Relational semantics and finite models of separation logics

Didier Galmiche, Dominique Larchey, Daniel Mery

LORIA – UHP Nancy 1 – CNRS Nancy, France

CMF'2007 - Nancy, France

Separation Logic

- Introduced by Reynolds-O'Hearn to model:
 - properties of the memory space (cells)
 - aggregation of cells into wider structures
- Combines:
 - intuitionistic logic connectives: \land , \lor , \rightarrow ...
 - multiplicative conjunction: *
- Defined via Kripke semantics extended by:

 $m \Vdash A * B$ iff $\exists a, b \text{ s.t. } a \uplus b \subseteq m \text{ and } a \Vdash A \text{ and } b \Vdash B$

Separation models

- Decomposition $a, b \triangleright m$ interpreted in various structures:
 - stacks in pointer logic (Reynolds, O'Hearn), $a \uplus b \subseteq m$
 - trees in spatial logics (Cardelli, Gardner et al.) $a \mid b \equiv m$
 - resource trees in BI-Loc (Biri, Galmiche)
- Additives \land , \lor , \rightarrow can be classical or intuitionistic
- Aggregation property:

 $a, b \triangleright e$ implies a = b = e

Separation Logic vs BI Logic

- Decomposition interpreted by $a \circ b \leqslant m$:
 - resource monoids (partial, ordered, no aggregation)
 - intuitionistic additives and a linear adjoint \twoheadrightarrow to \ast
- BI has proof systems:
 - cut-free bunched sequent calculus (Pym)
 - resource tableaux (Galmiche, Mery, Pym)
 - inverse method (Donnelly, Gibson et al.)

What is Boolean **BI** logic ?

- No unequivocal logical definition:
 - no cut-free proof system (BI $+ \neg \neg A \rightarrow A$)
 - no nice semantics for this system (relational)
- No unequivocal semantic definition:
 - various Kripke models
 - often no associated proof-systems
 - besides model checking
 - notable exception of Pointer Logic PL
 - finite model property? decidability?

$$a\circ b\sim m$$

Some of our results (i)

- Intuitionistic: BI
 - soundness/completeness wrt partially ordered partial monoids
 - tableaux calculi with label constraints
 - decidability and finite model property
- Classical: Pointer Logic (PL)
 - soundness/completeness wrt partial monoid of heaps
 - decidability and finite model property through tableaux calculus

Some of our results (ii)

- Classical: BBI
 - soundness/completeness wrt ND (non deterministic) monoids
 - S4 faithfully embedded into BBI
 - IL faithfully embedded into BBI
 - at least P-SPACE
- Open problems for BBI:
 - decidability, finite model property
 - (deterministic) monoidal completeness

Kripke semantics for Separation logics (i)

- $egin{aligned} m \Vdash \bot & ext{iff} & ext{never} & m \Vdash A \lor B & ext{iff} & m \Vdash A ext{ or } m \Vdash B \ m \Vdash \top & ext{iff} & ext{always} & m \Vdash A \land B & ext{iff} & m \Vdash A ext{ and } m \Vdash B \ m \Vdash A * B & ext{iff} & \exists a, b ext{ s.t. } a, b \triangleright m ext{ and } a \Vdash A ext{ and } b \Vdash B \ m \Vdash A ext{-*} B & ext{iff} & \forall a, b \ (m, a \triangleright b ext{ and } a \Vdash A) ext{ implies } b \Vdash B \end{aligned}$
- Intuitionistic (Reynolds or BI):
 - $-m \Vdash \mathsf{I}$ iff $\mathsf{e} \leqslant m$
 - $m \Vdash A
 ightarrow B \quad ext{iff} \quad orall m' \geqslant m, \; m'
 ot \Join A ext{ or } m' \Vdash B$
- Classical (PL or BBI):

$$- m \Vdash \mathsf{I}$$
 iff $m = \mathsf{e}$

$$- m \Vdash A
ightarrow B \quad ext{ iff } m
arrow A ext{ or } m \Vdash B$$

• But partiality should be compatible with the axioms

Partial Monoids of Heaps for **PL**

- Heap: finite partial function $Location \rightarrow_{fin} Value \times Value$
- Composition $\circ = \uplus$, disjoint union of partial functions
- A structure (\mathcal{M}, \circ, e) where $\circ : \mathcal{M} \times \mathcal{M} \rightharpoonup \mathcal{M}$

1. $\forall a \in \mathcal{M}, e \circ a = a$ (identity)

- 2. $\forall a, b \in \mathcal{M}, a \circ b = b \circ a$ (commutativity)
- 3. $\forall a, b, c \in \mathcal{M}, a \circ (b \circ c) = (a \circ b) \circ c$ (associativity)
- 4. $\forall a, b \in \mathcal{M}, a \circ b = e$ implies a = b = e (aggregation)
- Relation vs composition: $a, b \triangleright m$ is $a \circ b = m$
- Partiality: $a \circ b$ defined iff a and b have disjoint domains

