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Abstract

Separation Logic (SL) is a logical formalism for reasoning about programs that use pointers to
mutate data structures. SL has proven itself successful in the �eld of program veri�cation over
the past �fteen years as an assertion language to state properties about memory heaps using
Hoare triples. Since the full logic is not recursively enumerable, most of the proof-systems and
veri�cation tools for SL focus on the decidable but rather restricted symbolic heaps fragment.
Moreover, recent proof-systems that go beyond symbolic heaps allow either the full set of connect-
ives, or the de�nition of arbitrary predicates, but not both. In this work, we present a labelled
proof-system calledGMSL that allows both the de�nition of arbitrary inductive predicates and
the full set of SL connectives.
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1 Introduction

Separation Logic (SL) is a logic for reasoning about programs that use pointers to manipulate
and mutate (possibily shared) data structures [10, 14]. It was mainly designed to be used
in the �eld of program veri�cation as an assertion language to state properties (invariants,
pre- and post-conditions) about memory heaps using Hoare triples. Some problems about
pointer management, such as aliasing, are notoriously di�cult to deal with and SL has proven
successful on that matter over the past �fteen years. Building upon the Logic of Bunched
Implications ( BI ) [13], from which it borrows its spatial connectives � (�star�) and �� (�magic
wand�), SL adds the 7! predicate (�points-to�), with x 7! y meaning that y is the content
of the memory cell located at addressx. One of the most interesting feature ofSL (and a
signi�cant part of its success) is its built-in ability for local reasoning, which allows program
speci�cations to be kept tighter as they need not consider (or worry about) memory cells
that are outside the scope of the program.

However, being able to specify tight and concise properties about memory heaps more
easily would remain of a somewhat limited interest if such speci�cations could not be veri�ed
or proved. It is therefore very important to provide (preferably e�cient) proof-methods
and automated veri�cation tools for SL and much e�ort has been put on that subject
recently. However, the task is not trivial because although the quanti�er-free fragment ofSL
is decidable, full SL is not [5, 6, 11]. Full SL is not even recursively enumerable, so that no
proof-system for SL can be �nite, sound and complete at the same time. The undedicability
of SL entails that most of the existing proof-systems and veri�cation tools consider only
restricted (but usually decidable) fragments of SL, of which the symbolic heapsfragment [2]
is the most popular. Unfortunately, since the multiplicative implication �� has been left
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out, the symbolic heaps fragment cannot express the properties about heap extension that
most of the induction hypotheses used in the literature for proving properties about pointer
manipulating programs require. Even without considering such formulas, the symbolic heaps
fragment cannot express many useful properties about heaps (such as cross-split or partial
determinism for example) that are used isASL to distinguish classes of models and variants
of the logic.

In Section 2 we recall the basic notions about the syntax and semantics ofSL and illustrate
its use as an assertion language to specify properties about mutable data structures. In
Section 3 we discuss our motivations and related works. In Section 4 we introduceGMSL , our
labelled proof-system which combines both Brotherston's cyclic-proofs [4] with Hou & Gore
& Tiu's labelled proof-system LSSL [9]. Like LSSL and unlike CyclistSL , GMSL supports the
full set of SL connectives. LikeCyclistSL and unlike LSSL , it also allows arbitrarily de�ned
inductive predicates. We �nally show that all the dedicated rules for list segments in LSSL

are derivable in GMSL , thus proving that GMSL is strictly more expressive thanLSSL .

2 Separation Logic

Separation Logic (SL) is a concrete model of the boolean variant ofBI called BooleanBI
(BBI ) [11] in which worlds are pairs of memory heaps and stacks calledstates. There are
many variants of SL. In this section we follow Reynolds's original presentation ofSL [14]
(which was called �Pointer Logic� back then) without the machinery of pointer arithmetic.

In Reynolds's presentation, the set ofvaluesV al is the set of integers.V al contains two
disjoint subsets Loc and Atoms. Loc contains an in�nite number of locations (addresses of
memory cells), while Atoms denote constants such asnil (which is always assumed to be
present). Besides values, we need an in�nite and countable setV ar of program variables.

A stack (or store) s : V ar ! f in V al is a �nite total function that associates values
to program variables and aheap h : Loc * f in V al � V al is a �nite partial function that
associates pairs of values to locations1. The heap the domain of which is empty is called the
empty heapand is denoted� . We respectively denoteHeaps and Stacks the sets of all heaps
and all stacks. A state is a pair (s; h) where s is a stack andh is a heap.

We use the notation h1# h2 to denote that the heapsh1 and h2 have disjoint domains.
Heap composition h1 � h2 is only de�ned when h1# h2 and is then equal to the union of
functions with disjoint domains. Heap composition extends to states as follows:

(s1; h1) � (s2; h2) = ( s1; h1 � h2) i� s1 = s2 and h1# h2:

An expressione can either be a valuev or a program variable x and is interpreted w.r.t.
a stack s so that JxKs = s(x) and JvKs = v.

The language ofSL contains equality, two �points-to� predicates
1

7! and
2

7! (we shall
often drop the superscripts to improve readability), the connectives ofBI and the existential
quanti�er. It is de�ned as follows:

P ::= e
1

7! e j e
2

7! e1; e2 j e1 = e2 where e, e1 and e2 are expressions,
F ::= P j I j F � F j F �� F j > j ? j F ^ F j F ! F j F _ F j 9u:F

As usual, negation : F can be de�ned as(F ! ? ). One could also de�ne> as (? ! ? )
instead of having it as primitive.

1 For convenience, in this paper, we also work with heaps of the form h : Loc * f in V al.
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The semantics of the formulas is given by a forcing relation of the form(s; h) j= F that
asserts that the formula F is true in the state (s; h), where s is a stack andh is a heap. It is
also required that the free variables ofF are included in the domain of s.

I De�nition 1. The semantics of the formulas is de�ned as follows:
(s; h) j= e1 = e2 i� Je1Ks = Je2Ks

(s; h) j= e7! e1 i� dom(h) = f JeKsg and h(JeKs) = hJe1Ks i
(s; h) j= e7! e1; e2 i� dom(h) = f JeKsg and h(JeKs) = hJe1Ks; Je2Ks i
(s; h) j= > always
(s; h) j= ? never
(s; h) j= A ^ B i� (s; h) j= A and (s; h) j= B
(s; h) j= A _ B i� (s; h) j= A or (s; h) j= B
(s; h) j= A ! B i� (s; h) j= A implies (s; h) j= B
(s; h) j= I i� h = �
(s; h) j= A � B i� 9h1; h2: h1# h2, h1 � h2 = h, (s; h1) j= A and (s; h2) j= B
(s; h) j= A �� B i� 8h1: if h 1# h and (s; h1) j= A then (s; h � h1) j= B
(s; h) j= 9u:A i� 9v 2 V al: ([ s j u 7! v ]; h) j= A

In the previous de�nition, the notation [ s j u 7! v ] denotes the stacks0 such that

s0(u) = v and s0(x) = s(x) if x 6= u:

As usual, an entailment F j= G between formulas holds if and only if for all states(s; h),
if (s; h) j= F then (s; h) j= G. The formula F is valid in SL, written j= F , if and only if
> j= F , i.e., for all states (s; h), (s; h) j= F . By the semantics of! , we can relate the notions
of entailment and validity as follows: F j= G if and only if j= F ! G.

