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Abstract
Separation Logic (SL) is a logical formalism for reasoning about programs that use pointers to
mutate data structures. SL has proven itself successful in the field of program verification over
the past fifteen years as an assertion language to state properties about memory heaps using
Hoare triples. Since the full logic is not recursively enumerable, most of the proof-systems and
verification tools for SL focus on the decidable but rather restricted symbolic heaps fragment.
Moreover, recent proof-systems that go beyond symbolic heaps allow either the full set of connect-
ives, or the definition of arbitrary predicates, but not both. In this work, we present a labelled
proof-system called GMSL that allows both the definition of arbitrary inductive predicates and
the full set of SL connectives.
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1 Introduction

Separation Logic (SL) is a logic for reasoning about programs that use pointers to manipulate
and mutate (possibily shared) data structures [10, 14]. It was mainly designed to be used
in the field of program verification as an assertion language to state properties (invariants,
pre- and post-conditions) about memory heaps using Hoare triples. Some problems about
pointer management, such as aliasing, are notoriously difficult to deal with and SL has proven
successful on that matter over the past fifteen years. Building upon the Logic of Bunched
Implications (BI) [13], from which it borrows its spatial connectives ∗ (“star”) and −∗ (“magic
wand”), SL adds the 7→ predicate (“points-to”), with x 7→ y meaning that y is the content
of the memory cell located at address x. One of the most interesting feature of SL (and a
significant part of its success) is its built-in ability for local reasoning, which allows program
specifications to be kept tighter as they need not consider (or worry about) memory cells
that are outside the scope of the program.

However, being able to specify tight and concise properties about memory heaps more
easily would remain of a somewhat limited interest if such specifications could not be verified
or proved. It is therefore very important to provide (preferably efficient) proof-methods
and automated verification tools for SL and much effort has been put on that subject
recently. However, the task is not trivial because although the quantifier-free fragment of SL
is decidable, full SL is not [5, 6, 11]. Full SL is not even recursively enumerable, so that no
proof-system for SL can be finite, sound and complete at the same time. The undedicability
of SL entails that most of the existing proof-systems and verification tools consider only
restricted (but usually decidable) fragments of SL, of which the symbolic heaps fragment [2]
is the most popular. Unfortunately, since the multiplicative implication −∗ has been left
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out, the symbolic heaps fragment cannot express the properties about heap extension that
most of the induction hypotheses used in the literature for proving properties about pointer
manipulating programs require. Even without considering such formulas, the symbolic heaps
fragment cannot express many useful properties about heaps (such as cross-split or partial
determinism for example) that are used is ASL to distinguish classes of models and variants
of the logic.

In Section 2 we recall the basic notions about the syntax and semantics of SL and illustrate
its use as an assertion language to specify properties about mutable data structures. In
Section 3 we discuss our motivations and related works. In Section 4 we introduce GMSL, our
labelled proof-system which combines both Brotherston’s cyclic-proofs [4] with Hou & Gore
& Tiu’s labelled proof-system LSSL [9]. Like LSSL and unlike CyclistSL, GMSL supports the
full set of SL connectives. Like CyclistSL and unlike LSSL, it also allows arbitrarily defined
inductive predicates. We finally show that all the dedicated rules for list segments in LSSL
are derivable in GMSL, thus proving that GMSL is strictly more expressive than LSSL.

2 Separation Logic

Separation Logic (SL) is a concrete model of the boolean variant of BI called Boolean BI
(BBI) [11] in which worlds are pairs of memory heaps and stacks called states. There are
many variants of SL. In this section we follow Reynolds’s original presentation of SL [14]
(which was called “Pointer Logic” back then) without the machinery of pointer arithmetic.

In Reynolds’s presentation, the set of values V al is the set of integers. V al contains two
disjoint subsets Loc and Atoms. Loc contains an infinite number of locations (addresses of
memory cells), while Atoms denote constants such as nil (which is always assumed to be
present). Besides values, we need an infinite and countable set V ar of program variables.

A stack (or store) s : V ar →fin V al is a finite total function that associates values
to program variables and a heap h : Loc ⇀fin V al × V al is a finite partial function that
associates pairs of values to locations1. The heap the domain of which is empty is called the
empty heap and is denoted ε. We respectively denote Heaps and Stacks the sets of all heaps
and all stacks. A state is a pair (s, h) where s is a stack and h is a heap.

We use the notation h1#h2 to denote that the heaps h1 and h2 have disjoint domains.
Heap composition h1 · h2 is only defined when h1#h2 and is then equal to the union of
functions with disjoint domains. Heap composition extends to states as follows:

(s1, h1) · (s2, h2) = (s1, h1 · h2) iff s1 = s2 and h1#h2.

An expression e can either be a value v or a program variable x and is interpreted w.r.t.
a stack s so that JxKs = s(x) and JvKs = v.

