Hypersequents and Countermodels in Gödel-Dummett Logics

D. Galmiche and D. Larchey-Wendling and Y. Salhi

LORIA-CNRS Nancy, France

D. Galmiche and D. Larchey-Wendling and Y. Salhi Hypersequents and Countermodels in Gödel-Dummett Logics

個 と く ヨ と く ヨ と

Gödel-Dummett logics

- Intermediate logic: $IL \subset LC \subset \cdots \subset LC_n \subset \cdots \subset LC_1 = CL$
- Syntactic characterization: $LC = IL + (X \supset Y) \lor (Y \supset X)$
- Semantic models:
 - Linear Kripke models or the lattice $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$
 - For finitary LC_n, $\overline{[0,n)} = [0, \ldots, n[\cup \{\infty\}]$
 - Lattice structure: min, max, ...
- Complexity: LC and LC_n are NP-complete

・ 同 ト ・ ヨ ト ・ ヨ ト …

Deciding LC with proof-search

• There exist various calculi dedicated to proof-search in LC

- Sequent calculi (Dyckoff, Larchey)
- Hypersequent calculi (Avron, Metcalfe et al.)
- Sequent of relations calculi (Baaz et al.)
- Relational hypersequent calculi (Fermüller)
- Proof-search and countermodel generation combined
 - Strongly invertible rules to reduce (hyper)sequents
 - Semantic computation to decide irreducible (hyper)sequents

不同 医子宫 医子宫下的

Deciding LC with proof-search (2)

• A recent contribution propose a similar approach (Larchey)

- strongly invertible proof rules for sequents
- Decide irreducible sequents with bi-colored graphs
- Strong invertibility of logical rules
 - Preserves countermodels from premises to conclusion
 - No backtracking in proof-search
 - Countermodel generation

向下 イヨト イヨト

Overview

- Hypersequents (single-conclusion)
- Basic Hypersequents
- Bi-colored semantic graphs:
 - Basic hypersequents
 - R-cycles
 - (n+1)-alternating chains
 - Height and countermodel
- Decision procedure:
 - LC and LC_n
 - The rules of GLC* system
 - Countermodel generation

→ Ξ →

Overview (2)

- A new system for the finitary case LC_n
 - Extension of the *GLG*^{*} system (LC)
 - n-generalized axioms
- A new tableau system for LC_n
 - Extension of Avron's tableau system for LC
- Bi-colored graphs and hypersequents

向下 イヨト イヨト

Plan

1 Hypersequents

- 2 Procedure for basic hypersequents
- 3 Decision procedure for hypersequents
- 4 A new system for LC_n
- 5 A tableau system for LC_n
- 6 Biclored graphs and hypersequents

・ 同下 ・ ヨト ・ ヨト

Hypersequent (1)

- Multiset of sequents
- $\mathcal{H} = \Gamma_1 \vdash C_1 \mid \ldots \mid \Gamma_m \vdash C_m$
- An interpretation: $\llbracket \cdot \rrbracket : \operatorname{Var} \to \overline{[0, n)}$
- $[A_1, \ldots, A_k] = min([A_1]] \ldots, [A_k]]$
- \mathcal{H} is valid in LC_n iff for all interpretation $\llbracket \cdot \rrbracket$, $\exists i, \llbracket \Gamma_i \rrbracket \leq \llbracket C_i \rrbracket$
- $\rightsquigarrow \llbracket \cdot \rrbracket$ is a countermodel of \mathcal{H} in LC_n iff $\forall i, \llbracket \Gamma_i \rrbracket > \llbracket C_i \rrbracket$

Hypersequent (2)

- Basic hypersequent
 - Introduced by Avron
 - Particular calss of hypersequents
 - The components
 - $\Gamma \vdash p$ where p and any element of Γ are atoms
 - p
 ightarrow q dash p where p and q are atoms and p
 eq q, p
 eq ot

・ 同 ト ・ ヨ ト ・ ヨ ト

Plan

Hypersequents

2 Procedure for basic hypersequents

3 Decision procedure for hypersequents

4 A new system for LC_n

5 A tableau system for LC_n

6 Biclored graphs and hypersequents

・ 同下 ・ ヨト ・ ヨト

• We associate a bi-colored graph to every basic hypersequent

伺下 イヨト イヨト

We associate a bi-colored graph to every basic hypersequent Nodes:

