
'

&

$

%

The subformula property in

Intuitionistic sequents proof-search

Dominique Larchey-Wendling

LORIA { CNRS

Nancy, France

1



'

&

$

%

Overview of the talk

� We discuss proof/counter-model search IPL

� We deal with sequent calculi, old and new

� Presentation on the sub-formula property (SFP)

– strict SFP, local rules (context untouched)

� Impact of the SFP (termination, complexity, indexation)

� Implementation issues

– data structures for sequents and strategies

– constant time rule application

� Transform the rules in the new system LSJ into local rules

2



'

&

$

%

Proof-search in the sequent calculus

� Left introduction rule for conjunction in IL (or CL)

�; A;B `�

�; A ∧B `�
[∧L] A ∧B =

∧

A B

� A, B (direct) subformulas of the principal formula A ∧B

� Consequences of the SFP:

– decreasing complexity: size(A) + size(B) < size(A ∧B)

– bounded set of formulae occuring in (backward) proof-search

– guaranteed termination of proof-search (for CL, not IL)

3



'

&

$

%

The sub-formula property (SFP)

� Every formula introduced in backward proof-search is a

sub-formula of the principal formula

� The SFP does not ensure termination (Gentzen LJ):

�; A⊃B ` A �; B ` C

�; A⊃B ` C
[⊃L]

loop · · ·

A⊃B ` A · · ·

A⊃B ` A · · ·

A⊃B ` A

4



'

&

$

%

The strict sub-formula property (SSFP)

� The principal formula is removed and replaced by some of its

(direct or strict) subformulae, with no duplications, e.g.

�; A `� �; B `�

�; A ∨B `�
[∨L] A ∨B =

∨

A B

� In this case (e.g. CL), SSFP ensures termination:

– size of sequents decreases from conclusions to premisses

– proof-search depth linearly bounded by size of initial sequent

– O(n logn) space proof-search algorithm

5



'

&

$

%

SFP/SSFP not necessary for termination

� LJT, contraction free sequent calculus for IL (Dyckho� 92)

�; B ⊃ C ` A⊃B �; C `D

�; (A⊃B)⊃ C `D
[⊃4

L]

� B ⊃ C is not a subformula of (A⊃B)⊃ C

� size(B ⊃ C) + size(A⊃B) is not lower than size((A⊃B)⊃ C)

� but both B ⊃C and A⊃B are strictly smaller than (A⊃B)⊃C

� the well-founded multiset ordering ensures termination

6



'

&

$

%

Application of SFP: indexation

� Associate a number to each subformula

� Structurally di�erent subformulas should have di�erent indexes

� Structurally identical subformulas can have the same index

� Identical variables should have the same index

� Proof-search on indexes

Id
A;B ` A

∧L
A ∧B ` A

⊃R

` A ∧B ⊃ A

⊃1

∧2

A3 B4

A3

Id
3; 4 ` 3

∧L
2 ` 3

⊃R

` 1

7



'

&

$

%

Recognizing axioms (the naive way)

� Axioms are usually of the form

�; A `�; A
or

� `�
[� ∩� 6= ∅]

� Complexity of naive implementation (e.g. lists):

size(�)× size(�)× size(average formula)

� Axioms should be tested at each step of proof-search

– indeed, they might close/end the proof-search branch

� An e�cient implementation of axioms recognition is thus crucial

8



'

&

$

%

Recognizing axioms (the indexed way)

� � `� is indexed, e.g. ` A2 ∧3 B4 ⊃1 A3

� � (resp. �) associated to a set of indexes (e.g. array of booleans)

� Each time � (or �) is modi�ed, check for axiom (and mark)

� If � `� not an axiom then �− {A} `� not an axiom

– �; A `� axiom i� A ∈ � (e.g. �(A) = true)

� To recognize axioms, check for the mark in constant time

Id because 3
A3; B4 ` A3

∧L and mark(3)
A3 ∧2 B4 ` A3

⊃R

` A2 ∧3 B4 ⊃1 A3

9



'

&

$

%

How to select the rule to apply ?

� In the calculi we consider: select the principal formula

A1; : : : ; Ai ; : : : ; An `B1; : : : ; Bk

� Criteria for proof-search strategies:

– lh/rh side, position in the list A1; : : : ; An

– outmost logical connective, complexity of the formula

� A \bad" choice may lead to failure:

fails

A ∨B ` A
∨1R

A ∨B ` A ∨B

Id
A ` A

∨1R
A ` A ∨B

Id
B `B

∨2R
B ` A ∨B

∨L
A ∨B ` A ∨B

10



'

&

$

%

Representation and update of sequents

� � and �, both as lists and sets of indexes;

� Update in constant time:

� `�l; Ai;�r · · ·

� `�l; Ai ∧k Bj ;�r

[∧R]

� Remove the principal formula, insert one or two subformulae

� Beware non-local rules in STRIP (Larchey-W. et al. 2001)

– all formulae (·)⊃ C removed when decomposing (A⊃B)⊃ C

· · · �; C `G

�; (A⊃B)⊃ C ;D1 ⊃ C; : : : ;Dk ⊃ C `G
[⊃4

L]

11



'

&

$

%

Constant time proof-search step

PS(�; A ∨B `�) =

1. replace A ∨B by A, push (A A ∨B)

2. result = PS(�; A `�) (recursion)

3. pop (A A ∨B), replace A by A ∨B

4. if result = fail then return fail

5. replace A ∨B by B, push (B  A ∨B)

6. result = PS(�; B `�) (recursion)

7. pop (B  A ∨B), replace B by A ∨B

8. return result

�; A `� �; B `�

�; A ∨B `�

12



'

