Resources, process calculi and Gödel-Dummett logics

Dominique Larchey

LORIA - CNRS
Nancy, France

Gödel-Dummett logics LC

- Most studied intermediate logic IL $\subset \mathrm{LC} \subset C L$
- Proof theory, proof-search
- IL (Dyckhoff \& Hudelmair, Weich, Larchey \& Galmiche)
- Intermediate logics (Avellone et al. and Fiorino)
- LC (Dyckhoff, Avron, Larchey)
- Calculi
- Hyper-sequent calculi (Avron,Baaz, Fermüller)
- Sequent calculus (Dyckhoff)
- Counter-model search (CADE'02)
- Decision through graph/matrix computation (IJCAR'04)

Process calculi, resource consumption

- Specification logics for resources
- Production/consumption (linear logics, petri nets)
- Distribution/sharing (spatial logics, BI)
- Concurrency/mobility (ambients)
- LC not a general resource specification logic
- Characterization of LC w.r.t. a class of resource properties
- Recursive non-deterministic processes, conditional branching
- Boundability of resource consumption / counter-models in LC

A simple resource calculus

- Only one resource denoted •
- Resource is only consumed, not produced
- Processes features
- Non determinism $[P+Q+R]$
- (External) conditional branching $<f\rangle P$
- Resource consumption • P
- Recursion through equations $X=[\cdots+\bullet X+\cdots]$
- X can consume one \bullet and then becomes X again

Resource consumption semantics

- Define a relation $P-[n] \bullet Q$
- means P can become Q after having consumed n times \bullet
- Resource consumption for equations system \mathcal{E} and context σ

$$
\begin{array}{cc}
\hline P \dashv[0] \bullet P & {[\mathrm{dd}]} \\
\frac{P_{i}-[n] \bullet Q}{\left[\cdots+P_{i}+\cdots\right]-[n] \bullet Q}[\mathrm{Sum}] & \frac{P \dashv n] \bullet Q \quad X=P \in \mathcal{E}}{X-[n] \bullet Q}[\mathrm{Eq}] \\
\frac{P \dashv n] \bullet Q}{\bullet P-[n+1] \bullet Q}[\mathrm{Res}] & \frac{P\lfloor n] \bullet Q \quad \llbracket f \rrbracket_{\boldsymbol{\sigma}}=1}{<f>P-[n] \bullet Q}[\mathrm{Con}]
\end{array}
$$

Bounding resources consumption

- Basic idea
- Is n in $P-[n] \bullet Q$ bounded for any P, Q ?
$-X=\bullet X$ has unboundable resource use
$-X=[]$ or $X=[X]$ have resource use bounded by 0
- Definition
- Given a fixed process equation system \mathcal{E}
- \mathcal{E} has resource use boundable by n if
there exists a context σ s.t. for any process variables X, Y of $\mathcal{E}, X \dashv k] \bullet Y$ holds for no k greater than n

Normalized processes vs bi-colored graphs (1)

- Process system is normalized if no nested constructs
- Normalization $=$ add (new) intermediate equations

$$
X=\bullet \bullet X \quad \text { split into } \quad X=\bullet Y, Y=\bullet X
$$

- Normalization achieved while preserving resource consumption
- Associated bi-colored conditional graph
$-X=\left[Y_{1}+Y_{2}\right]:\left(\right.$ unconditional) green arrows $X \rightarrow Y_{1}, X \rightarrow Y_{2}$
$-X=\langle f\rangle Y$: conditional green arrow $X \rightarrow_{f} Y$
$-X=\bullet Y:$ red arrow $X \Rightarrow Y$

Normalized processes vs bi-colored graphs (2)

- Normalized process equation system

$$
\begin{array}{lrlll}
X=\left[K_{6}\right] & Z=\left[K_{5}\right] & K_{2}=X & K_{4}=\bullet Z & K_{1}=\left[K_{2}+K_{7}+Z\right] \\
Y=\left[K_{1}\right] & K_{6}=\bullet K_{3} & K_{3}=<a>Y & K_{5}=[] & K_{7}=<\neg a>K_{4}
\end{array}
$$

- Associated conditional bi-colored graph

- Size of graph linear in the size of process system

Instance graphs

- Conditional bi-colored graphs contains
- green arrows: conditional \rightarrow_{f}, unconditional \rightarrow
- red arrows: \Rightarrow
- Conditions can be instanciated with a context σ
- keep unconditional arrows (\rightarrow or \Rightarrow)
- keep arrows \rightarrow_{f} for which $\llbracket f \rrbracket_{\sigma}=1$
- From a graph \mathcal{G}, we obtain a family of instance graphs \mathcal{G}_{σ}

Alternating chains and resource use bounding

- A n-alternating chain
- of the form $\left(\rightarrow^{\star} \Rightarrow\right)^{n}$, exactly n red arrows \Rightarrow
- Resource use for a system \mathcal{E} with associated graph \mathcal{G}
\mathcal{E} has resource use boundable by n if and only if \mathcal{G} has an instance \mathcal{G}_{σ} containing no $(n+1)$-alternating chain

- Graphs and process equations are equivalent representations

Gödel-Dummett logic LC

- Intermediate logic: $\mathrm{IL} \subset \mathrm{LC} \subset \cdots \subset \mathrm{LC}_{n} \subset \cdots \subset \mathrm{LC}_{1}=\mathrm{CL}$
- Syntactic characterization: $\mathrm{LC}=\mathrm{IL}+(X \supset Y) \vee(Y \supset X)$
- Semantic models:
- Linear Kripke trees or the lattice $\overline{\mathbb{N}}=\mathbb{N} \cup\{\infty\}$
- For finitary $\mathrm{LC}_{n}, \overline{[0, n)}=[0, \ldots, n[\cup\{\infty\}$
- Lattice structure: min, max, ...
- Complexity:
- LC (and CL) are NP-complete
- IL is PSPACE-complete