The actual use ofSL is as an assertion language to state invariants, pre- and post-condition
in Hoare triples [13]. For example, one can de�ne the commanddispose(e) that deallocates
a location (thus creating dangling pointers) by the axiom f P � 9 u: e 7! u gdispose(e) f P g
where u is not free in e. The ability to state low-level properties about memory states (such
as dispose) and Hoare Logic programming axioms usingSL's assertion language is already
very useful, mainly becauseSL has built-in facilities for local reasoningthat allows a program
speci�cation to do without cumbersome conditions about memory cells that are outside
the program's footprint [ 13]. However, SL only achieves its full potential w.r.t. program
veri�cation when moving to high-level properties about data structures that are mutated
by pointer-manipulating programs. Most of these data structures are inductive and can be
expressed usingSL's assertion language enriched with inductive predicates. For example,
one can de�ne an acyclic singly-linked list segmentls(e1; e2) that starts at address e1 and
ends with a memory cell containinge2 as follows:

ls(e1; e2) def= ( e1 = e2 ^ I ) _ ( e1 6= e2 ^ 9 u:( e1 7! u � ls(u; e2)) )

Such a formula states that a memory heap corresponds to an empty list (a list with identical
starting and ending points) if it is empty and corresponds to a non-empty list segment (with
distinct starting and ending points e1 and e2) if it can be split into two disjoints heaps, one
being the �rst node of the list segment located at addresse1 and pointing to addressu, the
second one corresponding to a list segment that starts at addressu and ends with a memory
cell containing e2.

A fairly standard example of a high-level property about list segments is a property
stating that the combination of a heap that represents a list segmentls(x; x 0) with a disjoint
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heap that represents a list segmentls(x0; y) should result in a heap that represents a list
segmentls(x; y). The corresponding entailment is the following:

(LC ) def= ls(x; x 0) � ls(x0; y) j= ls(x; y)

However, as intuitive and reasonable as it might seem, such a property is not valid inSL
when ls represents acyclic list segments. The invalidity of(LC ) comes from the fact that two
acyclic list segmentsls(x; x 0) and ls(x0; y) can give rise to what is often called apanhandle list,
i.e., a list that contains a cycle after a possibly empty acyclic initial segment. A panhandle
list occurs whenevery in the second list segment points to an address occurring in the �rst
list segment.

In order to obtain a valid high-level property about concatenation of acyclic list segments,
one needs to strengthen(LC ) so as to prevent panhandle lists which leads to the following
entailment:

(ALC ) def= ( ls(x; x 0) ^ : (( ls(y; y0) ^ : I) �� ? )) � ls(x0; y) j= ls(x; y)

The subformula : (( ls(y; y0) ^ : I) �� ? ) ensures that it is not impossible to extend the
heap representing the �rst list segment ls(x; x 0) with a non-empty list segment starting at
addressy, which by the semantics of�� implies that y cannot be an address occurring in
ls(x; x 0). Let us note that the entailment would not remain valid without : I enforcing the
non-emptiness ofls(y; y0) since the non-emptiness ofls(y; y0) is what ensures that y is an
(allocated) address.

Another interesting entailment using �� is the following:

(ALH ) def= ls(x; y) �� ls(x; z) j= ls(y; z)

This entailment expresses the fact that if the current heap can be extended with an acyclic list
segmentls(x; y) so as to represent an acyclic list segmentls(x; z) then it currently represents
an acyclic list segmentls(y; z).

3 Motivation and Related Work

Our motivation in this paper is to discuss how to obtain a proof-system forSL with both
the full set of connectives and the ability to de�ne reasonably general arbitrary inductive
predicates. We do so by proposing a labelled proof-system with inductive rules sets and the
notion of cyclic proofs.

Although a cyclic proof-system treating generalSL formulas appears in [3], our work
is original for several reasons we now discuss. The proof-system used in [3] is the purely
syntactic bunched sequent calculus LBI devised for standard intuitionisticBI in [12]. However,
the work in [3] considers a classical (point-wise) semantics for the additive connectives and
is therefore actually a contribution to the proof-theory of Boolean BI , not BI (the title of
the paper is thus a bit misleading on this point). Using an intuitionistic proof-system with
a classical semantics does not impair soundness, as any theorem ofBI is also a theorem
of BBI , but it severely and unnecessarily impairs completeness since any theorem ofBBI
that is not also a theorem of BI cannot be proved with the proof-system described in [3].
The paper also considers an ordinary (non-inductive) points-to predicate2 which is then

2 Let us remark that this points-to predicate is never actually precisely de�ned.
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used to de�ne a binary inductive predicate ls(x; y) that captures (possibly cyclic) segments
of singly-linked lists. While this approach is suitable as an illustration of how the notions
introduced for Boolean BI could be further developed to handle the case ofSL, it still only
remains a somewhat rough and too general approximation that does not take into account
all the subtleties of SL as a very speci�c concrete model of BooleanBI admitting a handful
of key properties. One such key property is disjointness:(x 7! y) � (x 7! z) can never hold
of any heap as it would require that two disjoint heaps share the locationx. Therefore,
((x 7! y) � (x 7! z)) ! A is valid in SL for any formula A, but the proof-system in [3] cannot
prove it. Moreover, SL also comes in two �avours: an intuitionistic and a more widely used
classical one. However, as opposed to what happens forBI w.r.t. BBI , there are valid formulas
of intuitionistic SL that are not valid in classical SL, for instance ((x 7! y) � A) ! (x 7! y)
is valid for any A in intuitionistic SL, but not in classical SL. We could not �nd in [ 3] any
discussion on whether, in the particular case ofSL, the presented intuitionistic proof-system
is actually sound w.r.t. classicalSL.