伺下 イヨト イヨト

• We associate a **bi-colored graph** to every basic hypersequent

- Nodes:
 - The variables
 - A node denoted \diamondsuit
 - \perp (it contains \perp)

向下 イヨト イヨト

- We associate a **bi-colored graph** to every basic hypersequent
 - Nodes:
 - The variables
 - A node denoted \diamondsuit
 - \perp (it contains \perp)
 - Arrows:

・回 と く ヨ と く ヨ と

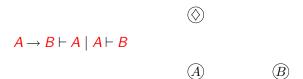
- We associate a bi-colored graph to every basic hypersequent
 - Nodes:
 - The variables
 - A node denoted \diamondsuit
 - \perp (it contains \perp)
 - Arrows:
 - $p \rightarrow q \vdash p \rightsquigarrow \{p \rightarrow q, p \Rightarrow \diamondsuit\}$
 - $q_1,\ldots,q_m\vdash p \rightsquigarrow \{p\Rightarrow q_1,\ldots,p\Rightarrow q_m\}$
 - it contains $\bot \rightsquigarrow \{\bot \rightarrow p, \text{ for any } p \in \mathsf{Var}\}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

An example

$$A \rightarrow B \vdash A \mid A \vdash B$$

個 と く き と く き と

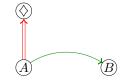


・ 回 ト ・ ヨ ト ・ ヨ ト

2

• An example

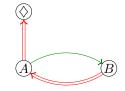
$$A \to B \vdash A \mid A \vdash B$$



個 と く き と く き と

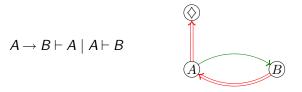
• An example

$$A \to B \vdash A \mid A \vdash B$$



個 と く き と く き と

• An example



• **R-cycle**: cycle with at least one red arrow $(x(\rightarrow + \Rightarrow)^* \Rightarrow x)$.

・ 回 ト ・ ヨ ト ・ ヨ ト

• An example

$$A \to B \vdash A \mid A \vdash B$$

• **R-cycle**: cycle with at least one red arrow $(x(\rightarrow + \Rightarrow)^* \Rightarrow x)$.

Theorem

A basic hypersequent \mathcal{H} has a countermodel in LC iff its bi-colored graph does not contain a *r*-cycle.

伺い イヨト イヨト

• An example

$$A \to B \vdash A \mid A \vdash B$$

• **R-cycle**: cycle with at least one red arrow $(x(\rightarrow + \Rightarrow)^* \Rightarrow x)$.

Theorem

A basic hypersequent \mathcal{H} has a countermodel in LC iff its bi-colored graph does not contain a *r*-cycle.

 $\rightsquigarrow A \rightarrow B \Rightarrow A$

・ 同 ト ・ ヨ ト ・ ヨ ト

• Basic hypersequent and finitary LC_n , $1 \leq n < \infty$:

・回 と く ヨ と く ヨ と

- Basic hypersequent and finitary LC_n , $1 \leq n < \infty$:
 - (n+1)-alternating chain: chain with n+1 red arrows $((\rightarrow^{\star} \Rightarrow)^{n+1})$.

<回> < 回> < 回> < 回> -

- Basic hypersequent and finitary LC_n , $1 \le n < \infty$:
 - (n+1)-alternating chain: chain with n+1 red arrows $((\rightarrow^{\star} \Rightarrow)^{n+1})$.
 - Every r-cycle is (n+1)-alternating chain for every $n \ge 1$.

(過) (目) (日)

- Basic hypersequent and finitary LC_n , $1 \le n < \infty$:
 - (n+1)-alternating chain: chain with n+1 red arrows $((\rightarrow^{\star} \Rightarrow)^{n+1})$.
 - Every r-cycle is (n + 1)-alternating chain for every $n \ge 1$.

Theorem

A basic hypersequent \mathcal{H} has a countermodel in LC_n iff its bi-colored graph does not contain a (n + 1)-alternating chain.

(1日) (日) (日)

- Basic hypersequent and finitary LC_n , $1 \le n < \infty$:
 - (n+1)-alternating chain: chain with n+1 red arrows $((\rightarrow^{\star} \Rightarrow)^{n+1})$.
 - Every r-cycle is (n + 1)-alternating chain for every $n \ge 1$.

Theorem

A basic hypersequent \mathcal{H} has a countermodel in LC_n iff its bi-colored graph does not contain a (n + 1)-alternating chain.

