# Relational semantics and finite models of separation logics 

Didier Galmiche, Dominique Larchey, Daniel Mery

LORIA - UHP Nancy 1 - CNRS

Nancy, France

CMF'2007 - Nancy, France

## Separation Logic

- Introduced by Reynolds-O'Hearn to model:
- properties of the memory space (cells)
- aggregation of cells into wider structures
- Combines:
- intuitionistic logic connectives: $\wedge, \vee, \rightarrow \ldots$
- multiplicative conjunction: *
- Defined via Kripke semantics extended by:

$$
m \Vdash A * B \quad \text { iff } \quad \exists a, b \text { s.t. } a \uplus b \subseteq m \text { and } a \Vdash A \text { and } b \Vdash B
$$

## Separation models

- Decomposition $a, b \triangleright m$ interpreted in various structures:
- stacks in pointer logic (Reynolds, O'Hearn), $a \uplus b \subseteq m$
- trees in spatial logics (Cardelli, Gardner et al.) $a \mid b \equiv m$
- resource trees in BI-Loc (Biri, Galmiche)
- Additives $\wedge, \vee, \rightarrow$ can be classical or intuitionistic
- Aggregation property:

$$
a, b \triangleright \mathrm{e} \quad \text { implies } \quad a=b=\mathrm{e}
$$

## Separation Logic vs BI Logic

- Decomposition interpreted by $a \circ b \leqslant m$ :
- resource monoids (partial, ordered, no aggregation)
- intuitionistic additives and a linear adjoint $-*$ to $*$
- BI has proof systems:
- cut-free bunched sequent calculus (Pym)
- resource tableaux (Galmiche, Mery, Pym)
- inverse method (Donnelly, Gibson et al.)


## What is Boolean BI logic?

- No unequivocal logical definition:
- no cut-free proof system $(\mathrm{BI}+\neg \neg A \rightarrow A)$
- no nice semantics for this system (relational)
- No unequivocal semantic definition:
- various Kripke models
- often no associated proof-systems
- besides model checking
- notable exception of Pointer Logic PL
- finite model property? decidability?


## What about Boolean BI logic ?

- Long term goals: CL $\oplus$ MILL
- classical additives $(\wedge, \vee, \rightarrow)$
- orthogonally to intuitionistic multiplicatives $(*,-*)$
- cut-free sequent calculus and tableaux systems
- abstract model (partial monoids), no aggregation ?
- a corresponding Kripke semantics:

$$
a \circ b \sim m
$$

## Some of our results (i)

- Intuitionistic: BI
- soundness/completeness wrt partially ordered partial monoids
- tableaux calculi with label constraints
- decidability and finite model property
- Classical: Pointer Logic (PL)
- soundness/completeness wrt partial monoid of heaps
- decidability and finite model property through tableaux calculus


## Some of our results (ii)

- Classical: BBI
- soundness/completeness wrt ND (non deterministic) monoids
- S4 faithfully embedded into BBI
- IL faithfully embedded into BBI
- at least P-SPACE
- Open problems for BBI:
- decidability, finite model property
- (deterministic) monoidal completeness


## Kripke semantics for Separation logics (i)

```
m\Vdash\perp iff never }\quadm\VdashA\veeB\quad\mathrm{ iff }\quadm\VdashA\mathrm{ or }m\Vdash
m\Vdash\top iff always }\quadm\VdashA\wedgeB\quad\mathrm{ iff }\quadm\VdashA\mathrm{ and }m\Vdash
    m\VdashA*B iff }\quad\existsa,b\mathrm{ s.t. }a,b\trianglerightm\mathrm{ and }a\VdashA\mathrm{ and }b\Vdash
m\VdashA->* iff }\quad\foralla,b(m,a\trianglerightb\mathrm{ and }a\VdashA)\mathrm{ implies b}\vdash
```

- Intuitionistic (Reynolds or BI ):
$-m \Vdash I \quad$ iff $\quad \mathrm{e} \leqslant m$
$-m \Vdash A \rightarrow B \quad$ iff $\quad \forall m^{\prime} \geqslant m, m^{\prime} \nVdash A$ or $m^{\prime} \Vdash B$
- Classical (PL or BBI ):
$-m \Vdash I \quad$ iff $\quad m=\mathrm{e}$
$-m \Vdash A \rightarrow B \quad$ iff $\quad m \nVdash A$ or $m \Vdash B$