For all the reasons discussed in the previous paragraph, although [3] remains a signi�cant
contribution to the proof-theory of Boolean BI, its stretched use of a too general points-to
predicate leaves its application to (concrete classical)SL unclear and unsatisfactory. The case
of classicalSL is handled speci�cally in [4]. For example, the proof-system presented in [4],
which is implemented in a tool calledCyclistSL , has dedicated rules for disjointness (

1
7! and

2
7! ). However, the logical fragment addressed in [4] is a signi�cant restriction of the one in [3]
as additive conjunction, additive implication and multiplicative implication (magicwand)
are discarded. Although sometimes claimed straightforward, extending [4] to the full set of
SL connectives would actually be quite di�cult. It is wisely and clearly pointed out in [ 3]
that the use of an intuitionistic sequent calculus with a classical semantics is not guided by
philosophical reasons, but by technical ones as the de�nition of a multi-conclusioned bunched
sequent calculus for BooleanBI would require the formulation of an appropriate notion of
disjunctive multiplication (dual to BI multiplicative conjunction), something which is far
from trivial. Indeed, so far and to our current knowledge, there exists no true Gentzen style3

purely syntactic multi-conclusioned bunched sequent calculus for BooleanBI . In our opinion,
trying to handle the full set of SL connectives in a purely syntactic sequent calculus is not
the way to go, which is why we introduce a label-based proof-system.

The �rst proof-system for SL supporting the full set of SL connectives was our labelled
tableau systemTSL [8]. TSL uses labels that represents heaps and captures the properties of
the heap model inside a graphical structure called theresource graphinduced by a closure
operator on labels w.r.t. a labelling algebra. Provability in TSL relies on the two notions of
structural and logical consistency. Structural consistency captures the various properties
of the heap model and involves notions such as points-to distributions and measures of the
size of (the domain of) a heap. For simplicity, [8] also considers a fragment ofSL where only
locations can occur on the left-hand side of a points-to predicate. In [9], Hou & Goré & Tiu
introduce a labelled sequent calculusLSSL with various dedicated proof rules4for two kinds
of data structures: acyclic singly-linked list segments and binary trees. Without the rules
for inductive predicates, LSSL can be seen as a sequent-style reformulation ofTSL where
structural aspects (resource graphs operations and points-to distributions) are translated
into explicit structural and pointer rules, with minor re�nements to handle heap extension
and values on the left-and side of points-to predicates. One valuable contribution of [9] is an

3 We do not count display or deep sequent calculi as true Gentzen style sequent calculi.
4 Eight rules for acyclic singly-linked list segments, six rules for binary trees.
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h� . h ; G; � ` �
U

G ` �

h3 h5 . h 0 ; h2 h4 . h 5 ; h1 h2 . h 0 ; h3 h4 . h 1 ; G; � ` �
A

h1 h2 . h 0 ; h3 h4 . h 1 ; G; � ` �

h2 h1 . h 0 ; h1 h2 . h 0 ; G; � ` �
E

h1 h2 . h 0 ; G; � ` �

�� . h 2 ; G[�=h 1 ]; � [�=h 1 ] ` � [�=h 1 ]
D

h1 h1 . h 2 ; G; � ` �

�h 2 . h 2 ; G[h2 =h1 ]; � [h2 =h1 ] ` � [h2 =h1 ]
Eq 1

�h 1 . h 2 ; G; � ` �

�h 2 . h 2 ; G[h1 =h2 ]; � [h1 =h2 ] ` � [h1 =h2 ]
Eq 2

�h 1 . h 2 ; G; � ` �

h1 h2 . h 0 ; G[h0 =h3 ]; � [h0 =h3 ] ` � [h0 =h3 ]
P

h1 h2 . h 0 ; h1 h2 . h 3 ; G; � ` �

h1 h2 . h 0 ; G[h2 =h3 ]; � [h2 =h3 ] ` � [h2 =h3 ]
C

h1 h2 . h 0 ; h1 h3 . h 0 ; G; � ` �

h5 h6 . h 1 ; h7 h8 . h 2 ; h5 h7 . h 3 ; h6 h8 . h 4 ; h1 h2 . h 0 ; h3 h4 . h 0 ; G; � ` �
CS

h1 h2 . h 0 ; h3 h4 . h 0 ; G; � ` �

G[�=h 1 ; �=h 2 ]; � [�=h 1 ; �=h 2 ] ` � [�=h 1 ; �=h 2 ]
IU

h1 h2 . � ; G; � ` �

Side conditions:
Each label being substituted cannot be � .
In A , the label h5 does not occur in the conclusion.
In CS, the labels h5 ; h 6 ; h 7 ; h 8 do not occur in the conclusion.

Figure 1 Structural rules in GM SL .

implementation of the proof-system in a tool called Separata+ with a proof-strategy which
guarantees termination when restricted to the symbolic heaps fragment. However, in our
opinion, devising dedicated sets of rules to handle inductive predicates is an approach that is
bound to show scalability problems given the great variety of data structures encountered in
high-level properties and given the fact that even the most simple inductive data structure,
namely lists, admit a huge amount of variants: singly-linked, doubly-linked, with or without
cycles,etc. For example, sincels represents acyclic list segments inLSSL , LSSL can prove
the (ALC ) entailment but cannot prove (LC ), as it would otherwise imply the unsoundness
of the system. It also cannot prove(ALH ). On the other hand, while (LC ) is provable in
CyclistSL , neither (ALC ), nor (ALH ) are expressible �as is� syntactically in CyclistSL as it
lacks multiplicative implication and additive conjunction (although there are other ways to
express the content of(ALC ) using a more generalls(x; y; z) inductive predicate).

4 The GMSL Proof-System

In this section we introduceGMSL , our labelled proof-system with arbitrarily de�ned inductive
predicates. The core of theGMSL labelled proof-system consists of the structural, logical
and pointer rules depicted in Figures 1, 2 and 3 and can be viewed as an extension of Hou &
Goré & Tiu's LSSL proof-system [9] without the rules for data structures. LSSL incorporates
the graph relations of TSL [8] directly into the sequents instead of maintaining a separate
resource graph. Therefore, the sequents take the formG; � ` � . The � part contains only
labelled formula h : A, where h is a label representing a heap andA is a SL formula. The G
part contains only ternary relations h1h2 . h 0 meaning that the heaph0 can be split into two
disjoint subheapsh1 and h2 (or conversely that combining the two heapsh1 and h2 yields
the heap h0).

Like LSSL , GMSL has label and expression substitutions.Label substitutionsare written
[ h1=h0

1; : : : ; hn =h0
n ] meaning that h0

i gets replaced with hi . Expression substitutionsare
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mappings [ x1 7! e1; : : : ; xn 7! en ] from program variables to expressions meaning thatx i

gets replaced withei . The result of applying an expression substitution� to the expressione
is written e� . Equality betweens expressions is handled via standard syntactic uni�cation as
in logic programming. Therefore, given pairs of expressionsE = f (e1; e0

1); : : : ; (en ; e0
n ) g, a

uni�er is an expression substitution� such that ei � = e0
i � . The most general uni�er of E is

de�ned as usual and written mgu(E ) when it exists. In order to simplify comparisons with
LSSL , we consider a fragment wherenil is the only constant.

