermore finitely branching, i.e. ∀x, finite (T x).584

We show that paths of bounded length can be strongly represented.585

▶ Theorem 19. When T : rel2 X is finitely branching, for any n : N and any x : X, the586

property (λ p y, ⌊p⌋ ≤ n) in T at x has a strong representation.587

Proof. We build the tree t s.t. strongly_represents T (λ p y, ⌊p⌋ ≤ n) x t by induction588

on n, after generalizing on x. ◀589

Now we characterize the properties of paths that have representations as those which590

hold only for small paths.591

▶ Theorem 20. When T : rel2X is finitely branching, for any property P : list X → X → P592

and any point x : X, the two following properties are equivalent:593

∃t, represents T P x t;594

∃n, ∀ p y, path T x p y → P p y → ⌊p⌋ < n.595

Proof. In the forward direction, the bound n can be chosen to be the height tree_ht t of596

the representation of P in T at x. In the reverse direction, given a bound n for the length of597

paths satisfying P , we first obtain a tree t s.t. strongly_represents T (λ p y, ⌊p⌋ ≤ n) x t.598

We then check that this tree t represents P in T at x. ◀599

17 i.e. ∀ x y : X, x = y ∨ x ̸= y.
18 Pruning them out to achieve strong representation should be possible if one further assumes that P is

decidable and monotone, but we will not elaborate further herein.
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Theorem 20 states that, in the finitely branching case, a relation is represented by a600

(finite) rose tree if and only if there is a global bound on the length of its paths. It can be601

compared to the characterization of binary trees19 which are finite as those for which there602

is a uniform bound on the length of their branches, see e.g. [13].603

5.3 Kőnig’s lemma for inductive covers, accessibility and inductive bars604

We prove statements of weakened variants of Kőnig’s lemma assuming the existence of a605

cover for the root of the “tree,” or its accessibility, or that P is inductively barred.606

▶ Theorem 21 (Kőnig’s lemma for inductive covers). Let us assume a finitely branching binary607

relation T : rel2 X, i.e. ∀x, finite (T x), a T -upward closed unary relation P : rel1 X,608

a root x : X which is T -covered by P . Then the paths which refute P at their tail are609

represented in T at x, i.e. ∃t, represents T (λ p y, ¬P y) x t.610

Proof. Using the length of paths, we define the circle (centered at x) of radius n as611

circle n := λ y, ∃p, path T x p y ∧ n = ⌊p⌋.612

We show that circles are finite by induction on n and we get ∀n, finite (circle n). This of613

course relies on T having finite direct images.614

Let us define Q : rel1 (list X) collecting the lists which are the support of some circle:615

Q l := ∃n, ∀x, circle n x ↔ x ∈ l.616

We prove that Q meets ∧1P . Indeed, as we assume cover T P x, using the FAN Theorem 14617

for covers we get cover T † ∧1P [x]. Then we use cover_negative with Q. We only need to618

show that Q holds at [x] and is T †-unstoppable i.e. ∀l, Q l → ∃m, Q m ∧ T † l m:619

Q [x] holds because [x] is a support for the circle of radius 0;620

Q is T †-unstoppable because the circle of radius 1 + n is a T †-image of that of radius n.621

As Q meets ∧1P , then P includes some circle, i.e. there is n such that circle n ⊆ P . As622

a consequence, since T -paths from x of length greater that n cross circle n hence meet P623

at that crossing point, their tail must belong to P as well, because P is T -upward closed.624

Hence ∀ p y, path T x p y → n ≤ ⌊p⌋ → P p y holds and we conclude using Theorem 20. ◀625

This proof uses the FAN Theorem 14 for inductive covers, and then combines it with the626

cover_negative characterization. The finiteness of circles ∀n, finite (circle n), which627

lives P (and not in Type), is not strong enough to be able to define circle as a map628

N → list X, which would be needed if the cover_sequences characterization were to be629

used instead of cover_negative.20
630

From Theorem 21, we can recover the finitary form of Kőnig’s lemma similar to the one631

of [1]. A direct proof by induction on (the proof of) acc T x would probably be shorter but632

we here illustrate the generality of Kőnig’s lemma for inductive covers.633

▶ Corollary 22 (Kőnig’s lemma for accessibility [1]). Let T : rel2 X be a binary relation s.t.634