•
$$\vdash A \mid A \vdash \bot$$

(1日) (日) (日)

- Basic hypersequent and finitary LC_n , $1 \le n < \infty$:
 - (n+1)-alternating chain: chain with n+1 red arrows $((\rightarrow^{\star} \Rightarrow)^{n+1})$.
 - Every r-cycle is (n + 1)-alternating chain for every $n \ge 1$.

Theorem

A basic hypersequent \mathcal{H} has a countermodel in LC_n iff its bi-colored graph does not contain a (n + 1)-alternating chain.

$$+ A \mid A \vdash \bot$$

- Basic hypersequent and finitary LC_n , $1 \le n < \infty$:
 - (n+1)-alternating chain: chain with n+1 red arrows $((\rightarrow^{\star} \Rightarrow)^{n+1})$.
 - Every r-cycle is (n + 1)-alternating chain for every $n \ge 1$.

Theorem

A basic hypersequent \mathcal{H} has a countermodel in LC_n iff its bi-colored graph does not contain a (n + 1)-alternating chain.

• 2-alternating chain: $(\rightarrow^* \Rightarrow)^2 (\perp \Rightarrow A \Rightarrow \diamondsuit)$ $\Rightarrow \vdash A \mid A \vdash \perp$ is valid in LC₁

Countermodel generation

- The graphe does not contain a r-cycle.
 - Draw the graph by levels (linear time) :
 - Red arrows \Rightarrow go up (strictly)
 - Blue arrows \rightarrow never go down
 - The counter model is given by the height
 - A basic hypersequent has a countermodel in LC_n iff its graph has at most n + 1 levels (height ≤ n)

伺い イヨト イヨト

Example

• There is no chain of the form $(\rightarrow^{\star} \Rightarrow)^{n}$ for n > 2

• Draw the graph **by levels**:

 \rightsquigarrow $\llbracket A \rrbracket = 1$ is a coutermodel of $\vdash A \mid A \vdash \bot$ in LC_n for every n > 1

 ∞

1

0

・ロト ・同ト ・ヨト ・ヨト

Α

Plan

2 Procedure for basic hypersequents

3 Decision procedure for hypersequents

- 4 A new system for LC_n
- 5 A tableau system for LC_n
- 6 Biclored graphs and hypersequents

・ 回 ・ ・ ヨ ・ ・ ヨ ・

Some rules of GLC*

- introduced by Avron
- The irreducible hypersequents: basic hypersequents

$$\frac{G \mid \Gamma \vdash r \mid p \to q \vdash p \qquad G \mid \Gamma, q \vdash r}{G \mid \Gamma, p \to q \vdash r} \quad [\to_L] \qquad \frac{G \mid \Gamma, A \vdash B}{G \mid \Gamma \vdash A \to B} \quad [\to_R]$$

$$\frac{G \mid A \vdash B \mid \Gamma, B \to C \vdash D \qquad G \mid \Gamma, C \vdash D}{G \mid \Gamma, (A \to B) \to C \vdash D} \quad [(\to) \to L]$$

$$\frac{G \mid \Gamma, A \to C \vdash D \qquad G \mid \Gamma, B \to C \vdash D}{G \mid \Gamma, A \to (B \to C) \vdash D} \quad [\to (\to)_L]$$

- 4 回 2 - 4 □ 2 - 4 □

Decision procedure for hypersequents

- For every G we can effectively find a set B of basic hypersequents by using the rules of GLC*, so that G is valid iff H is valid for every H ∈ B
- $\bullet\,$ The use of the bi-colored graphs to decide the elements of ${\cal B}\,$
- The rules of GLC* are strongly invertible
- → for any $H \in \mathcal{B}$, if $\llbracket \cdot \rrbracket$: Var → $\overline{[0, n)}$ is countermodel of H then $\llbracket \cdot \rrbracket$ is countermodel of G
 - builds countermodel

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Example (1/3)

•
$$\mathcal{H} = \vdash A \lor (A \to B) \lor ((A \land B) \to C)$$

$$\frac{\vdash A \mid A \vdash B \mid A, B \vdash C}{\vdash A \mid A \vdash B \mid A \land B \vdash C} [\land_L]$$

$$\frac{\vdash A \mid A \vdash B \mid \vdash (A \land B) \to C}{\vdash A \mid \vdash A \to B \mid \vdash (A \land B) \to C} [\to_L]$$