The language of SL contains equality, two “points-to” predicates 17→ and 27→ (we shall
often drop the superscripts to improve readability), the connectives of BI and the existential
quantifier. It is defined as follows:

P ::= e
17→ e | e 27→ e1, e2 | e1 = e2 where e, e1 and e2 are expressions,

F ::= P | I | F ∗ F | F −∗ F | > | ⊥ | F ∧ F | F → F | F ∨ F | ∃u.F
As usual, negation ¬F can be defined as (F → ⊥). One could also define > as (⊥ → ⊥)
instead of having it as primitive.

1 For convenience, in this paper, we also work with heaps of the form h : Loc ⇀fin V al.
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The semantics of the formulas is given by a forcing relation of the form (s, h) |= F that
asserts that the formula F is true in the state (s, h), where s is a stack and h is a heap. It is
also required that the free variables of F are included in the domain of s.

I Definition 1. The semantics of the formulas is defined as follows:
(s, h) |= e1 = e2 iff Je1Ks = Je2Ks
(s, h) |= e 7→ e1 iff dom(h) = {JeKs} and h(JeKs) = 〈 Je1Ks 〉
(s, h) |= e 7→ e1, e2 iff dom(h) = {JeKs} and h(JeKs) = 〈 Je1Ks, Je2Ks 〉
(s, h) |= > always
(s, h) |= ⊥ never
(s, h) |= A ∧B iff (s, h) |= A and (s, h) |= B

(s, h) |= A ∨B iff (s, h) |= A or (s, h) |= B

(s, h) |= A→ B iff (s, h) |= A implies (s, h) |= B

(s, h) |= I iff h = ε

(s, h) |= A ∗B iff ∃h1, h2. h1#h2, h1 · h2 = h, (s, h1) |= A and (s, h2) |= B

(s, h) |= A−∗B iff ∀h1. if h1#h and (s, h1) |= A then (s, h · h1) |= B

(s, h) |= ∃u.A iff ∃v ∈ V al. ([ s |u 7→ v ], h) |= A

In the previous definition, the notation [ s |u 7→ v ] denotes the stack s′ such that

s′(u) = v and s′(x) = s(x) if x 6= u.

As usual, an entailment F |= G between formulas holds if and only if for all states (s, h),
if (s, h) |= F then (s, h) |= G. The formula F is valid in SL, written |= F , if and only if
> |= F , i.e., for all states (s, h), (s, h) |= F . By the semantics of→, we can relate the notions
of entailment and validity as follows: F |= G if and only if |= F → G.

The actual use of SL is as an assertion language to state invariants, pre- and post-condition
in Hoare triples [13]. For example, one can define the command dispose(e) that deallocates
a location (thus creating dangling pointers) by the axiom {P ∗ ∃u. e 7→ u } dispose(e) {P }
where u is not free in e. The ability to state low-level properties about memory states (such
as dispose) and Hoare Logic programming axioms using SL’s assertion language is already
very useful, mainly because SL has built-in facilities for local reasoning that allows a program
specification to do without cumbersome conditions about memory cells that are outside
the program’s footprint [13]. However, SL only achieves its full potential w.r.t. program
verification when moving to high-level properties about data structures that are mutated
by pointer-manipulating programs. Most of these data structures are inductive and can be
expressed using SL’s assertion language enriched with inductive predicates. For example,
one can define an acyclic singly-linked list segment ls(e1, e2) that starts at address e1 and
ends with a memory cell containing e2 as follows:

ls(e1, e2) def= ( e1 = e2 ∧ I ) ∨ ( e1 6= e2 ∧ ∃u.( e1 7→ u ∗ ls(u, e2)) )

Such a formula states that a memory heap corresponds to an empty list (a list with identical
starting and ending points) if it is empty and corresponds to a non-empty list segment (with
distinct starting and ending points e1 and e2) if it can be split into two disjoints heaps, one
being the first node of the list segment located at address e1 and pointing to address u, the
second one corresponding to a list segment that starts at address u and ends with a memory
cell containing e2.

A fairly standard example of a high-level property about list segments is a property
stating that the combination of a heap that represents a list segment ls(x, x′) with a disjoint
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heap that represents a list segment ls(x′, y) should result in a heap that represents a list
segment ls(x, y). The corresponding entailment is the following:

(LC) def= ls(x, x′) ∗ ls(x′, y) |= ls(x, y)

However, as intuitive and reasonable as it might seem, such a property is not valid in SL
when ls represents acyclic list segments. The invalidity of (LC) comes from the fact that two
acyclic list segments ls(x, x′) and ls(x′, y) can give rise to what is often called a panhandle list,
i.e., a list that contains a cycle after a possibly empty acyclic initial segment. A panhandle
list occurs whenever y in the second list segment points to an address occurring in the first
list segment.