&

$

%

Terminating proof-search for IPL

� From Gentzen (LJ) to Dyckho� 92 (LJT) and Hudelmaier 93

� Dyckho� & Pinto 96 (LJT/CRIP), Dyckho� & Negri 2000

� Formalization: Weich 98 (Coq, extraction)

� Larchey-Wendling et al. 2001 (STRIP)

� Fiorino et al. 2000+ (tableaux variants of LJT)

� One of our longstanding problem: certi�ed STRIP

� A new lead: the new system LSJ with SSFP

� Our contribution: optimize LSJ for indexed proof search

13



'

&

$

%

A sequent system for IPL with SSFP

\Contraction-free Linear Depth Sequent Calculi for IPL with the

Subformula Property and Minimal Depth Counter-Models"

(Ferrari, Fiorentini and Fiorino, to appear in JAR)

� A new system LSJ with sequents of the form � | � `�

� A �nite refutation semantics: T refutes � | � `� if

T 
s � and T 
 � and T 1 �

� Recover semantics for formulae: T 1 A i� T refutes ∅ | ∅ ` A

� A valid sequent has no refutation tree: ∅ | ∅ ` A valid i� A valid

14



'

&

$

%

Finite Kripke semantics for IPL

� Var = set of propositional variables

� A tree: T = (ST ; [T1; : : : ; Tk]), with ST ⊆f Var

� A Kripke tree = monotonicity for all subtrees : ST ⊆ STi

� Subtree (6): T 6 T and T ′ 6 Ti implies T ′ 6 T

� Strict subtree (<): T ′ 6 Ti implies T ′ < T

� Monotonic Kripke semantics: ∀T ′ 6 T ; T 
 A⇒ T ′ 
 A

T 
 A⊃B ⇔ ∀T ′ 6 T ; T ′ 
 A⇒ T ′ 
 B

T 
s A ⇔ ∀T ′ < T ; T ′ 
 A

� This is a sound and complete semantics for IPL

15



'

&

$

%

The rules of LSJ (implicational fragment)

� Formulae in � are not active

� But they are activated by rightmost premisse of [⊃L] and [⊃R]

� Strict sub-formula property (SSFP), but some rules are not local

� | �; A ` A;�
[Id]

� | A;� `B;� ∅ | A;�;� `B

� | � ` A⊃B ;�
[⊃R]

� | B;� `� B;� | � ` A;� B | �;� ` A

� | A⊃B ;� `�
[⊃L]

16



'

&

$

%

Sound and completeness for LSJ

� Soundness for LSJ

– if T refutes the conclusion of some rule then there exists

T ′ 6 T that refutes one premisse of the rule

– axioms have no refutation trees

– hence no tree refutes a provable sequent

– also impacts the depth of counter-models

� Completeness for LSJ

– a dual refutation calculus RJ

– extract a refutation tree from any (dual) proof in RJ

– algorithm that builds either a LSJ-proof or (dual) RJ-proof

– in the spirit of LJT/CRIP (Pinto & Dyckho� 95)

17



'

&

$

%

LSJ rules are not local rules

� Formulas of � are moved in �

� Formulas of � are removed all together

� Hence rules touch the context

· · · · · · B | � ;� ` A

� | A⊃B;� ` �
[⊃L]

· · · ∅ | A; � ;� `B

� | � ` A⊃B; �
[⊃R]

� Our solution: re�nement of LSJ into an indexed version

18



'

&

$

%

How to cope with � and �: indexed sequents

� Let n1; : : : ; nr; p1; : : : ; pk be non-negative integers

� Let � = n1 : A1; : : : ; nr : Ar and 
 = p1 : B1; : : : ; ps : Bs

� � `pn 
 is an indexed sequent if

– n and p are non-negative integers and

– ni 6 n+ 1 and pj 6 p for any i, j

� Associated LSJ sequent � | � `� with

� = {Ai | ni = n+ 1} � = {Ai | ni 6 n} � = {Bj | p = pj}

� We propose an indexed sequent calculus associated to LSJ

19



'

&

$

%

Indexed LSJ (part one)

� | �; A ` A;�
[Id]

i : A;� `pn 
; p : A with i 6 n

20



'

&

$

%

Indexed LSJ (part two)

� | A;� `B;� ∅ | A;�;� `B
� | � `�; A⊃B

[⊃R]

n : A;� `pn 
; p : B n+ 1 : A;� `p+1n+1 
; p+ 1 : B

� `pn 
; p : A⊃B

21



'

&

$

%

Indexed LSJ (part three)

� | B;� `� B;� | � ` A;� B | �;� ` A

� | A⊃B;� `�
[⊃L]

i : B;� `pn 
 n+ 1 : B;� `pn 
; p : A n+ 2 : B;� `p+1n+1 
; p+ 1 : A

i : A⊃B;� `pn 
 with i 6 n

22



'

&

$

%

Properties of the indexed LSJ sequent calculus

� Has the SSFP, and thus terminates

� Sound and complete for IPL (as LSJ) (also counter-models)

� Local rules: context is preserved by rule application

� Each rule application implies a bounded number of operations

– one removal, and one or two introductions

– rules can be applied in constant time

� As with LSJ (unlike STRIP), manageable formalization (Coq)

23



'

&

$

%

Conclusion

� A new indexed sequent calculus for IPL based on LSJ

� Well suited for the implementation of proof-search (local SSFP)

� Soundness & completeness proved formally

Perspectives

� A certi�ed indexed proof-search engine for IPL (Coq, extraction)

� Certi�ed compilation of proof-search in IPL, potentially as

e�cient as STRIP

24