∀x, finite (T x) and let x : X be a T -accessible point of X, i.e. acc T x. Then there is a635

rose tree t : tree X with root x such that the T -paths from x are exactly the branches of t.636

19 as sets of finite sequences of Booleans representing their finite branches.
20 Strong finiteness ∀n, {l | ∀x, circle n x ↔ x ∈ l} instead of weak finiteness ∀n∃l ∀x, circle n x ↔

x ∈ l would overcome this issue but thanks to cover_negative, this stronger assumption is not required.
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Proof. This is simply an instance of Theorem 21 where P := ∅ is the empty unary relation.637

Notice that the empty property is decidable, hence we get a strong representation here. ◀638

We present a variant of Kőnig’s lemma for inductive bars. It is not exactly an instance of639

Theorem 21 because the properties of paths are not limited to those of the endpoint.640

▶ Theorem 23 (Kőnig’s lemma for inductive bars). Let us assume a finitely branching binary641

relation T : rel2 X, a monotone unary relation P : rel1 (list X), and a point x : X. If642

bar P [] then ∃t, represents T
(
λ p y, ¬P (rev p)

)
x t.643

Proof. The proof is comparable (not identical) to the proof of Theorem 21 and uses FAN_bar644

and bar_negative instead as replacements for FAN_cover and cover_negative. ◀645

5.4 Kőnig’s lemma for sequences of finite choices646

Bar predicates can be specialized using the notion of good sequence, i.e. one containing a647

redundant pair w.r.t. a binary (redundancy) relation. This relation can be the identity, but648

there are other interesting cases, e.g. multiset inclusion [17]. In this case, bar predicates649

characterize inductive almost full relations [25, 17].650

We assume a binary relation R : rel2 X to represent a notion of redundancy, and651

define two unary relation good R and irred R of type rel1 (list X), good R characterizing652

lists which contain a good pair, and irred R characterizing lists which are irredundant, i.e.653

avoiding good pairs:21
654

good R p := ∃ l x m y r, p = l ++ x :: m ++ y :: r ∧ R y x;
irred R p := ∀ l x m y r, p = l ++ x :: m ++ y :: r → R x y → ⊥.

655

It is obvious that good R is a monotone. Moreover, we show the correspondence between656

bad (i.e. not good) lists and irredundant ones:22
657

not_good_iff_irred R p : ¬
(
good R (rev p)

)
↔ irred R p.658

▶ Definition 24 (Almost full relation [25]). For binary relations R : rel2 X, we define the659

predicate af R : P using the two inductive rules, where R↑u := λ x y, R x y ∨ R u x:660

∀x y, R x y

af R

∀u, af R↑u

af R
.661

We recall that af R is another way of stating (i.e. is equivalent to) bar (good R) [] (see662

e.g. [17, p. 11] or [18]) but below we just need the implication in this direction:663

af__bar_good_nil R : af R → bar (good R) [].664

Proof. First we establish bar (good R↑u) p → bar (good R) (p ++ [u]) by induction on665

bar (good R↑u) p. As an instance where p := [], we get bar (good R↑u) [] → bar (good R) [u].666

Then we can show the implication af R → bar (good R) [] by induction on af R. ◀667

We can deduce usual the sequential characterization of almost full relations, but, as with668

covers and bars, this characterization is constructively weaker.669

af_sequences R : af R → ∀α, ∃ i j, i < j ∧ R αi αj .670

21 See [18] for an equivalent inductive characterization of good R.
22 good and irred view lists in opposite ways.
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Proof. We obtain n such that good R [αn−1; . . . ; α0] using af__bar_good_nil above followed671

by bar_sequences from Section 3.5. We conclude by analyzing the identity l++x::m++y ::r =672

[αn−1; . . . ; α0] where R y x holds. ◀673

We finish our tour of weakened forms of Kőnig’s lemma with a slightly different form674

where the outcome is not a representing rose tree but just its height, hence a bound on the675

length of its branches. In light of Theorem 20, these are equivalent conditions for finitely676

branching relations. While we insisted so far on getting tree representations is the spirit of677