In order to obtain a valid high-level property about concatenation of acyclic list segments,
one needs to strengthen (LC) so as to prevent panhandle lists which leads to the following
entailment:

(ALC) def= (ls(x, x′) ∧ ¬((ls(y, y′) ∧ ¬I)−∗ ⊥)) ∗ ls(x′, y) |= ls(x, y)

The subformula ¬((ls(y, y′) ∧ ¬I) −∗ ⊥) ensures that it is not impossible to extend the
heap representing the first list segment ls(x, x′) with a non-empty list segment starting at
address y, which by the semantics of −∗ implies that y cannot be an address occurring in
ls(x, x′). Let us note that the entailment would not remain valid without ¬I enforcing the
non-emptiness of ls(y, y′) since the non-emptiness of ls(y, y′) is what ensures that y is an
(allocated) address.

Another interesting entailment using −∗ is the following:

(ALH) def= ls(x, y)−∗ ls(x, z) |= ls(y, z)

This entailment expresses the fact that if the current heap can be extended with an acyclic list
segment ls(x, y) so as to represent an acyclic list segment ls(x, z) then it currently represents
an acyclic list segment ls(y, z).

3 Motivation and Related Work

Our motivation in this paper is to discuss how to obtain a proof-system for SL with both
the full set of connectives and the ability to define reasonably general arbitrary inductive
predicates. We do so by proposing a labelled proof-system with inductive rules sets and the
notion of cyclic proofs.

Although a cyclic proof-system treating general SL formulas appears in [3], our work
is original for several reasons we now discuss. The proof-system used in [3] is the purely
syntactic bunched sequent calculus LBI devised for standard intuitionistic BI in [12]. However,
the work in [3] considers a classical (point-wise) semantics for the additive connectives and
is therefore actually a contribution to the proof-theory of Boolean BI, not BI (the title of
the paper is thus a bit misleading on this point). Using an intuitionistic proof-system with
a classical semantics does not impair soundness, as any theorem of BI is also a theorem
of BBI, but it severely and unnecessarily impairs completeness since any theorem of BBI
that is not also a theorem of BI cannot be proved with the proof-system described in [3].
The paper also considers an ordinary (non-inductive) points-to predicate2 which is then

2 Let us remark that this points-to predicate is never actually precisely defined.
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used to define a binary inductive predicate ls(x, y) that captures (possibly cyclic) segments
of singly-linked lists. While this approach is suitable as an illustration of how the notions
introduced for Boolean BI could be further developed to handle the case of SL, it still only
remains a somewhat rough and too general approximation that does not take into account
all the subtleties of SL as a very specific concrete model of Boolean BI admitting a handful
of key properties. One such key property is disjointness: (x 7→ y) ∗ (x 7→ z) can never hold
of any heap as it would require that two disjoint heaps share the location x. Therefore,
((x 7→ y) ∗ (x 7→ z))→ A is valid in SL for any formula A, but the proof-system in [3] cannot
prove it. Moreover, SL also comes in two flavours: an intuitionistic and a more widely used
classical one. However, as opposed to what happens for BI w.r.t. BBI, there are valid formulas
of intuitionistic SL that are not valid in classical SL, for instance ((x 7→ y) ∗A)→ (x 7→ y)
is valid for any A in intuitionistic SL, but not in classical SL. We could not find in [3] any
discussion on whether, in the particular case of SL, the presented intuitionistic proof-system
is actually sound w.r.t. classical SL.

For all the reasons discussed in the previous paragraph, although [3] remains a significant
contribution to the proof-theory of Boolean BI, its stretched use of a too general points-to
predicate leaves its application to (concrete classical) SL unclear and unsatisfactory. The case
of classical SL is handled specifically in [4]. For example, the proof-system presented in [4],
which is implemented in a tool called CyclistSL, has dedicated rules for disjointness ( 17→ and

27→). However, the logical fragment addressed in [4] is a significant restriction of the one in [3]
as additive conjunction, additive implication and multiplicative implication (magicwand)
are discarded. Although sometimes claimed straightforward, extending [4] to the full set of
SL connectives would actually be quite difficult. It is wisely and clearly pointed out in [3]
that the use of an intuitionistic sequent calculus with a classical semantics is not guided by
philosophical reasons, but by technical ones as the definition of a multi-conclusioned bunched
sequent calculus for Boolean BI would require the formulation of an appropriate notion of
disjunctive multiplication (dual to BI multiplicative conjunction), something which is far
from trivial. Indeed, so far and to our current knowledge, there exists no true Gentzen style3
purely syntactic multi-conclusioned bunched sequent calculus for Boolean BI. In our opinion,
trying to handle the full set of SL connectives in a purely syntactic sequent calculus is not
the way to go, which is why we introduce a label-based proof-system.