Kripke semantics for Separation logics (ii)

- Intuitionistic (Reynolds or BI ):
$-\forall m^{\prime} \geqslant m, m^{\prime} \nVdash A$ or $m^{\prime} \Vdash B$
- a (pre-)order $\leqslant$ between resources
- compatible with composition: e, $a \triangleright b$ iff $\quad a \leqslant b$
- Classical (PL or BBI):
- (pre-)order needs to be flat because of $\neg \neg A \sim A$
- several models for composition/decomposition $a, b \triangleright m$
- partial monoids: $\quad a, b \triangleright m \quad$ iff $\quad a \circ b \sim m$


## Partially ordered partial monoids for BI

- A structure $(\mathcal{M}, \circ, \mathrm{e}, \leqslant)$ where $\circ: \mathcal{M} \times \mathcal{M} \rightharpoonup \mathcal{M}$

1. $\forall a \in \mathcal{M}, \mathrm{e} \circ a \sim a \quad$ (identity)
2. $\forall a, b \in \mathcal{M}, a \circ b \sim b \circ a \quad$ (commutativity)
3. $\forall a, b, c \in \mathcal{M}, a \circ(b \circ c) \sim(a \circ b) \circ c \quad$ (associativity)
4. $\forall x, a, b \in \mathcal{M}, a \leqslant b$ implies $x \circ a \leqslant x \circ b$ (monotonicity)

- Relations vs composition: $a, b \triangleright m$ is $a \circ b \leqslant m$
- Partiality (incompatibility) when $a \circ b$ is not defined
- But partiality should be compatible with the axioms


## Partial Monoids of Heaps for PL

- Heap: finite partial function Location $\rightarrow_{\text {fin }}$ Value $\times$ Value
- Composition $\circ=\uplus$, disjoint union of partial functions
- A structure $(\mathcal{M}, \mathrm{o}, \mathrm{e})$ where $\circ: \mathcal{M} \times \mathcal{M} \rightarrow \mathcal{M}$

1. $\forall a \in \mathcal{M}, \mathrm{e} \circ a=a$ (identity)
2. $\forall a, b \in \mathcal{M}, a \circ b=b \circ a \quad$ (commutativity)
3. $\forall a, b, c \in \mathcal{M}, a \circ(b \circ c)=(a \circ b) \circ c \quad$ (associativity)
4. $\forall a, b \in \mathcal{M}, a \circ b=\mathrm{e}$ implies $a=b=\mathrm{e}$ (aggregation)

- Relation vs composition: $a, b \triangleright m$ is $a \circ b=m$
- Partiality: $a \circ b$ defined iff $a$ and $b$ have disjoint domains


## Non deterministic monoids for BBI

- Powerset extension of $\circ: X \circ Y=\bigcup\{x \circ y \mid x \in X, y \in Y\}$
- A structure $(\mathcal{M}, \circ, \mathrm{e})$ where $\circ: \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{P}(\mathcal{M})$

1. $\forall a \in \mathcal{M}, \mathrm{e} \circ a=\{a\} \quad$ (identity)
2. $\forall a, b \in \mathcal{M}, a \circ b=b \circ a \quad$ (commutativity)
3. $\forall a, b, c \in \mathcal{M}, a \circ(b \circ c)=(a \circ b) \circ c \quad$ (associativity)

- Relations vs composition: $a, b \triangleright m$ is $m \in a \circ b$
- Non determinism: $a \circ b=\left\{m_{1}, m_{2}\right\}$ then $a, b \triangleright m_{1}$ and $a, b \triangleright m_{2}$
- Partiality (incompatibility) when $a \circ b=\emptyset$


## A Hilbert calculus for $\mathrm{BI} / \mathrm{BBI}$

- Axioms for additives: $\ldots A \rightarrow(B \rightarrow A), \neg \neg A \rightarrow A \ldots$
- Linear axioms

$$
\begin{array}{ll}
\text { 1. } A \rightarrow(1 * A) & \text { 3. }(A * B) \rightarrow(B * A) \\
\text { 2. }(1 * A) \rightarrow A & \text { 4. }(A *(B * C)) \rightarrow((A * B) * C)
\end{array}
$$