The two logical rules
2= L and

2= R , as well as the structural rule IU and the two pointer
rules 7! L 6 and 7! L 7 are speci�c to GMSL and do not appear in LSSL . The rules

2= L and
2= R

capture the fact that equality does not depend on heaps. The properties of heap composition
in SL (unit, associativity, exchange, disjointness, equality, partial determinism, cancellativity
and cross-split) are explicity captured into the remaining structural rules5. The structural
rule IU explicitly captures the fact that the empty heap is an indivisible unit for heap
composition in SL. The pointer rule 7! L 6 states that there is only one way to split a heaph0

having the addresse1 in its domain so that the �rst component of the splitting is the singleton
heap the domain of which ise1. The pointer rule 7! L 7 is a form of cross-split that captures
the fact that whenever a heaph0 admits a �rst splitting h0 = h1 � h2 with h1 being the
singleton heape1 7! e2 and a second splittingh0 = h3 � h4 with h3 being the singleton heap
e3 7! e4 then, provided that e1 is not the same address ase3, h0 has at least the two distinct
addressese1 and e3 in its domain and can thus be rearranged so thath0 = h1 � h3 � h5 for
some (possibly empty) heaph5, from which it follows that h2 = h3 � h5 and h4 = h1 � h5.

4.1 Inductive De�nitions

We now follow [3] to extend GMSL with inductive de�nitions in the spirit of Martin-Löf
productions. Our de�nition of SL already contains the ordinary (non-inductive) predicates> ,
I, ? ,

1
7! and

2
7! . The intepretation of these n-any predicates as subsets of(Heaps� V aln ) are

as follows: J? K= ; , J> K= Heaps, JIK= f h j dom(h) = ;g , J
1

7! K= f (h; v1; v2) j dom(h) =
f v1g and h(v1) = v2g, J

2
7! K= f (h; v1; v2; v3) j dom(h) = f v1g and h(v1) = hv2; v3 ig .

We enrich the language ofSL with a (�xed) �nite set of inductive predicate symbols P1; : : : ; Pn

with arities a1; : : : ; an . We write x as a shorthand for tuples(x1; : : : ; xn ). and denote� n
i the

i th projection function on n-tuples such that � n
i (x1; : : : ; xn ) = x i .

I De�nition 2 (Inductive de�nition). An inductive de�nition of an inductive predicate P is
a set of production rules C1(x1) ) P (x1); : : : ; Ck (xk ) ) P (xk ) where k 2 N, x1,: : :,xk are
tuples of variables of appropriate length to match the arity of P and C1(x1),: : :,Ck (xk ) are
inductive clausesgiven by the grammar C(x) ::= P (x) j F̂ (x) j C(x) ^ C(x) j C(x) � C(x) j
F̂ (x) ! C(x) j F̂ (x) �� C(x) j 8xC (x) with F̂ (x) ranging over all formulas in which no
inductive predicates occur and whose free variables are contained inf xg.

Each production rule Ci (xi ) is read as a disjunctive clause of the de�nition of the inductive
predicate P. As in [3], the use of F̂ (x) on the left of implications in production rules is
designed to ensure monotonicity of the inductive de�nitions and we suppose that we have a
unique inductive de�nition for each inductive predicate.

An annotated production rule C
z

) P (x) is a production rule such that gathering all
the free variables inC and in x exactly results in the tuple z. The left and right part of a
production rule are respectively called itsbody and its head. An inductive de�nition is said

5 Those properties are captured as a closure operator on labels inT SL .



XX:8 Labelled Proofs for Separation Logic with Arbitrary Inductive Predicates

id a
G; � ; h : A ` h : A ; �

G; � ` h : A ; � G; � ; h : A ` �
cut a

G; � ` �

G; � ` h : ? ; �
? R

G; � ` �

G; � ; h : > ` �
> L

G; � ` �

G; � ` h : A ; �
: L

G; � ; h : : A ` �

G; � ; h : A ` �
: R

G; � ` h : : A ; �

? L
G; � ; h : ? ` �

G[�=h ]; � [�=h ] ` � [�=h ]
I L

G; � ; h : I ` �

I R
G; � ` � : I; �

G; � ` h : A ; � G; � ; h : B ` �
! L

G; � ; h : A ! B ` �

G; � ; h : A ` h : B ; �
! R

G; � ` h : A ! B ; �

G; � ; h : A; h : B ` �
^ L

G; � ; h : A ^ B ` �

G; � ` h : A ; � G; � ` h : B ; �
^ R

G; � ` h : A ^ B ; �

G; � ` h : A; h : B ; �
_ R

G; � ; h : A _ B ` �

G; � ; h : A ` � G; � ; h : B ` �
_ L

G; � ; h : A _ B ` �

h1 h2 . h 0 ; G; � ; h1 : A ; h2 : B ` �
� L

G; � ; h0 : A � B ` �

h1 h0 . h 2 ; G; � ; h1 : A ` h2 : B ; �
�� R

G; � ` h0 : A �� B ; �

h1 h2 . h 0 ; G; � ` h1 : A ; h0 : A � B ; � h 1 h2 . h 0 ; G; � ` h2 : B ; h0 : A � B ; �
� R

h1 h2 . h 0 ; G; � ` h0 : A � B ; �

h1 h0 . h 2 ; G; � ; h0 : A �� B ` h1 : A ; � h 1 h0 . h 2 ; G; � ; h0 : A �� B ; h2 : B ` �
�� L

h1 h0 . h 2 ; G; � ; h0 : A �� B ` �

G; � ; h : A [y=x ] ` �
9L

G; � ; h : 9x:A ` �

G; � ` h : A [e=x ]; h : 9x:A ; �
9R

G; � ` h : 9x:A ; �

G; � � ` ��
= L

G; � ; h : e1 = e2 ` �

= R
G; � ` h : e = e; �

G; � ; h0 : e1 = e2 ` �
2
= L

G; � ; h : e1 = e2 ` �

G; � ` h0 : e1 = e2 ; �
2
= R

G; � ` h : e1 = e2 ; �

Side conditions:
Each label being substituted cannot be � , each expression being substituted cannot be a constant.
In = L , � = mgu ( f e1 ; e2 g) .
in � L , �� R , the labels h1 and h2 do not occur in the conclusion.
In 9L , y is not free in the conclusion.