Instance graphs and implicational sequents

- Implicational sequent associated to a bi-colored (instance) graph
- for an arrow $X \rightarrow Y$: add $X \supset Y$ on the left of \vdash
- for an arrow $X \Rightarrow Y$: add $Y \supset X$ (reverse) on the right of \vdash

$$
A \supset B, B \supset C, D \supset C \vdash C \supset A
$$

- A counter-model in LC_{n} iff no $(n+1)$-alternating chain in graph
- If no $(n+1)$-alternating chain, draw graph with $(n+1)$ levels :
- Red arrows \Rightarrow go up (strictly)
- Green arrows \rightarrow never go down
- Counter model given by the level $(A=D=0$ and $B=C=1)$

Conditional bi-colored graphs to LC

- Build a sequent $\Gamma \vdash \Delta$ from a graph \mathcal{G}
$-v \rightarrow w$ in $\mathcal{G}:$ add $X_{v} \supset Y_{w}$ to $\Gamma ;$
$-v \rightarrow_{f} w:$ add $(\neg \neg f) \supset\left(X_{v} \supset X_{w}\right)$ to Γ;
$-v \Rightarrow w:$ add $X_{w} \supset X_{v}$ to Δ.
- Counter-model of built sequent $\Gamma \vdash \Delta$?
$\Gamma \vdash \Delta$ has a counter-model in $L C_{n}$ if and only if \mathcal{G} has an instance \mathcal{G}_{σ} containing no $(n+1)$-alternating chain
- Size of $\Gamma \vdash \Delta$ linear in size of \mathcal{G}

Resource bounding with the LC logic

- Resource bounding problem for process equations
- Linear transformation from process equations to a graph
- Linear transformation from graph to formula (or sequent) of LC
- Resource bounding problem linearly transformed into a decision (counter-model) problem for LC_{n}
- Is there a reverse transformation ?
- Yes, by our previous results (IJCAR'04)

From LC to graphs: indexing and polarizing

- Build a graph based on sub-formulae tree
- Each occurrence of a sub-formulae has an index and a polarity
- Example: $(A \supset B) \vee(B \supset A)$

- Add one node \diamond
- Add one further node for each variable V

From LC_{n} to graphs: building arrows

- Given D^{-}, compute its graph \mathcal{G} with boolean selectors
- \mathcal{G} has size linear in the size of the formula D
D has counter-model in LC_{n} iff there exists an instance graph \mathcal{G}_{σ} with no $(n+1)$-alternating chain

Example: Peirce's formula (1)

$$
\left(\left(A_{5}^{+} \supset_{3}^{-} B_{6}^{-}\right) \supset_{1}^{+} A_{4}^{+}\right) \supset_{0}^{-} A_{2}^{-}
$$

- Build the bi-colored graph
- break cycles containing \Rightarrow

$$
\begin{array}{l|l}
0 \Rightarrow \diamond \rightarrow 0 & x \\
0 \Rightarrow \diamond \rightarrow 3 \rightarrow 4 \rightarrow A \rightarrow 2 \rightarrow 0 & z+y+\bar{x} \\
2 \Rightarrow \diamond \rightarrow 3 \rightarrow 4 \rightarrow A \rightarrow 2 & \bar{x}+z+y \\
2 \Rightarrow 1 \rightarrow 4 \rightarrow A \rightarrow 2 & \bar{x}+\bar{y}
\end{array}
$$

- Constraint for no \Rightarrow-cycle:

$$
x \cdot(z+y+\bar{x}) \cdot(\bar{x}+z+y) \cdot(\bar{x}+\bar{y})
$$

- Solution: $x=z=1$ and $y=0$

Example: instance graph (2)

- Intanciate with $x=z=1, y=0$
- Of course, there is no \Rightarrow-cycle!
- Redraw the graph by levels:

- Counter-model: $\llbracket A \rrbracket=1, \llbracket B \rrbracket=0$
- In LC and LC_{2} but not in $\mathrm{CL}=\mathrm{LC}_{1}$

From LC_{n} to resource bounding

- Linear transformation of a formula of LC into conditional graph
- Linear transformation of graph into a process system
- Decision problem for LC_{n} transformed into resource bounding problem (of linear size)
- Deciding LC_{n} characterized by resource bounding
- How to decide LC_{n} in practice?

\Rightarrow-cycle detection and matrix computation (1)

- Bi-colored graph $=$ sparse matrices of boolean functions

- Shared ROBDDs, and matrix operations:
$-+=\vee, \times=\wedge, M^{\star}=I+M^{2}+M^{3}+\cdots$
$-\operatorname{tr}(M)=\sum_{x} M_{x, x}, \sum(M)=\sum_{x, y} M_{x, y}$
- Result: provable in LC iff $\operatorname{tr}\left((\rightarrow+\Rightarrow)^{\star} \Rightarrow\right)=1$
- If the trace not a tautology:
- Extract an instance with no \Rightarrow-cycle
- Draw the instance by levels
- Counter-model given by level
- Result: invalid in $\mathrm{LC} C_{n}$ iff $\sum\left(\rightarrow^{\star} \Rightarrow\right)^{n+1}<1$
- Compute this sequence:
$-n$ bounded by number of $\supset^{-}+1$
- Search the first non-tautology
- Obtain the minimal counter-model

Conclusion and perspectives

- A process calculus with resource consumption
- Decision problem in $\mathrm{LC}_{n}=$ resource consumption bounding
- Solved through matrix computation with BDDs
http://www.loria.fr/~larchey/LC
- Use this process calculus is an abstraction calculus to effectively bound resource use in more complex systems