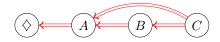
$$\frac{\vdash A \mid \vdash (A \to B) \lor ((A \land B) \to C)}{\vdash A \mid \vdash (A \to B) \lor ((A \land B) \to C)} [\lor_R]$$

• $\mathcal{B} = \{ \vdash A \mid A \vdash B \mid A, B \vdash C \}$

◆□ → ◆□ → ◆三 → ◆三 → ○

Example (2/3)

• The bi-colored graph of $\mathcal{H}_{\mathcal{B}} = \vdash A \mid A \vdash B \mid A, B \vdash C$:



- A 3-alternating chain $C \Rightarrow B \Rightarrow A \Rightarrow \diamondsuit$
- $\rightsquigarrow~\mathcal{H}_\mathcal{B}$ is valid in $\mathsf{LC}_2 \Rightarrow \mathcal{H}$ is valid in LC_2

- 4 回 ト 4 ヨ ト 4 ヨ ト

Example (3/3)

- There is no 4-alternating chain
- $\stackrel{\sim}{\longrightarrow} \mathcal{H}_{\mathcal{B}} \text{ has a countermodel in } (\mathsf{LC}_n)_{n>2} \Rightarrow \mathcal{H} \text{ has a countermodel}$ in $(\mathsf{LC}_n)_{n>2}$

 ∞

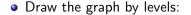
2

1

0

イロト イボト イヨト イヨト 二日

В



 $\stackrel{\scriptstyle \sim \rightarrow}{\quad} \llbracket \cdot \rrbracket : \mathsf{Var} \to \{0, 1, \infty\} \text{ s.t. } \llbracket A \rrbracket = 2, \ \llbracket B \rrbracket = 1 \text{ and } \llbracket C \rrbracket = 0 \text{ is a coutermodel of } \mathcal{H} \text{ in } (\mathsf{LC}_n)_{n > 2}$

Plan

1 Hypersequents

- 2 Procedure for basic hypersequents
- 3 Decision procedure for hypersequents
- 4 New system for LC_n
- 5 A tableau system for LC_n
- 6 Biclored graphs and hypersequents

・ 回 ト ・ ヨ ト ・ ヨ ト

The GLC* sytem

Generalized axiom:

- A basic hypersequent
- $p_1 \prec p_2 \mid p_2 \prec p_3 \mid \ldots \mid p_{n-1} \prec p_n \mid p_n \vdash p_1$ where $p_i \prec p_{i+1}$ is either $p_i \vdash p_{i+1}$ or $(p_{i+1} \rightarrow p_i) \vdash p_{i+1}$
- $(p_1 \rightarrow \bot) \vdash p_1 \mid (p_2 \rightarrow p_1) \vdash p_2 \mid \ldots \mid (p_{n-1} \rightarrow p_{n-2}) \vdash p_{n-1} \mid p_{n-1} \vdash p_n$
- Exemples: $\bot \vdash \bot$, $p \vdash p$, $p \vdash q \mid q \vdash p$
- Axioms: Every basic hypersequent wich can be derived from some generalized axiom using (internal and external) weakenings

$$\frac{G}{G \mid \Gamma \vdash A} [ew] \qquad \frac{G \mid \Gamma \vdash C}{G \mid \Gamma, A \vdash C} [iw]$$

• Rules:

・ 同 ト ・ ヨ ト ・ ヨ ト …

n-generalized axiom

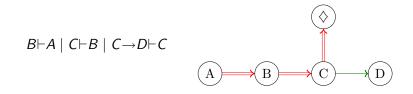
- A basic hypersequent
- generalized axiom

•
$$p_{m_1}^1 \vdash p_{m_1-1}^1 \mid (p_1^2 \to p_2^2) \vdash p_1^2 \mid (p_2^2 \to p_3^2) \vdash p_2^2 \mid \dots \mid (p_{m_2-2}^2 \to p_{m_2-1}^2) \vdash p_{m_2-2}^2 \mid p_{m_2}^2 \vdash p_{m_2-1}^2 \mid (p_1^3 \to p_2^3) \vdash p_1^3 \mid (p_2^3 \to p_3^3) \vdash p_2^3 \mid \dots \mid (p_{m_3-2}^3 \to p_{m_3-1}^3) \vdash p_{m_3-2}^3 \mid p_{m_3}^3 \vdash p_{m_3-1}^3 \mid \dots \mid (p_1^n \to p_2^n) \vdash p_1^n \mid (p_2^n \to p_3^n) \vdash p_2^n \mid \dots \mid (p_{m_n-2}^n \to p_{m_n-1}^n) \vdash p_{m_n-2}^n \mid p_{m_n}^n \vdash p_{m_n-1}^n \mid p_{m_n}^n \vdash' p_f$$