Figure 2 Logical rules in GM SL .
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7! L 1
G; � ; � : e1 7! e2 ` �

h1 h0 . h 2 ; G; � ; h1 : e1 7! e2 ` �
HE

G; � ` �

�h 0 . h 0 ; G[�=h 1 ; h 0 =h2 ]; � [�=h 1 ; h 0 =h2 ]; h0 : e1 7! e2 ` � [�=h 1 ; h 0 =h2 ]

h0 � . h 0 ; G[�=h 2 ; h 0 =h1 ]; � [�=h 2 ; h 0 =h1 ]; h0 : e1 7! e2 ` � [�=h 2 ; h 0 =h1 ]
7! L 2

h1 h2 . h 0 ; G; � ; h0 : e1 7! e2 ` �

7! L 3
h1 h2 . h 0 ; G; � ; h1 : e 7! e1 ; h2 : e 7! e2 ` �

G; � � ; h : e1 � 7! e2 � ` ��
7! L 4

G; � ; h : e1 7! e2 ; h : e3 7! e4 ` �

G[h1 =h2 ]; � [h1 =h2 ]; h1 : e1 7! e2 ` � [h1 =h2 ]
7! L 5

G; � ; h1 : e1 7! e2 ; h2 : e1 7! e2 ` �

NIL
G; � ; h : nil 7! e ` �

h3 h4 . h 1 ; h5 h6 . h 2 ; G; � ; h3 : e1 7! e2 ; h5 : e1 7! e3 ` � h 1 h2 . h 0 ; G; � ` �
HC

G; � ` �

h1 h2 . h 0 ; G; � � [h1 =h3 ; h 2 =h4 ]; h1 : e1 � 7! e2 � ` �� [h1 =h3 ; h 2 =h4 ]
7! L 6

h1 h2 . h 0 ; h3 h4 . h 0 ; G; � ; h1 : e1 7! e2 ; h3 : e1 7! e3 ` �

h1 h5 . h 4 ; h3 h5 . h 2 ;
h1 h2 . h 0 ; h3 h4 . h 0 ; G; � ; h1 : e1 7! e2 ; h3 : e3 7! e4 ` h : e1 = e3 ; �

7! L 7
h1 h2 . h 0 ; h3 h4 . h 0 ; G; � ; h1 : e1 7! e2 ; h3 : e3 7! e4 ` h : e1 = e3 ; �

Side conditions:
Each label being substituted cannot be � , each expression substituted cannot be a constant.
In 7! L 4 , � = mgu ( f (e1 ; e3 ) ; (e2 ; e4 )g) .

In 7! L 6 , � = mgu ( f e2 ; e3 g) .
In HE , h0 occurs in conclusion, h1 ; h 2 ; e1 are fresh.
In HC , h1 ; h 2 occur in the conclusion, h0 ; h 3 ; h 4 ; h 5 ; h 6 ; e1 ; e2 ; e3 are fresh in the premise.

Figure 3 Pointer rules in GM SL .

to be in normal form (or normal) whenever all its production rules share the same head and
the same annotation. It is straightforward to put any inductive de�nition into a normal form
by adding equalities and existential quanti�cations over the free variables of an annotated
production rule that occcur in its body but not in its head.

I De�nition 3 (Unfolding rules). Let C1
z

) P (x) ; : : : ; Ck
z

) P (x) be a normal inductive
de�nition of the inductive predicate symbol P. Then each production rule gives rise to a
right-unfolding rule and to one premiss of the single (multi-premiss) left-unfolding rule for P
(also called case-split rule):

G; � ` h : C i ; �
PR i

G; � ` h : P (x); �

G; � ; h : C1 ` � : : : G; � ; h : Cn ` �
PL

G; � ; h : P (x) ` �

Let us illustrate De�nition 3 with list segments. From now on, we shall write 	̀s for
arbitrary list segments and let ls denote only acyclic list segments. The inductive de�nition
for 	̀s goes as follows:

I
x

) 	̀s(x; x ) x 7! z � 	̀s(z; y)
x;y;z

) 	̀s(x; y)

which �rst gets normalized to obtain:

x = y ^ I
x;y

) 	̀s(x; y) 9u: x 7! u � 	̀s(u; y)
x;y

) 	̀s(x; y)
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G; � ` h : e1 = e2 ^ I; �
`	sR 1

G; � ` h : `	s(e1 ; e2 ); �

G; � ` h : 9u:e 1 7! u � `	s(u; e 2 ); �
`	sR 2

G; � ` h : `	s(e1 ; e2 ); �

G; � ; h : e1 = e2 ; h : I ` � G; � ; h : 9u:e 1 7! u � `	s(u; e 2 ) ` �
`	sL

G; � ; h : `	s(e1 ; e2 ) ` �

G; � ` h : e1 = e2 ^ I; �
lsR 1

G; � ` h : ls (e1 ; e2 ); �

G; � ` h : e1 6= e2 ^ (9u:e 1 7! u � ls (u; e 2 )); �
lsR 2

G; � ` h : ls (e1 ; e2 ); �

G; � ; h : e1 = e2 ; h : I ` � G; � ; h : e1 6= e2 ; h : 9u:e 1 7! u � ls (u; e 2 ) ` �
lsL

G; � ; h : ls (e1 ; e2 ) ` �

Figure 4 GM SL rules for list segments.

For ls, the inductive de�nition (where x 6= y is syntactic sugar for : (x = y)):

I
x

) ls(x; x ) x 6= y ^ (x 7! z � ls(z; y))
x;y;z

) ls(x; y)

gets normalized to

x = y ^ I
x;y

) ls(x; y) x 6= y ^ 9 u: x 7! u � ls(u; y)
x;y

) 	̀s(x; y)

Generalizing from variables to expressions and expanding additive conjunctions on the
left-hand side of sequents, we obtain the unfolding rules depicted in Figure 4 for list segments.

I De�nition 4. For any inductive predicate symbol Pi with arity ai de�ned by the production
rules C1(x1) ) P (x1); : : : ; Ck (xk ) ) P (xk ) we obtain a correspondingn-ary function
' i : } (Heaps � V ala i ) � : : : � } (Heaps � V alan ) ! } (Heaps � V ala i ) as follows:

' i (X) =
[

1� j � k

f (h; v) j (s[xj 7! v]; h) j= JPK7! X Cj (x j )g

where s is an arbitrary stack and j= JPK7! X is the satisfaction relation de�ned exactly as in
De�nition 1 except that JPi K= � n

i (X) for each i 2 f 1; : : : ; ng.

Any variables occurring in the right hand side but not the left hand side of the set
comprehension in the de�nition of ' i above are, implicitly, existentially quanti�ed over the
entire right hand side of the comprehension.

I De�nition 5. The de�nition set operator for P1; : : : ; Pn is de�ned as the operator � P ,
with domain and codomain } (Heaps� V ala1 ) � : : : � } (Heaps� V alan ) such that � P (X) =
(' 1(X) ; : : : ; ' n (X)) .

