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Gödel-Dummett logic LC

• Intermediate logic: IL ⊂ LC ⊂ CL

• Syntactic characterization: IL + (X ⊃ Y ) ∨ (Y ⊃ X)

• Semantic models:

– Linear Kripke trees (no branching)

– The lattice � = � ∪ {∞} with its natural order

• Complexity:

– LC (and CL) are NP-complete

– IL is PSPACE-complete
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Deciding LC

• Proof search and counter-models combined

– Strongly invertible rules to reduce sequents

– Semantic fixpoint computation to decide irreducible sequents

• Efficient (duplication-free, loop-free) proof-search

– IL (Dyckhoff & Hudelmair, Weich, Larchey & Galmiche)

– Intermediate logics (Avellone et al. and Fiorino)

– LC (Dyckhoff, Avron, Larchey)

• Invertibility and strong invertibility of logical rules

– No backtracking in proof-search

– Counter-model generation
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The results

• Duplication-free proof search with bounded logical rules

– Sequents → flat sequents (indexing)

– Flat sequents → pseudo-atomic sequents (proof-search)

• Decision of pseudo-atomic sequent

– Fixpoint computation

– Either a proof (with a new proof rule)

– Or a counter-model

• Graph based fixpoint computation
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Flattening by indexing

• Flat sequent: flat and pseudo-atomic formulae.

X, X ⊃ Y, (X � Y ) ⊃ Z or X ⊃ (Y � Z) ` X or X ⊃ Y

• Indexing result: ` D ⇔ δ−(D) ` XD

• Example of indexing of ` (X ⊃ Y ) ∨ (Y ⊃ X)

∨−

1

⊃−

2 ⊃−

3

X+ Y − Y + X−

(X2 ∨ X3) ⊃ X1, (X ⊃ Y ) ⊃ X2, (Y ⊃ X) ⊃ X3 ` X1
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Proof-search (duplication free)

• Reduction of any flat sequent into pseudo-atomic sequents

Γ, A ⊃ C ` ∆ Γ, B ⊃ C ` ∆

Γ, (A ∧ B) ⊃ C ` ∆
[⊃2]

Γ, A ⊃ B, A ⊃ C ` ∆

Γ, A ⊃ (B ∧ C) ` ∆
[⊃′

2
]

Γ, A ⊃ C, B ⊃ C ` ∆

Γ, (A ∨ B) ⊃ C ` ∆
[⊃3]

Γ, A ⊃ B ` ∆ Γ, A ⊃ C ` ∆

Γ, A ⊃ (B ∨ C) ` ∆
[⊃′

3
]

Γ, B ⊃ C ` A ⊃ B , ∆ Γ, C ` ∆

Γ, (A ⊃ B) ⊃ C ` ∆
[⊃4]

Γ, A ⊃ C ` ∆ Γ, B ⊃ C ` ∆

Γ, A ⊃ (B ⊃ C) ` ∆
[⊃′

4
]

• The connectors � of flat formulae (like (X � Y ) ⊃ Z)

– occur has the internal nodes of the initial formula tree

– are decomposed exactly once by proof-search branch

• All premises are strongly invertible and there is no duplication
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An example of proof search branch

• Proof search as syntactic graph orientation

X1

X2 X3

Y X

. . .

X2 ⊃ X1, X3 ⊃ X1, Y ⊃ X2, (Y ⊃ X) ⊃ X3 ` X ⊃ Y, X1

[⊃4] left

X2 ⊃ X1, X3 ⊃ X1, X ⊃ Y ⊃ X2, (Y ⊃ X) ⊃ X3 ` X1

[⊃3]

X2 ∨ X3 ⊃ X1, (X ⊃ Y ) ⊃ X2, (Y ⊃ X) ⊃ X3 ` X1
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Counter-models by fixpoint computation

• Deciding the pseudo-atomic sequent:

Γa ` X1 ⊃ Y1, . . . , Xn ⊃ Yn (Γa atomic implications)

• Define the following functor of subsets of [1, n]:

ϕ(I) = {i | Γa,XI� Yi}

• Compute the greatest fixpoint sequence:

I0 = [1, n] � I1 = ϕ([1, n]) � · · · � Ip = ϕp([1, n]) = µϕ

• The sequent has a counter-model iff. µϕ = ∅

• Counter model extracted from the sequence I0 � I1 � · · · � Ip
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The fixpoint as a new proof-rule

• In the case µϕ = {i1, . . . , ik} is not empty

• The fixpoint property induces a new proof rule

Γa, Xi1 , . . . , Xik
` Yi1 . . . Γa, Xi1 , . . . , Xik

` Yik

Γa ` X1 ⊃ Y1, . . . , Xn ⊃ Yn

[⊃N ]

• All the premises are valid (fixpoint property)

• We obtain a one step proof (exponential with [⊃R] Dyckhoff)
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The decision algorithm

• A combination of proof-search and counter-model generation

• Indexing of the sequent into a flat sequent

• Reduction to a set of pseudo-atomic sequents (proof-search)

• For Γa ` X1 ⊃ Y1, . . . , Xn ⊃ Yn, Z1, . . . , Zk (say S)

• If one of the atomic Γa ` Zi is valid so is the sequent S

• Or compute the fixpoint for Γa ` X1 ⊃ Y1, . . . , Xn ⊃ Yn

– Case µ 6= ∅, get a proof of the sequent S (weakening)

– Case µ = ∅, obtain a counter-model

– This counter-model also holds for the sequent S
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Example of fixpoint computation

0 ⊃ 1, 1 ⊃ 2, 1 ⊃ 3, 2 ⊃ 4, 3 ⊃ 4 ` 2 ⊃ 1, 1 ⊃ 0, 4 ⊃ 2

0

1

2 3

4

0

1

2

3

4

Y0 X0 Y1 X1 Y2 X2 Y3 X3 Y4

0 1, 3 2 4

[[0]] = 0, [[1]] = [[3]] = 1, [[2]] = 2, [[4]] = 3
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Conclusion and perspectives

• A new efficient graph based decision procedure for LC

• Linear time algorithm for fixpoint computation

• Sharing fixpoint computation among branches

– On the fly fixpoint computation

• Extension to other intermediate logics
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