The first proof-system for SL supporting the full set of SL connectives was our labelled
tableau system TSL [8]. TSL uses labels that represents heaps and captures the properties of
the heap model inside a graphical structure called the resource graph induced by a closure
operator on labels w.r.t. a labelling algebra. Provability in TSL relies on the two notions of
structural and logical consistency. Structural consistency captures the various properties
of the heap model and involves notions such as points-to distributions and measures of the
size of (the domain of) a heap. For simplicity, [8] also considers a fragment of SL where only
locations can occur on the left-hand side of a points-to predicate. In [9], Hou & Goré & Tiu
introduce a labelled sequent calculus LSSL with various dedicated proof rules4for two kinds
of data structures: acyclic singly-linked list segments and binary trees. Without the rules
for inductive predicates, LSSL can be seen as a sequent-style reformulation of TSL where
structural aspects (resource graphs operations and points-to distributions) are translated
into explicit structural and pointer rules, with minor refinements to handle heap extension
and values on the left-and side of points-to predicates. One valuable contribution of [9] is an

3 We do not count display or deep sequent calculi as true Gentzen style sequent calculi.
4 Eight rules for acyclic singly-linked list segments, six rules for binary trees.
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hε . h;G;Γ ` ∆
U

G ` ∆

h3h5 . h0;h2h4 . h5;h1h2 . h0;h3h4 . h1;G;Γ ` ∆
A

h1h2 . h0;h3h4 . h1;G;Γ ` ∆

h2h1 . h0;h1h2 . h0;G;Γ ` ∆
E

h1h2 . h0;G;Γ ` ∆

εε . h2;G[ε/h1];Γ [ε/h1] ` ∆[ε/h1]
D

h1h1 . h2;G;Γ ` ∆

εh2 . h2;G[h2/h1];Γ [h2/h1] ` ∆[h2/h1]
Eq1

εh1 . h2;G;Γ ` ∆

εh2 . h2;G[h1/h2];Γ [h1/h2] ` ∆[h1/h2]
Eq2

εh1 . h2;G;Γ ` ∆

h1h2 . h0;G[h0/h3];Γ [h0/h3] ` ∆[h0/h3]
P

h1h2 . h0;h1h2 . h3;G;Γ ` ∆

h1h2 . h0;G[h2/h3];Γ [h2/h3] ` ∆[h2/h3]
C

h1h2 . h0;h1h3 . h0;G;Γ ` ∆

h5h6 . h1;h7h8 . h2;h5h7 . h3;h6h8 . h4;h1h2 . h0;h3h4 . h0;G;Γ ` ∆
CS

h1h2 . h0;h3h4 . h0;G;Γ ` ∆

G[ε/h1, ε/h2];Γ [ε/h1, ε/h2] ` ∆[ε/h1, ε/h2]
IU

h1h2 . ε;G;Γ ` ∆

Side conditions:
Each label being substituted cannot be ε.
In A, the label h5 does not occur in the conclusion.
In CS, the labels h5, h6, h7, h8 do not occur in the conclusion.

Figure 1 Structural rules in GMSL.

implementation of the proof-system in a tool called Separata+ with a proof-strategy which
guarantees termination when restricted to the symbolic heaps fragment. However, in our
opinion, devising dedicated sets of rules to handle inductive predicates is an approach that is
bound to show scalability problems given the great variety of data structures encountered in
high-level properties and given the fact that even the most simple inductive data structure,
namely lists, admit a huge amount of variants: singly-linked, doubly-linked, with or without
cycles, etc. For example, since ls represents acyclic list segments in LSSL, LSSL can prove
the (ALC) entailment but cannot prove (LC), as it would otherwise imply the unsoundness
of the system. It also cannot prove (ALH). On the other hand, while (LC) is provable in
CyclistSL, neither (ALC), nor (ALH) are expressible “as is” syntactically in CyclistSL as it
lacks multiplicative implication and additive conjunction (although there are other ways to
express the content of (ALC) using a more general ls(x, y, z) inductive predicate).

4 The GMSL Proof-System

In this section we introduce GMSL, our labelled proof-system with arbitrarily defined inductive
predicates. The core of the GMSL labelled proof-system consists of the structural, logical
and pointer rules depicted in Figures 1, 2 and 3 and can be viewed as an extension of Hou &
Goré & Tiu’s LSSL proof-system [9] without the rules for data structures. LSSL incorporates
the graph relations of TSL [8] directly into the sequents instead of maintaining a separate
resource graph. Therefore, the sequents take the form G;Γ ` ∆. The Γ part contains only
labelled formula h : A, where h is a label representing a heap and A is a SL formula. The G
part contains only ternary relations h1h2 . h0 meaning that the heap h0 can be split into two
disjoint subheaps h1 and h2 (or conversely that combining the two heaps h1 and h2 yields
the heap h0).

Like LSSL, GMSL has label and expression substitutions. Label substitutions are written
[h1/h

′
1, . . . , hn/h

′
n ] meaning that h′i gets replaced with hi. Expression substitutions are



Didier Galmiche and Daniel Méry XX:7

mappings [ x1 7→ e1, . . . , xn 7→ en ] from program variables to expressions meaning that xi
gets replaced with ei. The result of applying an expression substitution θ to the expression e
is written eθ. Equality betweens expressions is handled via standard syntactic unification as
in logic programming. Therefore, given pairs of expressions E = { (e1, e

′
1), . . . , (en, e′n) }, a

unifier is an expression substitution θ such that eiθ = e′iθ. The most general unifier of E is
defined as usual and written mgu(E) when it exists. In order to simplify comparisons with
LSSL, we consider a fragment where nil is the only constant.