It is proved in [3] that the operator generated from a set of inductive de�nitions by De�ni-
tion 5 is monotone and therefore has a least �xed-point that can be iteratively approached by
approximants. First de�ne a chain of ordinal-indexed sets (� �

P ) � � 0 by trans�nite induction:
� �

P =
S

�<� � P (� �
P ) (note that this implies � �

P = ( ; ; : : : ; ; )). Then for each i 2 f 1; : : : ; ng,
the set P �

i = � n
i (� �

P ) is called the � -approximant of Pi . Finally, for each i 2 f 1; : : : ; ng,
the standard interpretation of the inductive predicate Pi is given by JPi K=

S
� P �

i and the
forcing relation in De�nition 1 is extended with the clause

(s; h) j= Pi (x1; : : : ; xn ) i� (h; Jx1Ks; : : : ; Jxn Ks) 2 JPi K:
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4.2 Labelled Cyclic Proofs

GMSL handles induction with the notion of labelled cyclic proofs. Although we reuse the
terminology of buds, companions and pre-proofs used in [3, 4], we adapt it in the context of
a labelled proof-system. Moreover, one key di�erence in that our soundness criterion to turn
a pre-proof into a cyclic proof is based on an argument relying on a measure of the size of
the heaps rather than on a global trace condition on traces following a path in a pre-proof.

I De�nition 6 (Pre-proof). Let D be a derivation in GMSL for a root sequentS. Each leaf
sequentB in D which is not the conclusion of an inference rule is called abud. A pre-proof
of a sequentS is a pair (D; R ) where D is a derivation the root of which is S and R is a
function which assigns to every budB in D a triple (C; �; � ) such that C�� � B 6, where C,
called a companion for B , is a sequent occurring beforeB in the branch of D containing B ,
� is an expression renaming substitution and� is a label renaming substitution.

Let us consider a denumerable setSV ar = f m0; m2; : : :g of size variablesand a (�xed)
injective function j � j : Heaps ! SV ar.

I De�nition 7 (Size constraints). A size constraint is an expression of the forms op s,
where op 2 f = ; 6= ; � ; <; � ; > g and s is a (non-empty) sum overN [ SV ar. A set M of size
constraints is consistent if it has a solution, i.e., there exists a measure � : SV ar ! N
satisfying all the size constraints inM . Given two sets of size constraintsM 1 and M 2, M 1

entails M 2, written M 1 j= M 2, if any solution of M 1 is also a solution ofM 2.

A GMSL sequent S = G; � ` � induces a setSize(S) de�ned as the smallest set of
size constraints such that if h1h2 . h 2 G then jhj = jh2j + jh1j 2 Size(S), if h : I 2 �
then jhj = 0 2 Size(S), if h : I 2 � then jhj > 0 2 Size(S), and if h : x

1
7! y 2 � or

h : x
2

7! y; z 2 � then jhj = 1 2 Size(S).

I De�nition 8 (Cyclic proof). A pre-proof (D; R ) of a sequentS is a (labelled) cyclic proof if
it satis�es the following condition: for each bud B in D, the assigned companionC = R (B )
contains at a least one inductive predicate symbolP such that Size(B ) j= fj hB j < jhC jg,
where hB and hC are the heaps labelling the same occurrence ofP7 in B and C respectively.

Figure 5 gives an example of a pre-proof for the(LC ) entailment in GMSL . The bud B
and companionC of this pre-proof are indicated by the (y) marks and respectively take the
following forms:

B
def= h4h2 . h 5; GB ; h4 : 	̀s(u; x0); h2 : 	̀s(x0; y); � B ` h5 : 	̀s(u; y)

C
def= h1h2 . h 0; h1 : 	̀s(x; x 0); h2 : 	̀s(x0; y) ` h0 : 	̀s(x; y)

Moreover, we haveC�� � B with � = [ h4=h1; h5=h0 ] and � = [ x 7! u ]. This pre-proof is a
cyclic proof because, in the budB , h3h4 . h 1 and h3 : x 7! u imply that jh1j = jh4j + 1 and
thus Size(B ) j= fj h4j < jh1jg for the �rst occurrence of the 	̀s predicate in B and C.

Another example is the following entailment which states that if a heap represents a list
segment ending with y, then y is not an address occurring in the heap and cannot point
anywhere (i.e., y is dangling):

(ALE ) def= ls(x; y) j= : (y 7! z � > )

6 Using inclusion allows us to do without weakening rules in GM SL .
7 Keeping track of the various occurrences of a predicate symbol can easily be done using indexes.
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id a
�h 2 . h 0 ; h2 : `	s(x; y ) ` h2 : `	s(x; y )

Eq 2
�h 2 . h 0 ; h2 : `	s(x; y ) ` h0 : `	s(x; y )

I L
h1 h2 . h 0 ; h1 : I; h2 : `	s(x; y ) ` h0 : `	s(x; y )

= L

h1 h2 . h 0 ; h1 : x = x 0; h1 : I; h2 : `	s(x 0; y ) ` h0 : `	s(x; y )

� 1

id a
h3 h5 . h 0 ; h2 h4 . h 5 ;
h3 h4 . h 1 ; h1 h2 . h 0 ;
h3 : x 7! u ; h4 : `	s(u; x 0); h2 : `	s(x 0; y ) ` h3 : x 7! u

� 2

� 1

� 2

(y)

h3 h5 . h 0 ; h4 h2 . h 5 ;
h3 h4 . h 1 ; h1 h2 . h 0 ;
h3 : x 7! u ; h4 : `	s(u; x 0) ; h2 : `	s(x 0; y ) ` h5 : `	s(u; y )

E
h3 h5 . h 0 ; h2 h4 . h 5 ;
h3 h4 . h 1 ; h1 h2 . h 0 ;
h3 : x 7! u ; h4 : `	s(u; x 0) ; h2 : `	s(x 0; y ) ` h5 : `	s(u; y )

� R
h3 h5 . h 0 ; h2 h4 . h 5 ;
h3 h4 . h 1 ; h1 h2 . h 0 ;
h3 : x 7! u ; h4 : `	s(u; x 0) ; h2 : `	s(x 0; y ) ` h0 : x 7! u � `	s(u; y )

A
h3 h4 . h 1 ; h1 h2 . h 0 ;
h3 : x 7! u ; h4 : `	s(u; x 0) ; h2 : `	s(x 0; y ) ` h0 : x 7! u � `	s(u; y )

9R
h3 h4 . h 1 ; h1 h2 . h 0 ;
h3 : x 7! u ; h4 : `	s(u; x 0) ; h2 : `	s(x 0; y ) ` h0 : 9u:x 7! u � `	s(u; y )

`	sR 2
h3 h4 . h 1 ; h1 h2 . h 0 ;
h3 : x 7! u ; h4 : `	s(u; x 0) ; h2 : `	s(x 0; y ) ` h0 : `	s(x; y )

� L

h1 h2 . h 0 ; h1 : x 7! u � `	s(u; x 0) ; h2 : `	s(x 0; y ) ` h0 : `	s(x; y )
9L

h1 h2 . h 0 ; h1 : 9u:x 7! u � `	s(u; x 0) ; h2 : `	s(x 0; y ) ` h0 : `	s(x; y )
`	sL

(y) h1 h2 . h 0 ; h1 : `	s(x; x 0) ; h2 : `	s(x 0; y ) ` h0 : `	s(x; y )
� L

h0 : `	s(x; x 0) � `	s(x 0; y ) ` h0 : `	s(x; y )
! R

` h0 : ( `	s(x; x 0) � `	s(x 0; y )) ! `	s(x; y )

Figure 5 Cyclic proof of ( 	̀s(x; x 0) � 	̀s(x0; y)) ! 	̀s(x; y ) in GM SL .