- Logical rules

$$
\begin{array}{cc}
\qquad A \quad \vdash A \rightarrow B \\
\vdash B & \vdash \mathrm{MP}]
\end{array} \begin{aligned}
& \qquad A \rightarrow C \quad \vdash B \rightarrow D \\
& \frac{\vdash A \rightarrow(B \rightarrow C)}{\vdash(A * B) \rightarrow C}\left[* *_{1}\right]
\end{aligned} \frac{\vdash(A * B) \rightarrow C}{\vdash A \rightarrow(B \rightarrow C)}\left[*_{2}\right]
$$

## Soundness and completeness for $\mathrm{BI} / \mathrm{BBI}$

- Soundness is simple:
- the axioms are valid
- the four rules are sound
- For completeness:
- Lindenbaum algebra: formulae up to equivalence
- prime filters define a partially ordered or ND monoid
- $F_{p} \bullet G_{p}=\uparrow\{a * b \mid a \in A$ and $b \in B\}$ not prime
- relation ( BBI ): $H_{p} \in F_{p} \circ G_{p}$ iff $F_{p} \bullet G_{p} \subseteq H_{p}$
- for $\mathrm{BI}, \uparrow \mathrm{I}$ is a prime filter (cut elimination) thus the unit
- for BBI, units (s.t. $I \in I_{p}$ ) are not unique


## Finite model property (i)

- Tableaux systems with label constraints
- Countermodel construction (open branch)
- For IL:
$-a \circ a=a$ (contraction)
- same symbol need not occur twice in a label
- For PL:
$-a \circ a=\perp$ (disjointness)
- same symbol must not occur twice in a label
$\Longrightarrow$ finite number of labels in an open branch
$\Longrightarrow$ completeness for finite monoids of labels


## Finite model property (ii)

- For BI:
$-a \circ a \neq a$ in general
- but we can add $a^{n}=a$ for some $n$ (redundancy)
$\Longrightarrow$ finite number of labels under redundancy
$\Longrightarrow$ completeness for finite partially ordered monoids of labels
- For BBI:
$-a \circ b \sim e$ then $a$ and $b$ are invertible
$-a^{2}, a^{3}, \ldots, a^{n}, \ldots$ should be defined
$\Longrightarrow$ not a finite number of labels, quotient?
$\Longrightarrow$ finite model property ?


## Embedding of S4 into BBI

- A modality: $\square A \equiv \top \rightarrow A$
- S4 axioms are valid:

$$
\square A \rightarrow A \quad \square A \rightarrow \square \square A \quad \square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)
$$

- S4 rule is sound: $\vdash A$ then $\vdash \square A$
- Embedding (for $\otimes \in\{\wedge, \vee, \rightarrow\}, X \in \operatorname{Var} \cup\{\perp, \top\}$ ):

$$
\begin{aligned}
(\neg A)^{\square} & =\neg A^{\square} & X^{\square} & =X \\
(\square A)^{\square} & =\top \rightarrow A^{\square} & (A \otimes B)^{\square} & =A^{\square} \otimes B^{\square}
\end{aligned}
$$

- Soundness: if $A \in \mathrm{~S} 4$ then $A^{\square} \in \mathrm{BBI}$


## Faithful embedding

- (Infinite) trees complete for S4
- trees: $(\mathcal{T}, \leqslant, r)$
$-\exists k(a \leqslant k$ and $b \leqslant k)$ then $(a \leqslant b$ or $b \leqslant a)$
$-a, b \triangleright m$ iff $m=\max \{a, b\}$
- $(\mathcal{T}, \triangleright, r) \mathrm{D}($ partial $)$ monoid
- Kripke semantics preserved
- If $(\mathcal{T}, \leqslant, r)$ counter-model of $A \in \mathrm{~S} 4$

Then $(\mathcal{T}, \triangleright, r)$ counter-model of $A^{\square} \in \mathrm{BBI}$

- Corollary: IL faithfully embedded in BBI


## Conclusion and perspectives

- Monoidal models for BI and PL
- soundness/completeness wrt label monoids
- finite model property for BI and PL
- tableaux calculi for BI and PL
- Towards a (deterministic) monoidal semantics for BBI
- soundness/completeness wrt ND monoids for BBI
- embedding of S4 and at least P-SPACE hardness
- FMP: problem to avoid redundancy and non determinism
- decidability still open