The two logical rules 2=L and 2=R, as well as the structural rule IU and the two pointer
rules 7→L6 and 7→L7 are specific to GMSL and do not appear in LSSL. The rules 2=L and 2=R
capture the fact that equality does not depend on heaps. The properties of heap composition
in SL (unit, associativity, exchange, disjointness, equality, partial determinism, cancellativity
and cross-split) are explicity captured into the remaining structural rules5. The structural
rule IU explicitly captures the fact that the empty heap is an indivisible unit for heap
composition in SL. The pointer rule 7→L6 states that there is only one way to split a heap h0
having the address e1 in its domain so that the first component of the splitting is the singleton
heap the domain of which is e1. The pointer rule 7→L7 is a form of cross-split that captures
the fact that whenever a heap h0 admits a first splitting h0 = h1 · h2 with h1 being the
singleton heap e1 7→ e2 and a second splitting h0 = h3 · h4 with h3 being the singleton heap
e3 7→ e4 then, provided that e1 is not the same address as e3, h0 has at least the two distinct
addresses e1 and e3 in its domain and can thus be rearranged so that h0 = h1 · h3 · h5 for
some (possibly empty) heap h5, from which it follows that h2 = h3 · h5 and h4 = h1 · h5.

4.1 Inductive Definitions
We now follow [3] to extend GMSL with inductive definitions in the spirit of Martin-Löf
productions. Our definition of SL already contains the ordinary (non-inductive) predicates >,
I, ⊥, 17→ and 27→. The intepretation of these n-any predicates as subsets of (Heaps×V aln) are
as follows: J⊥K = ∅, J>K = Heaps, JIK = {h | dom(h) = ∅}, J

17→K = {(h, v1, v2) | dom(h) =
{v1} and h(v1) = v2}, J

27→K = {(h, v1, v2, v3) | dom(h) = {v1} and h(v1) = 〈 v2, v3 〉}.
We enrich the language of SL with a (fixed) finite set of inductive predicate symbols P1, . . . , Pn
with arities a1, . . . , an. We write x as a shorthand for tuples (x1, . . . , xn). and denote πni the
ith projection function on n-tuples such that πni (x1, . . . , xn) = xi.

I Definition 2 (Inductive definition). An inductive definition of an inductive predicate P is
a set of production rules C1(x1) ⇒ P (x1), . . . , Ck(xk) ⇒ P (xk) where k ∈ N, x1,. . .,xk are
tuples of variables of appropriate length to match the arity of P and C1(x1),. . .,Ck(xk) are
inductive clauses given by the grammar C(x) ::= P (x) | F̂ (x) | C(x) ∧ C(x) | C(x) ∗ C(x) |
F̂ (x) → C(x) | F̂ (x) −∗ C(x) | ∀xC(x) with F̂ (x) ranging over all formulas in which no
inductive predicates occur and whose free variables are contained in {x}.

Each production rule Ci(xi) is read as a disjunctive clause of the definition of the inductive
predicate P . As in [3], the use of F̂ (x) on the left of implications in production rules is
designed to ensure monotonicity of the inductive definitions and we suppose that we have a
unique inductive definition for each inductive predicate.

An annotated production rule C
z
⇒ P (x) is a production rule such that gathering all

the free variables in C and in x exactly results in the tuple z. The left and right part of a
production rule are respectively called its body and its head. An inductive definition is said

5 Those properties are captured as a closure operator on labels in TSL.
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ida
G;Γ ;h : A ` h : A;∆