Didier Galmiche and Daniel Méry XX:13

7! L 1
� : x = y ; � : y 7! z `

IU
h1 h2 . � ;
� : x = y ; h1 : y 7! z `

I L
h1 h2 . h 0 ; h0 : I;
h0 : x = y ; h1 : y 7! z `

(y)

h1 h5 . h 4 ; h3 h5 . h 2 ;
h3 h4 . h 0 ; h1 h2 . h 0 ;
h0 : x 6= y ; h3 : x 7! u ; h4 : ls (u; y ) ; h1 : y 7! z `

7! L 7
h3 h4 . h 0 ; h1 h2 . h 0 ;
h0 : x 6= y ; h3 : x 7! u ; h4 : ls (u; y ) ; h1 : y 7! z `

� L

h1 h2 . h 0 ; h0 : x 6= y ; h0 : x 7! u � ls (u; y ) ; h1 : y 7! z `
9L

h1 h2 . h 0 ; h0 : x 6= y ; h0 : 9u:x 7! u � ls (u; y ) ; h1 : y 7! z `
lsL

(y) h1 h2 . h 0 ; h0 : ls (x; y ) ; h1 : y 7! z `
> L

h1 h2 . h 0 ; h0 : ls (x; y ); h1 : y 7! z ; h2 : > `
� L

h0 : ls (x; y ); h0 : ( y 7! z � > ) `
: R

h0 : ls (x; y ) ` h0 : : (y 7! z � > )
! R

` h0 : ls (x; y ) ! : (y 7! z � > )

Figure 6 Cyclic proof of (ls(x; y ) ! : (y 7! z � > )) in GM SL .

(ALE ) is valid in Reynold's semantics if and only if for all states (s; h):

(s; h) j= ls(x; y) implies (s; h) 6j= y 7! z � >

(ALE ) is obviously not valid for arbitrary list segments since a panhandle list needs to havey
pointing back somewhere in the list. However,(ALE ) is valid for acyclic list segments (the
proof is in Appendix B).

A pre-proof of (ALE ) in GMSL is given in Figure 6. The bud B and companionC of
this pre-proof are indicated by the (y) marks and respectively take the forms:

B
def= h1h5 . h 4; GB ; h4 : ls(u; y); h1 : y 7! z; � B ` � B

C
def= h1h2 . h 0; h0 : ls(x; y); h1 : y 7! z ` � B

Moreover, we haveC�� � B with � = [ h5=h2; h4=h0 ] and � = [ x 7! u ]. This pre-proof is
also a cyclic proof because, in the budB , h3h5 . h 2 and h3 : x 7! u imply that jh5j < jh2j
and it then follows from h1h2 . h 0 and h1h5 . h 4 that Size(B ) j= fj h4j < jh0jg.

I Theorem 9. If there is a cyclic proof of ` h0 : F in GMSL , then F is valid in SL.

Proof. (Sketch) Proving the soundness ofGMSL requires two things: �rst proving the local
soundness of the proof-rules and then proving the soundness of the cyclic mechanism.

A label mappingfor a labelled sequentS = G; � ` � is a function � mapping each heap
label in the sequent to an actual heap of the heap model ofSL and such that � (� ) = � and
for all hi hj . h k 2 G, � (hi )� (hj ) = � (hk ). A realization for S is a pair (s; � ) where s is a
stack and � a label mapping for S such that for all hi : A 2 � , (s; � (hi )) j= A and for all
hi : A 2 � , (s; � (hi )) 6j= A. S is realizable if there is a realization for S. Local soundness
follows the standard pattern of proving that every proof-rule preserves realizability (i.e.,
that the realizability of the conclusion of a proof-rule entails the realizability of at least
one of its premisses) and has already been proven for the most part of the proof-rules in
TSL [8] and LSSL [9]. The new proof-rules ofGMSL are easily proven along the lines of their
intuitive justi�cations at the beginning of Section 4. The local soundness of the unfolding
rules obtained by De�nition 3 is an easy consequence of the production rules being read as a
disjunction

W
i Ci of inductive clauses.
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G; � [e2 7! e1 ] ` � [e2 7! e1 ]
LS1

G; � ; � : ls (e1 ; e2 ) ` �

LS2
G; � ` � : ls (e; e); �

G; � ; h : I ` �
LS3

G; � ; h : ls (e; e) ` �

G; � [e 7! nil ]; h : I ` � [e 7! nil ]
LS4

G; � ; h : ls (nil; e ) ` �

G; � � 1 ; h : I ` �� 1 G; � � 2 ; h : ls (e1 � 2 ; e2 � 2 ) ` �� 2
LS5

G; � ; h : ls (e1 ; e2 ); h : ls (e3 ; e4 ) ` �

h1 h2 . h 0 ; G; � ; h1 : ds(e1 ; e2 ); h0 : ls (e1 ; e3 ); h2 : ls (e2 ; e3 ) ` �
LS6

h1 h2 . h 0 ; G; � ; h1 : ds(e1 ; e2 ); h0 : ls (e1 ; e3 ) ` �

h1 h2 . h 0 ; G; � ; h1 : ds(e2 ; e3 ); h0 : ls (e1 ; e3 ); h2 : ls (e1 ; e2 ) ` �
LS7

h1 h2 . h 0 ; G; � ; h1 : ds(e2 ; e3 ); h0 : ls (e1 ; e3 ) ` �

h1 h2 . h 0 ; h1 h3 . h 4 ; G;
� ; h1 : ds(e1 ; e2 ); h3 : ad (e3 ) ` h2 : ls (e2 ; e3 ); h0 : ls (e1 ; e3 ); h : G (ad (e3 )); �

LS8
h1 h2 . h 0 ; h1 h3 . h 4 ; G;
� ; h1 : ds(e1 ; e2 ); h3 : ad (e3 ) ` h0 : ls (e1 ; e3 ); h : G (ad (e3 )); �

IC
h1 h2 . h 0 ; G; � ; h1 : ad (e1 ); h2 : ad (e1 )0 ` h3 : G (ad (e1 )); h3 : G (ad (e1 )0); �

Abbreviations and side conditions:
ds(e; e0) is either (e 7! e0) or ls (e; e0) .
ad (e) stands for one of (e 7! e0) , (e 7! e0; e00) , ls (e; e0) , for some e0, e00. Similarly for ad (e)0.

