Combining proof search and linear counter-model construction

Dominique Larchey

LORIA - CNRS

Nancy, France

Gödel-Dummett logic LC

- Intermediate logic: $\mathrm{IL} \subset \mathrm{LC} \subset \mathrm{CL}$
- Syntactic characterization: IL $+(X \supset Y) \vee(Y \supset X)$
- Semantic models:
- Linear Kripke trees (no branching)
- The lattice $\overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}$ with its natural order
- Complexity:
- LC (and CL) are NP-complete
- IL is PSPACE-complete

Deciding LC

- Proof search and counter-models combined
- Strongly invertible rules to reduce sequents
- Semantic fixpoint computation to decide irreducible sequents
- Efficient (duplication-free, loop-free) proof-search
- IL (Dyckhoff \& Hudelmair, Weich, Larchey \& Galmiche)
- Intermediate logics (Avellone et al. and Fiorino)
- LC (Dyckhoff, Avron, Larchey)
- Invertibility and strong invertibility of logical rules
- No backtracking in proof-search
- Counter-model generation

The results

- Duplication-free proof search with bounded logical rules
- Sequents \rightarrow flat sequents (indexing)
- Flat sequents \rightarrow pseudo-atomic sequents (proof-search)
- Decision of pseudo-atomic sequent
- Fixpoint computation
- Either a proof (with a new proof rule)
- Or a counter-model
- Graph based fixpoint computation

Flattening by indexing

- Flat sequent: flat and pseudo-atomic formulae.

$$
X, X \supset Y,(X \otimes Y) \supset Z \text { or } X \supset(Y \otimes Z) \vdash X \text { or } X \supset Y
$$

- Indexing result:

$$
\vdash D \quad \Leftrightarrow \quad \delta^{-}(D) \vdash X_{D}
$$

- Example of indexing of $\vdash(X \supset Y) \vee(Y \supset X)$

$$
\left(X_{2} \vee X_{3}\right) \supset X_{1},(X \supset Y) \supset X_{2},(Y \supset X) \supset X_{3} \vdash X_{1}
$$

Proof-search (duplication free)

- Reduction of any flat sequent into pseudo-atomic sequents

$$
\begin{aligned}
& \frac{\Gamma, A \supset C \vdash \Delta \quad \Gamma, B \supset C \vdash \Delta}{\Gamma,(A \wedge B) \supset C \vdash \Delta} \quad\left[\supset_{2}\right] \\
& \frac{\Gamma, A \supset B, A \supset C \vdash \Delta}{\Gamma, A \supset(B \wedge C) \vdash \Delta} \quad\left[\supset_{2}^{\prime}\right] \\
& \frac{\Gamma, A \supset C, B \supset C \vdash \Delta}{\Gamma,(A \vee B) \supset C \vdash \Delta} \quad\left[\supset_{3}\right] \\
& \frac{\Gamma, A \supset B \vdash \Delta \quad \Gamma, A \supset C \vdash \Delta}{\Gamma, A \supset(B \vee C) \vdash \Delta} \quad\left[\supset_{3}^{\prime}\right] \\
& \frac{\Gamma, B \supset C \vdash \boxed{A \supset B}, \Delta \quad \Gamma, C \vdash \Delta}{\Gamma,(A \supset B) \supset C \vdash \Delta}\left[\supset_{4}\right] \quad \frac{\Gamma, A \supset C \vdash \Delta \quad \Gamma, B \supset C \vdash \Delta}{\Gamma, A \supset(B \supset C) \vdash \Delta}\left[\supset_{4}^{\prime}\right]
\end{aligned}
$$

- The connectors \otimes of flat formulae (like $(X \otimes Y) \supset Z$)
- occur has the internal nodes of the initial formula tree
- are decomposed exactly once by proof-search branch
- All premises are strongly invertible and there is no duplication

An example of proof search branch

- Proof search as syntactic graph orientation

$$
\frac{X_{2} \supset X_{1}, X_{3} \supset X_{1}, Y \supset X_{2},(Y \supset X) \supset X_{3} \vdash X \supset Y, X_{1}}{X_{2} \supset X_{1}, X_{3} \supset X_{1}, X \supset Y \supset X_{2},(Y \supset X) \supset X_{3} \vdash X_{1}}\left[\supset_{4}\right] \text { left }
$$

Counter-models by fixpoint computation

- Deciding the pseudo-atomic sequent:

$$
\Gamma_{a} \vdash X_{1} \supset Y_{1}, \ldots, X_{n} \supset Y_{n} \quad\left(\Gamma_{a} \text { atomic implications }\right)
$$

- Define the following functor of subsets of $[1, n]$:

$$
\varphi(I)=\left\{i \mid \Gamma_{a}, \mathcal{X}_{I} \Vdash Y_{i}\right\}
$$

- Compute the greatest fixpoint sequence:

$$
I_{0}=[1, n] \supsetneq I_{1}=\varphi([1, n]) \supsetneq \cdots \supsetneq I_{p}=\varphi^{p}([1, n])=\mu_{\varphi}
$$

- The sequent has a counter-model iff. $\mu_{\varphi}=\emptyset$
- Counter model extracted from the sequence $I_{0} \supsetneq I_{1} \supsetneq \cdots \supsetneq I_{p}$

The fixpoint as a new proof-rule

- In the case $\mu_{\varphi}=\left\{i_{1}, \ldots, i_{k}\right\}$ is not empty
- The fixpoint property induces a new proof rule

$$
\frac{\Gamma_{a}, X_{i_{1}}, \ldots, X_{i_{k}} \vdash Y_{i_{1}} \quad \ldots \quad \Gamma_{a}, X_{i_{1}}, \ldots, X_{i_{k}} \vdash Y_{i_{k}}}{\Gamma_{a} \vdash X_{1} \supset Y_{1}, \ldots, X_{n} \supset Y_{n}}\left[\supset_{N}\right]
$$

- All the premises are valid (fixpoint property)
- We obtain a one step proof (exponential with $\left[\supset_{R}\right]$ Dyckhoff)

The decision algorithm

- A combination of proof-search and counter-model generation
- Indexing of the sequent into a flat sequent
- Reduction to a set of pseudo-atomic sequents (proof-search)
- For $\Gamma_{a} \vdash X_{1} \supset Y_{1}, \ldots, X_{n} \supset Y_{n}, Z_{1}, \ldots, Z_{k}(\operatorname{say} \mathcal{S})$
- If one of the atomic $\Gamma_{a} \vdash Z_{i}$ is valid so is the sequent \mathcal{S}
- Or compute the fixpoint for $\Gamma_{a} \vdash X_{1} \supset Y_{1}, \ldots, X_{n} \supset Y_{n}$
- Case $\mu \neq \emptyset$, get a proof of the sequent \mathcal{S} (weakening)
- Case $\mu=\emptyset$, obtain a counter-model
- This counter-model also holds for the sequent \mathcal{S}

Example of fixpoint computation

$$
0 \supset 1,1 \supset 2,1 \supset 3,2 \supset 4,3 \supset 4 \vdash 2 \supset 1,1 \supset 0,4 \supset 2
$$

Conclusion and perspectives

- A new efficient graph based decision procedure for LC
- Linear time algorithm for fixpoint computation
- Sharing fixpoint computation among branches
- On the fly fixpoint computation
- Extension to other intermediate logics

