Resources, process calculi and Gödel-Dummett logics

Dominique Larchey

LORIA – CNRS Nancy, France

Gödel-Dummett logics LC

- Most studied intermediate logic $\mathsf{IL} \subset \mathsf{LC} \subset \mathsf{CL}$
- Proof theory, proof-search
 - IL (Dyckhoff & Hudelmair, Weich, Larchey & Galmiche)
 - Intermediate logics (Avellone et al. and Fiorino)
 - LC (Dyckhoff, Avron, Larchey)
- Calculi
 - Hyper-sequent calculi (Avron, Baaz, Fermüller)
 - Sequent calculus (Dyckhoff)
 - Counter-model search (CADE'02)
 - Decision through graph/matrix computation (IJCAR'04)

A simple resource calculus

- $\bullet\,$ Only one resource denoted $\bullet\,$
- Resource is only consumed, not produced
- Processes features
 - Non determinism [P+Q+R]
 - (External) conditional branching $<\!f\!>P$
 - Resource consumption $\bullet P$
 - Recursion through equations $X = [\cdots + \bullet X + \cdots]$
- X can consume one and then becomes X again

 $- X = \bullet Y$: red arrow $X \Rightarrow Y$

Instance graphs

• Conditional bi-colored graphs contains

- green arrows: conditional \rightarrow_f , unconditional \rightarrow

- red arrows: \Rightarrow
- Conditions can be instanciated with a context σ
 - keep unconditional arrows (\rightarrow or \Rightarrow)
 - $ext{ keep arrows } o_f ext{ for which } \llbracket f
 rbracket_\sigma = 1$
- From a graph \mathcal{G} , we obtain a family of *instance graphs* \mathcal{G}_{σ}

Gödel-Dummett logic LC

- Intermediate logic: $| \mathsf{IL} \subset \mathsf{LC} \subset \cdots \subset \mathsf{LC}_n \subset \cdots \subset \mathsf{LC}_1 = \mathsf{CL} |$
- Syntactic characterization: $LC = IL + (X \supset Y) \lor (Y \supset X)$
- Semantic models:
 - Linear Kripke trees or the lattice $\overline{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$
 - For finitary LC_n , $\overline{[0,n)} = [0, \ldots, n[\cup \{\infty\}$
 - Lattice structure: min, max, ...
- Complexity:
 - LC (and CL) are NP-complete
 - IL is PSPACE-complete

• Counter model given by the level (A = D = 0 and B = C = 1)

- Build a sequent $\Gamma \vdash \Delta$ from a graph \mathcal{G}
 - $v \rightarrow w$ in \mathcal{G} : add $X_v \supset Y_w$ to Γ ;
 - $v
 ightarrow_f w$: add $(\neg \neg f) \supset (X_v \supset X_w)$ to Γ ;
 - $v \Rightarrow w$: add $X_w \supset X_v$ to Δ .
- Counter-model of built sequent $\Gamma \vdash \Delta$?

 $\Gamma \vdash \Delta$ has a counter-model in LC_n if and only if \mathcal{G} has an instance \mathcal{G}_{σ} containing no (n + 1)-alternating chain

• Size of $\Gamma \vdash \Delta$ linear in size of \mathcal{G}

Resource bounding with the LC logic

- Resource bounding problem for process equations
- Linear transformation from process equations to a graph
- Linear transformation from graph to formula (or sequent) of LC
- Resource bounding problem linearly transformed into a decision (counter-model) problem for LC_n
- Is there a reverse transformation ?
- Yes, by our previous results (IJCAR'04)

Example: Peirce's formula (1)

$$((A_5^+ \supset_3^- B_6^-) \supset_1^+ A_4^+) \supset_0^- A_2^-$$

- Build the bi-colored graph
- break cycles containing \Rightarrow

$$egin{array}{lll} 0 \Rightarrow \diamondsuit
ightarrow 0 & x & x \ 0 \Rightarrow \diamondsuit
ightarrow 3
ightarrow 4
ightarrow A
ightarrow 2
ightarrow 0 & x \ z+y+\overline{x} & x \ 2 \Rightarrow \diamondsuit
ightarrow 3
ightarrow 4
ightarrow A
ightarrow 2 & \overline{x}+z+y & \overline{x}+z+y \ \overline{x}+\overline{y} & \overline{x}+\overline{y} & \overline{x}+\overline{y} \end{array}$$

• Constraint for no \Rightarrow -cycle:

$$x.(z+y+\overline{x}).(\overline{x}+z+y).(\overline{x}+\overline{y})$$

• Solution:
$$x = z = 1$$
 and $y = 0$

Example: instance graph (2)

 $A_{\overline{2}}$

 B_6^-

B

- Intanciate with x = z = 1, y = 0
- Of course, there is no \Rightarrow -cycle!
- Redraw the graph by levels:

- Counter-model: $\llbracket A \rrbracket = 1$, $\llbracket B \rrbracket = 0$
- In LC and LC_2 but not in $CL = LC_1$

• How to decide LC_n in practice ?