G;Γ ` h : A;∆ G;Γ ;h : A ` ∆
cuta

G;Γ ` ∆

G;Γ ` h : ⊥;∆
⊥R

G;Γ ` ∆

G;Γ ;h : > ` ∆
>L

G;Γ ` ∆

G;Γ ` h : A;∆
¬L

G;Γ ;h : ¬A ` ∆

G;Γ ;h : A ` ∆
¬R

G;Γ ` h : ¬A;∆

⊥L
G;Γ ;h : ⊥ ` ∆

G[ε/h];Γ [ε/h] ` ∆[ε/h]
IL

G;Γ ;h : I ` ∆
IR

G;Γ ` ε : I;∆

G;Γ ` h : A;∆ G;Γ ;h : B ` ∆
→L

G;Γ ;h : A→ B ` ∆

G;Γ ;h : A ` h : B;∆
→R

G;Γ ` h : A→ B;∆

G;Γ ;h : A, h : B ` ∆
∧L

G;Γ ;h : A ∧ B ` ∆

G;Γ ` h : A;∆ G;Γ ` h : B;∆
∧R

G;Γ ` h : A ∧ B;∆

G;Γ ` h : A, h : B;∆
∨R

G;Γ ;h : A ∨ B ` ∆

G;Γ ;h : A ` ∆ G;Γ ;h : B ` ∆
∨L

G;Γ ;h : A ∨ B ` ∆

h1h2 . h0;G;Γ ;h1 : A;h2 : B ` ∆
∗L

G;Γ ;h0 : A ∗ B ` ∆

h1h0 . h2;G;Γ ;h1 : A ` h2 : B;∆
−∗R

G;Γ ` h0 : A−∗ B;∆

h1h2 . h0;G;Γ ` h1 : A;h0 : A ∗ B;∆ h1h2 . h0;G;Γ ` h2 : B;h0 : A ∗ B;∆
∗R

h1h2 . h0;G;Γ ` h0 : A ∗ B;∆

h1h0 . h2;G;Γ ;h0 : A−∗ B ` h1 : A;∆ h1h0 . h2;G;Γ ;h0 : A−∗ B;h2 : B ` ∆
−∗L

h1h0 . h2;G;Γ ;h0 : A−∗ B ` ∆

G;Γ ;h : A[y/x] ` ∆
∃L

G;Γ ;h : ∃x.A ` ∆

G;Γ ` h : A[e/x];h : ∃x.A;∆
∃R

G;Γ ` h : ∃x.A;∆

G;Γθ ` ∆θ
=L

G;Γ ;h : e1 = e2 ` ∆
=R

G;Γ ` h : e = e;∆

G;Γ ;h′ : e1 = e2 ` ∆
2=LG;Γ ;h : e1 = e2 ` ∆

G;Γ ` h′ : e1 = e2;∆
2=RG;Γ ` h : e1 = e2;∆

Side conditions:
Each label being substituted cannot be ε, each expression being substituted cannot be a constant.
In =L, θ = mgu({e1, e2}).
in ∗L, −∗R, the labels h1 and h2 do not occur in the conclusion.
In ∃L, y is not free in the conclusion.

Figure 2 Logical rules in GMSL.
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7→L1
G;Γ ; ε : e1 7→ e2 ` ∆

h1h0 . h2;G;Γ ;h1 : e1 7→ e2 ` ∆
HE

G;Γ ` ∆

εh0 . h0;G[ε/h1, h0/h2];Γ [ε/h1, h0/h2];h0 : e1 7→ e2 ` ∆[ε/h1, h0/h2]

h0ε . h0;G[ε/h2, h0/h1];Γ [ε/h2, h0/h1];h0 : e1 7→ e2 ` ∆[ε/h2, h0/h1]
7→L2

h1h2 . h0;G;Γ ;h0 : e1 7→ e2 ` ∆

7→L3
h1h2 . h0;G;Γ ;h1 : e 7→ e1;h2 : e 7→ e2 ` ∆

G;Γθ;h : e1θ 7→ e2θ ` ∆θ
7→L4

G;Γ ;h : e1 7→ e2;h : e3 7→ e4 ` ∆

G[h1/h2];Γ [h1/h2];h1 : e1 7→ e2 ` ∆[h1/h2]
7→L5

G;Γ ;h1 : e1 7→ e2;h2 : e1 7→ e2 ` ∆

NIL
G;Γ ;h : nil 7→ e ` ∆

h3h4 . h1;h5h6 . h2;G;Γ ;h3 : e1 7→ e2;h5 : e1 7→ e3 ` ∆ h1h2 . h0;G;Γ ` ∆
HC

G;Γ ` ∆

h1h2 . h0;G;Γθ[h1/h3, h2/h4];h1 : e1θ 7→ e2θ ` ∆θ[h1/h3, h2/h4]
7→L6

h1h2 . h0;h3h4 . h0;G;Γ ;h1 : e1 7→ e2;h3 : e1 7→ e3 ` ∆

h1h5 . h4;h3h5 . h2;
h1h2 . h0;h3h4 . h0;G;Γ ;h1 : e1 7→ e2;h3 : e3 7→ e4 ` h : e1 = e3;∆

7→L7
h1h2 . h0;h3h4 . h0;G;Γ ;h1 : e1 7→ e2;h3 : e3 7→ e4 ` h : e1 = e3;∆

Side conditions:
Each label being substituted cannot be ε, each expression substituted cannot be a constant.
In 7→L4 , θ = mgu({(e1, e3), (e2, e4)}).
In 7→L6 , θ = mgu({e2, e3}).
In HE, h0 occurs in conclusion, h1, h2, e1 are fresh.
In HC, h1, h2 occur in the conclusion, h0, h3, h4, h5, h6, e1, e2, e3 are fresh in the premise.

Figure 3 Pointer rules in GMSL.

to be in normal form (or normal) whenever all its production rules share the same head and
the same annotation. It is straightforward to put any inductive definition into a normal form
by adding equalities and existential quantifications over the free variables of an annotated
production rule that occcur in its body but not in its head.