Kőnig’s lemma, in its applications on e.g. termination, a bound on the height of this tree is678

often sufficient to conclude.679

Given a sequence of relations P : N → rel1 X, we define a predicate choice_list P :680

rel1 (list X) such that choice_list P [x0; . . . ; xn−1] ↔ P0 x0 ∧ · · · ∧ Pn−1 xn−1, i.e.681

choice_list P l exactly when the members of l are successive choices in P0, P1, etc.23
682

▶ Theorem 25. Given an almost full relation, i.e. R : rel2 X s.t. af R, and a sequence683

of finite unary relations, i.e. P : N → rel1 X s.t. ∀n, finite Pn. Then the length of684

irredundant choice lists for P is (uniformly) bounded, i.e.:685

∃n, ∀l, choice_list P l → irred R l → ⌊l⌋ < n.686

Proof. From af__bar_good_nil, we know that bar (good R) [] holds and we apply the687

FAN_bar form of Theorem 15 and derive bar (λ lc, FAN lc ⊆ good R) [].688

We define support n l := ∀ x, Pn x ↔ x ∈ l, meaning that l is a supporting list for689

the (finite) unary relation Pn. We use the bar_negative characterization of inductive bars690

applied to bar (λ lc, FAN lc ⊆ good R) [] with Q := λ lc, choice_list support (rev lc). We691

get lc such that FAN lc ⊆ good R and choice_list support (rev lc).692

Then we check that n := ⌊lc⌋ satisfies the property ∀l, choice_list P l → ⌊l⌋ = n →693

good R (rev l). The same value then bounds the length of irredundant choice lists for P . ◀694

Again, we use a combination of a FAN theorem followed by the negative characterization695

of inductive bars. Indeed, the assumption of finiteness ∀n, finite Pn : P is not strong enough696

to be able to build a sequence N → list X that enumerates the respective supports for P0,697

P1,... The negative characterization allows us to reason without needing an escape from the698

P sort of Coq.699

6 Two examples of replacements of Kőnig’s lemma700

In this section, we discuss two applications of our constructive variants of Kőnig’s lemma701

that allow to transfer some “classical” proofs into the realm of constructive mathematics.702

6.1 The decidability from implicational relevance logic703

In [17], we use a variant of Kőnig’s lemma for almost full relations, corresponding here to704

Theorem 25, to show the termination of an exhaustive proof search procedure for implicational705

relevance logic (IR), based on a sequent system designed by Curry [8]. The termination of706

this system was established by Kripke [16], building on Curry’s work, rediscovering Dickson’s707

lemma, and concluding with Kőnig’s lemma.708

23 Hence, if for instance Pn = {αn} is a singleton for any n, where α : N → X, then there is exactly one
inhabitant of choice_list P l for a given length of l and this list is [α0; . . . ; α⌊l⌋−1].
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The idea of the proof is the following. Curry’s sequent proof system is proved sound and709

complete for IR. It has three essential properties:710

each sequent rule has finitely many premises, in fact less than two;711

for any conclusion, there are only finitely many rule instances having that conclusion;712

there is a notion of redundancy for sequents such that, if a sequent S2 is redundant over713

S1, then any proof of S2 can be contracted into a proof of S1 of less height. This property714

is called Curry’s lemma.715

Kripke proved that the notion of redundancy, derived from the natural inclusion ordering716

on multiset, forms a well quasi order (WQO), and thus any sequence of sequents contains a717

redundant pair. Notice that the WQO terminology and Dickson’s lemma, the key ingredient718

in the result, were only popularized later on.719

Then, using Curry’s lemma, Kripke argued that any proof search branch must contain a720

redundant pair, and by Kőnig’s lemma, the proof search tree for irredundant proofs is finite.721

Replacing the classical approach to WQOs by inductive almost full relations, in [17] we722

prove that the notion of redundancy is AF, the constructive form of Dickson’s lemma been723

derived from Coquand’s constructive form of Ramsey’s theorem [25]. Then we use a variant724

of Theorem 25 called Constructive_Koenigs_lemma to show that the irredundant part of725

the proof search tree is finite. Notice that this variant is Type-bounded, as opposed to the726

P-bounded variant presented here. Since the redundancy relation is (strongly) decidable, we727

could also proceed with the P-bounded variant (i.e. Theorem 25) serving as a justification of728

termination for unbounded linear search.729

6.2 Building Harvey Friedman’s TREE(n) monster730

In [20], we build on a Coq constructive proof of Kruskal’s tree theorem [19] to implement731