<回と < 回と < 回と

n-generalized axiom

- The simplest basic hypersequents the bi-colored graphs of wich contain a *n* + 1-alternating chain
- An example (2-generalized axiom):



・ 同下 ・ ヨト ・ ヨト

The GLC_n^* system

- Finitary versions of Gödel-Dummett logic $(LC_n)_{n>0}$
- Axioms: Every basic hypersequent wich can be derived from some *n*-generalized axiom using (internal and external) weakenings
- \rightsquigarrow All the basic hypersequents valid in LC_n
 - Rules: the rules of GLC*

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Plan

1 Hypersequents

- 2 Procedure for basic hypersequents
- 3 Decision procedure for hypersequents
- 4 A new system for LC_n
- **5** A tableau system for LC_n
- 6 Biclored graphs and hypersequents

・ 回 ・ ・ ヨ ・ ・ ヨ ・

A tableau system for finitary versions

- \mathcal{F} is valid in GLC_n^* iff $\vdash \mathcal{F}$ has a proof in GLC_n^*
- Obtained from Avron's tableau system for LC based on GLC*
- We only have to chage the definition of closed branchs by using the axioms of the GLC^{*}_n system

伺い イヨト イヨト

Plan

1 Hypersequents

- 2 Procedure for basic hypersequents
- 3 Decision procedure for hypersequents
- 4 new system for LC_n
- 5 A tableau system for LC_n
- 6 Biclored graphs and hypersequents

・ 同下 ・ ヨト ・ ヨト

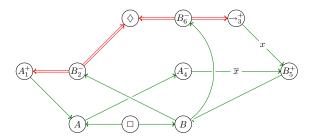
Bi-colored graphs and hypersequents

- Bi-colored graphs associated to hypersequents
 - Transformation of hypersequents into flat sequents (indexing process)
 - Transformation of flat sequents into conditional bi-colored graphs (arrows indexed with a boolean selector)
 - Instance graphs obtained by setting selectors (x = 0 or 1)
- Results: characterization of provability
 - \mathcal{H} is provable in LC iff every instantce graph has a r-cycle
 - \mathcal{H} is provable in LC iff every instantce graph has a (n+1)-alternating chain
 - if an instance has no (n + 1)-alternating chain (resp. r-cycle), its height is a countermodel in LC_n (resp. LC)

<ロ> (四) (四) (三) (三) (三) (三)

Example

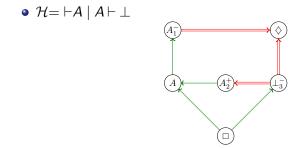
• $\mathcal{H} = A \vdash B \mid A \rightarrow B \vdash B$



• There are two instances (x = 0 and x = 1)- x = 0: $B_2^- \Rightarrow A_1^+ \rightarrow A \rightarrow A_4^- \rightarrow B_5^+ \rightarrow B \rightarrow B_2^-$ - x = 1: $B_6^- \Rightarrow \rightarrow_3^+ \rightarrow B_5^+ \rightarrow B \rightarrow B_6^ \Rightarrow \mathcal{H}$ is valid in LC

イロト イポト イヨト イヨト

An example with countermodel generation (1/2)

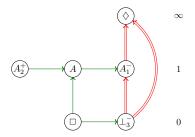


- There is no r-cycle
- There is a 2-alternating chain $(\perp_3^- \Rightarrow A_2^+ \Rightarrow \diamondsuit)$
- $\rightsquigarrow \mathcal{H}$ is valid in LC₁

(1日) (日) (日)

An example with countermodel generation (2/2)

• Draw the graph by levels:



• $[\![\cdot]\!]$: Var $\rightarrow \{0, 1, \infty\}$ s. t. $[\![A]\!] = 1$ is a countermodel of \mathcal{H} in $(\mathsf{LC}_n)_{n>1}$

(1) マント (1) マント (1) マント

Conclusion

- New characterizations of validity in LC and LC_n
- Countermodel generation

<回と < 回と < 回と