I Definition 3 (Unfolding rules). Let C1
z
⇒ P (x), . . . , Ck

z
⇒ P (x) be a normal inductive

definition of the inductive predicate symbol P . Then each production rule gives rise to a
right-unfolding rule and to one premiss of the single (multi-premiss) left-unfolding rule for P
(also called case-split rule):

G;Γ ` h : Ci;∆
PRi

G;Γ ` h : P (x);∆

G;Γ ;h : C1 ` ∆ . . . G;Γ ;h : Cn ` ∆
PL

G;Γ ;h : P (x) ` ∆

Let us illustrate Definition 3 with list segments. From now on, we shall write `̄s for
arbitrary list segments and let ls denote only acyclic list segments. The inductive definition
for `̄s goes as follows:

I
x

⇒ `̄s(x, x) x 7→ z ∗ `̄s(z, y)
x,y,z

⇒ `̄s(x, y)

which first gets normalized to obtain:

x = y ∧ I
x,y

⇒ `̄s(x, y) ∃u. x 7→ u ∗ `̄s(u, y)
x,y

⇒ `̄s(x, y)
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G;Γ ` h : e1 = e2 ∧ I;∆
`̄sR1

G;Γ ` h : `̄s(e1, e2);∆

G;Γ ` h : ∃u.e1 7→ u ∗ `̄s(u, e2);∆
`̄sR2

G;Γ ` h : `̄s(e1, e2);∆

G;Γ ;h : e1 = e2;h : I ` ∆ G;Γ ;h : ∃u.e1 7→ u ∗ `̄s(u, e2) ` ∆
`̄sL

G;Γ ;h : `̄s(e1, e2) ` ∆

G;Γ ` h : e1 = e2 ∧ I;∆
lsR1

G;Γ ` h : ls(e1, e2);∆

G;Γ ` h : e1 6= e2 ∧ (∃u.e1 7→ u ∗ ls(u, e2));∆
lsR2

G;Γ ` h : ls(e1, e2);∆

G;Γ ;h : e1 = e2;h : I ` ∆ G;Γ ;h : e1 6= e2;h : ∃u.e1 7→ u ∗ ls(u, e2) ` ∆
lsL

G;Γ ;h : ls(e1, e2) ` ∆

Figure 4 GMSL rules for list segments.

For ls, the inductive definition (where x 6= y is syntactic sugar for ¬(x = y)):

I
x

⇒ ls(x, x) x 6= y ∧ (x 7→ z ∗ ls(z, y))
x,y,z

⇒ ls(x, y)

gets normalized to

x = y ∧ I
x,y

⇒ ls(x, y) x 6= y ∧ ∃u. x 7→ u ∗ ls(u, y)
x,y

⇒ `̄s(x, y)

Generalizing from variables to expressions and expanding additive conjunctions on the
left-hand side of sequents, we obtain the unfolding rules depicted in Figure 4 for list segments.

I Definition 4. For any inductive predicate symbol Pi with arity ai defined by the production
rules C1(x1) ⇒ P (x1), . . . , Ck(xk) ⇒ P (xk) we obtain a corresponding n-ary function
ϕi : ℘(Heaps× V alai)× . . .× ℘(Heaps× V alan)→ ℘(Heaps× V alai) as follows:

ϕi(X) =
⋃

1≤j≤k
{(h, v) | (s[xj 7→ v], h) |=JPK 7→X Cj(xj)}

where s is an arbitrary stack and |=JPK 7→X is the satisfaction relation defined exactly as in
Definition 1 except that JPiK = πni (X) for each i ∈ {1, . . . , n}.

Any variables occurring in the right hand side but not the left hand side of the set
comprehension in the definition of ϕi above are, implicitly, existentially quantified over the
entire right hand side of the comprehension.

I Definition 5. The definition set operator for P1, . . . , Pn is defined as the operator ΦP,
with domain and codomain ℘(Heaps× V ala1)× . . .×℘(Heaps× V alan) such that ΦP(X) =
(ϕ1(X), . . . , ϕn(X)).

It is proved in [3] that the operator generated from a set of inductive definitions by Defini-
tion 5 is monotone and therefore has a least fixed-point that can be iteratively approached by
approximants. First define a chain of ordinal-indexed sets (ΦαP)α≥0 by transfinite induction:
Φα

P =
⋃
β<α ΦP(Φβ

P) (note that this implies Φα
P = (∅, . . . , ∅)). Then for each i ∈ {1, . . . , n},

the set Pαi = πni (Φα
P) is called the α-approximant of Pi. Finally, for each i ∈ {1, . . . , n},

the standard interpretation of the inductive predicate Pi is given by JPiK =
⋃
α P

α
i and the

forcing relation in Definition 1 is extended with the clause

(s, h) |= Pi(x1, . . . , xn) iff (h, Jx1Ks, . . . , JxnKs) ∈ JPiK.
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4.2 Labelled Cyclic Proofs
GMSL handles induction with the notion of labelled cyclic proofs. Although we reuse the
terminology of buds, companions and pre-proofs used in [3, 4], we adapt it in the context of
a labelled proof-system. Moreover, one key difference in that our soundness criterion to turn
a pre-proof into a cyclic proof is based on an argument relying on a measure of the size of
the heaps rather than on a global trace condition on traces following a path in a pre-proof.