TREE(n) function (that we specify below), invented and studied by Harvey Friedman [10]732

in his groundbreaking work on reverse mathematics.733

The (homeomorphic) embedding on rose trees is a WQO as soon as the comparison734

between decorations of the nodes is itself a WQO: this is the statement of Kruskal’s theorem735

in a classical setting. In [19], we implement a constructively provable form by replacing736

WQOs with (inductive) af relations (see Definition 24). Notice that this constructive form737

of Kruskal’s theorem has a quite involved proof that we do not discuss here.738

Using Kruskal’s theorem, the homeomorphic embedding between roses trees decorated739

with elements of the finite set {1, . . . , n} is af and we use this relation as our redundancy740

relation. This means, using the sequential characterization af_sequences of Section 5.4,741

that any sequence T1, T2,... of roses trees contains a redundant pair. Now Friedman bounds742

the number of possible choice for Ti by requiring that its size (number of nodes) is less than743

i: we say that Ti is sized. Hence, considering the set of all such sized sequences (Ti)0<i, they744

form a finitely branching tree and all infinite branches contain a redundant pair. Following745

the argumentation of e.g. [11], by Kőnig’s lemma, the irredundant part of that tree is finite746

and thus sized sequences have maximal length, which is by definition TREE(n).747

We circumvent this classical argumentation by applying Theorem 25, hence, according748

to its proof, first applying the FAN theorem for inductive bars and then the negative749

characterization of inductive bars. We obtain, constructively, the existence of a uniform750

bound on the length of irredundant sequences of sized trees (Ti)0<i. The exact value of the751

bound, i.e. TREE(n), can then be computed by unbounded linear search [20].24
752

24 Using a Type-bounded variant of Theorem 25, one can use bounded linear search instead of unbounded
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7 Conclusion753

Besides the Coq script that supports the results presented herein, we can summarize our754

contributions as following. We show that the notion of inductive cover generalizes both755

accessibility and bar inductive predicates, hence we can discuss concepts and results at the756

level of covers and they instantiate on these restricted notions as well. We follow Coquand’s757

program [6] and replace characterizations based on sequences with inductive ones, that758

constructively do not fall short on lawless sequences.759

We compare the strength of the positive, negative and sequential characterizations of760

covers, or (as an instance) of “being a bar,” both in constructive and classical contexts. We761

analyze the precise roles played by the axioms of excluded middle and dependent choice.762

The negative characterization is a remarkable intermediate notion: a) it is a De Morgan763

dual of the positive characterization; b) it expels determinism from the sequential character-764

ization, and shares properties with Brouwer’s notion of spread; c) it is relevant in practice,765

for instance when dealing with Prop-bounded Coq definitions.766

We give a concise constructive proof of a FAN theorem for inductive covers that generalizes767

the type theoretic interpretation of the FAN theorem for inductive bars [9]. We notice that768

the respective core argument of these two proofs differ significantly.769

The negative or sequential characterizations of covers (or bars) are weaker than the posit-770

ive/inductive characterization. They fail when trying to constructively establish important771

closure properties, such as the FAN theorem. However, they can still be used constructively,772

after the inductive FAN theorem, to obtain uniform bounds on the length of branches of773

trees. This is the core argumentation behind several weaker variants of Kőnig’s lemma that774

we derive and present, herein insisting on representations by inductive rose trees.775

To conclude, we discuss two applications of those constructive variants of Kőnig’s lemma776

that allow the transport of classical results in the constructive realm.777

As a quite reasonable perspective to this work, we could implement a Type-bounded778

version of the results of the paper. Possibly, as in [18], within a unified code base, generic for779

both the (herein presented) Prop-bounded and the Type-bounded versions.780

Almost full relations give a satisfactory constructive account for the notion of well quasi781

order, i.e., finitary closure properties such as Dickson’s lemma, Higman’s lemma and Kruskal’s782

tree theorem can be constructively established with this notion. However, as far as we are783

aware, the stronger notion of better quasi order (BQO) has not yet been given a suitable784

inductive account, and it would be quite a challenge to lean towards an inductive definition785

of BQOs, hopefully satisfying additional infinitary closure properties.786
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