G (ad (e)) is de�ned as G (e 7! e0)
def
= G (e 7! e0; e00)

def
= ? , G ( ls (e; e0))

def
= ( e = e0) .

In LS5 , � 1 = mgu ( f (e1 ; e2 ) ; (e3 ; e4 )g) and � 2 = mgu ( f (e1 ; e3 ) ; (e2 ; e4 )g) .
In LS8 , if e3 is nil , then h1 h3 . h 4 , h3 : ad (e3 ) and h : G (ad (e3 )) in the conclusion are optional.
In LS8 , if ds(e1 ; e2 ) is (e1 7! e2 ) , then h1 h3 . h 4 , h3 : ad (e3 ) and h : G (ad (e3 )) in the conclusion are optional, on
the condition that h0 : ( e1 = e3 ) occurs in the RHS of the conclusion, for some h0.

Figure 7 Rules for acyclic list segments in LSSL .

Let us prove that the cyclic mechanism is globally sound. Suppose otherwise, then we
have a cyclic proof(D; R ) for a sequent` h0 : F but F is not valid in SL. Then the root
sequentS is not realizable and we have a branch inD with a bud B and a companionC
satisfying the conditions of De�nition 8. Travelling in D from S to B and then jumping
back to C to cycle all over again betweenC and B , we can construct an in�nite sequence of
sequentsS = ( Si )( i 2 N) with S0 = S. It then follows from local soundness and the fact that
S0 is not realizable that no sequent in(Si )( i 2 N) can be realizable. Moreover, there exists a
predicate symbol P such that each time S reaches an occurrence of the budB , the heap
associated with this occurrence ofP in B has a size strictly lower than the size of the heap
associated with the same occurrence ofP in the previous occurrence ofC and B in S. Thus,
we can construct an in�nite sequence of heaps the size of which is strictly decreasing, which
is impossible because, by de�nition, the size of a heap, which is the size of its (�nite) domain,
cannot be lower than 0. J

I Theorem 10. The rules for lists in LSSL (given in Figure 7) are derivable in GMSL .

Proof. The detailed proof is in Appendix A. J
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A Proofs of LSSL acyclic list segment rules in GMSL

In this section we prove that all the rules of LSSL for acyclic list segments depicted in Figure 7
are derivable in GMSL .

1. Derivation of LS1

G; � [ e2 7! e1 ] ` � [ e2 7! e1 ]
= L

G; � ; � : e1 = e2 ` �
I L

G; � ; � : e1 = e2 ; � : I ` �

7! L 1
G; � ; � : e1 6= e2 ; � : e1 7! u ; � : ls (u; e 2 ) ` �

IU
h1 h2 . � ; G; � ; � : e1 6= e2 ; h1 : e1 7! u ; h2 : ls (u; e 2 ) ` �

� L

G; � ; � : e1 6= e2 ; � : e1 7! u � ls (u; e 2 ) ` �
9L

G; � ; � : e1 6= e2 ; � : 9u:e 1 7! u � ls (u; e 2 ) ` �
lsL

G; � ; � : ls (e1 ; e2 ) ` �

2. Derivation of LS2

= R
G; � ` � : e = e

I R
G; � ` � : I; �

^ R

G; � ` � : e = e ^ (9u:e 7! u � ls (u; e )); �
lsR 1

G; � ` � : ls (e; e); �

3. Derivation of LS3

G; � ; h : I ` �
= L

G; � ; h : e = e; h : I ` �

= R

G; � ; h : 9u:e 7! u � ls (u; e ) ` h : e = e; �
: L

G; � ; h : e 6= e; h : 9u:e 7! u � ls (u; e ) ` �
lsL

G; � ; h : ls (e; e) ` �

4. Derivation of LS4

G; � [ e 7! nil ]; h : I ` � [ e 7! nil ]
= L

G; � ; h : nil = e; h : I ` �

NIL
h1 h2 . h ; G; � ; h : e 6= nil ; h1 : nil 7! u ; h2 : ls (u; e ) ` �

� L

G; � ; h : e 6= nil ; h : nil 7! u � ls (u; e ) ` �
9L

G; � ; h : e 6= nil ; h : 9u:nil 7! u � ls (u; e ) ` �
lsL

G; � ; h : ls (nil; e ) ` �

5. The other cases are similar.

B Validity of (ALE )

Let us prove the validity of the following (ALE ) entaiment:

(ALE ) def= ls(x; y) j= : (y 7! z � > )

1. Trivial case: jhj = 0
We simply show that (s; h) 6j= y 7! z � > .
Let us suppose that (s; h) j= y 7! z � > . Then, there are wo heapsh1 and h2 such
that h1# h2, h = h1 � h2, (s; h1) j= y 7! z and (s; h2) j= > . Therefore jhj = 1 + jh2j,
which implies jhj > 0, a contradiction to the assumption that jhj = 0 in the trivial case.
Consequently, (s; h) 6j= y 7! z � > .
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2. Inductive case: jhj = n with n > 0
We use the following induction hypothesis:

8h: 8x; y; z: if jhj < n then (s; h) j= ls(x; y) implies (s; h) 6j= y 7! z � >

Let us now suppose that(s; h) j= ls(x; y). We show that (s; h) j= y 7! z � > .
Sincejhj > 0 implies (s; h) 6j= I , by de�nition of ls, (s; h) j= ls(x; y) implies:

(s; h) j= x 6= y ^ 9 u: x 7! u � ls(u; y)
, (s; h) j= x 6= y and (s; h) j= 9u: x 7! u � ls(u; y)
, (s; h) j= x 6= y and (s[u 7! v]; h) j= x 7! u � ls(u; y)
, (s; h) j= x 6= y and 9h1; h2: h1# h2; h = h1 � h2; (s[u 7! v]; h1) j= x 7! u;

and (s[u 7! v]; h2) j= ls(u; y)

From (s[u 7! v]; h1) j= x 7! u, we obtain jh1j = 1 . From h = h1 � h2, we obtain
jhj = jh1j + jh2j = 1 + jh2j, and thus jh2j < h . From (s[u 7! v]; h2) j= ls(u; y), by
induction hypothesis, we obtain (s[u 7! v]; h2) 6j= y 7! z � > .
From (s[u 7! v]; h2) 6j= y 7! z � > , we obtain (s; h2) 6j= y 7! z � > . Therefore, since
h = h1 � h2, the only way to have (s; h) j= y 7! z � > would be that (s; h1) j= y 7! z, which
cannot be the case because

(s; h) j= x 6= y implies s(x) 6= s(y) and
(s[u 7! v]; h1) j= x 7! u implies that s(x) is the only address in the domain of the
heap h1.

We can then conclude that (s; h) 6j= y 7! z � > .
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