Non deterministic monoids for **BBI**

- Powerset extension of \circ : $X \circ Y = \bigcup \{x \circ y \mid x \in X, y \in Y\}$
- A structure (\mathcal{M}, \circ, e) where $\circ : \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{P}(\mathcal{M})$

1.
$$\forall a \in \mathcal{M}, e \circ a = \{a\}$$
 (identity)

2.
$$\forall a, b \in \mathcal{M}, a \circ b = b \circ a$$
 (commutativity)

- 3. $\forall a, b, c \in \mathcal{M}, a \circ (b \circ c) = (a \circ b) \circ c$ (associativity)
- Relations vs composition: $|a, b \triangleright m \text{ is } m \in a \circ b$
- Non determinism: $a \circ b = \{m_1, m_2\}$ then $a, b \triangleright m_1$ and $a, b \triangleright m_2$
- Partiality (incompatibility) when $a \circ b = \emptyset$

A Hilbert calculus for **BI/BBI**

- Axioms for additives: $\ldots A \to (B \to A), \boxed{\neg \neg A \to A} \ldots$
- Linear axioms

 $\begin{array}{ll} 1. \ A \rightarrow (\mathsf{I} \ast A) & & 3. \ (A \ast B) \rightarrow (B \ast A) \\ \\ 2. \ (\mathsf{I} \ast A) \rightarrow A & & 4. \ (A \ast (B \ast C)) \rightarrow ((A \ast B) \ast C) \end{array}$

• Logical rules

$$\frac{\vdash A \longrightarrow A \longrightarrow B}{\vdash B} [MP] \qquad \frac{\vdash A \longrightarrow C \qquad \vdash B \longrightarrow D}{\vdash (A * B) \longrightarrow (C * D)} [*]$$

$$\frac{\vdash A \longrightarrow (B \twoheadrightarrow C)}{\vdash (A * B) \longrightarrow C} [-*_1] \qquad \frac{\vdash (A * B) \longrightarrow C}{\vdash A \longrightarrow (B \twoheadrightarrow C)} [-*_2]$$

Finite model property (i)

- Tableaux systems with label constraints
- Countermodel construction (open branch)
- For IL:
 - $a \circ a = a$ (contraction)

- same symbol need not occur twice in a label

• For PL:

 $- a \circ a = \perp$ (disjointness)

- same symbol must not occur twice in a label

 \implies finite number of labels in an open branch

 \implies completeness for finite monoids of labels

Finite model property (ii)

- For BI:
 - $a \circ a \neq a$ in general
 - but we can add $a^n = a$ for some n (redundancy)

 \implies finite number of labels under redundancy \implies completeness for finite partially ordered monoids of labels

- For BBI:
 - $a \circ b \sim$ e then a and b are invertible
 - $(-a^2, a^3, \ldots, a^n, \ldots$ should be defined
- \implies not a finite number of labels, quotient ?

 \implies finite model property ?

Embedding of S4 into BBI

- A modality: $\Box A \equiv \top \twoheadrightarrow A$
- S4 axioms are valid:

$$\Box A
ightarrow A \quad \Box A
ightarrow \Box A \quad \Box (A
ightarrow B)
ightarrow (\Box A
ightarrow \Box B)$$

- S4 rule is sound: $\vdash A$ then $\vdash \Box A$
- Embedding (for $\otimes \in \{\land, \lor, \rightarrow\}, X \in \mathsf{Var} \cup \{\bot, \top\}$):

$$(\neg A)^{\Box} = \neg A^{\Box} \qquad X^{\Box} = X$$
$$(\Box A)^{\Box} = \top \twoheadrightarrow A^{\Box} \qquad (A \otimes B)^{\Box} = A^{\Box} \otimes B^{\Box}$$

• Soundness: if $A \in S4$ then $A^{\Box} \in BBI$

Faithful embedding

- (Infinite) trees complete for S4
 - trees: $(\mathcal{T},\leqslant,r)$
 - $\exists k (a \leqslant k ext{ and } b \leqslant k) ext{ then } (a \leqslant b ext{ or } b \leqslant a)$
 - $-a, b \triangleright m$ iff $m = \max\{a, b\}$
 - $-(\mathcal{T}, \triangleright, r) \ \mathsf{D}$ (partial) monoid
 - Kripke semantics preserved
- If $(\mathcal{T},\leqslant,r)$ counter-model of $A\in\mathsf{S4}$

Then $(\mathcal{T}, \triangleright, r)$ counter-model of $A^{\Box} \in \mathsf{BBI}$

• Corollary: IL faithfully embedded in BBI

Conclusion and perspectives

- Monoidal models for BI and PL
 - soundness/completeness wrt label monoids
 - finite model property for BI and PL
 - tableaux calculi for BI and PL
- Towards a (deterministic) monoidal semantics for BBI
 - soundness/completeness wrt ND monoids for BBI
 - embedding of S4 and at least P-SPACE hardness
 - FMP: problem to avoid redundancy and non determinism
 - decidability still open