I Definition 6 (Pre-proof). Let D be a derivation in GMSL for a root sequent S. Each leaf
sequent B in D which is not the conclusion of an inference rule is called a bud. A pre-proof
of a sequent S is a pair (D,R) where D is a derivation the root of which is S and R is a
function which assigns to every bud B in D a triple (C, θ, σ) such that Cθσ ⊆ B6, where C,
called a companion for B, is a sequent occurring before B in the branch of D containing B,
θ is an expression renaming substitution and σ is a label renaming substitution.

Let us consider a denumerable set SV ar = {m0,m2, . . .} of size variables and a (fixed)
injective function | · | : Heaps→ SV ar.

I Definition 7 (Size constraints). A size constraint is an expression of the form s op s,
where op ∈ {=, 6=,≤, <,≥, >} and s is a (non-empty) sum over N ∪ SV ar. A set M of size
constraints is consistent if it has a solution, i.e., there exists a measure µ : SV ar → N
satisfying all the size constraints in M . Given two sets of size constraints M1 and M2, M1
entails M2, written M1 |= M2, if any solution of M1 is also a solution of M2.

A GMSL sequent S = G;Γ ` ∆ induces a set Size(S) defined as the smallest set of
size constraints such that if h1h2 . h ∈ G then |h| = |h2| + |h1| ∈ Size(S), if h : I ∈ Γ

then |h| = 0 ∈ Size(S), if h : I ∈ ∆ then |h| > 0 ∈ Size(S), and if h : x 17→ y ∈ Γ or
h : x 27→ y, z ∈ Γ then |h| = 1 ∈ Size(S).

I Definition 8 (Cyclic proof). A pre-proof (D,R) of a sequent S is a (labelled) cyclic proof if
it satisfies the following condition: for each bud B in D, the assigned companion C = R(B)
contains at a least one inductive predicate symbol P such that Size(B) |= {|hB | < |hC |},
where hB and hC are the heaps labelling the same occurrence of P 7 in B and C respectively.

Figure 5 gives an example of a pre-proof for the (LC) entailment in GMSL. The bud B
and companion C of this pre-proof are indicated by the (†) marks and respectively take the
following forms:

B
def= h4h2 . h5;GB ;h4 : `̄s(u, x′);h2 : `̄s(x′, y);ΓB ` h5 : `̄s(u, y)

C
def= h1h2 . h0;h1 : `̄s(x, x′);h2 : `̄s(x′, y) ` h0 : `̄s(x, y)

Moreover, we have Cθσ ⊆ B with σ = [h4/h1, h5/h0 ] and θ = [ x 7→ u ]. This pre-proof is a
cyclic proof because, in the bud B, h3h4 . h1 and h3 : x 7→ u imply that |h1| = |h4|+ 1 and
thus Size(B) |= {|h4| < |h1|} for the first occurrence of the `̄s predicate in B and C.

Another example is the following entailment which states that if a heap represents a list
segment ending with y, then y is not an address occurring in the heap and cannot point
anywhere (i.e., y is dangling):

(ALE) def= ls(x, y) |= ¬(y 7→ z ∗ >)

6 Using inclusion allows us to do without weakening rules in GMSL.
7 Keeping track of the various occurrences of a predicate symbol can easily be done using indexes.
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ida
εh2 . h0;h2 : `̄s(x, y) ` h2 : `̄s(x, y)

Eq2
εh2 . h0;h2 : `̄s(x, y) ` h0 : `̄s(x, y)

IL
h1h2 . h0;h1 : I;h2 : `̄s(x, y) ` h0 : `̄s(x, y)

=L
h1h2 . h0;h1 : x = x′;h1 : I;h2 : `̄s(x′, y) ` h0 : `̄s(x, y)

Π1

ida
h3h5 . h0;h2h4 . h5;
h3h4 . h1;h1h2 . h0;
h3 : x 7→ u;h4 : `̄s(u, x′);h2 : `̄s(x′, y) ` h3 : x 7→ u

Π2

Π1

Π2

(†)

h3h5 . h0;h4h2 . h5;
h3h4 . h1;h1h2 . h0;
h3 : x 7→ u;h4 : `̄s(u, x′);h2 : `̄s(x′, y) ` h5 : `̄s(u, y)

E
h3h5 . h0;h2h4 . h5;
h3h4 . h1;h1h2 . h0;
h3 : x 7→ u;h4 : `̄s(u, x′);h2 : `̄s(x′, y) ` h5 : `̄s(u, y)

∗R
h3h5 . h0;h2h4 . h5;
h3h4 . h1;h1h2 . h0;
h3 : x 7→ u;h4 : `̄s(u, x′);h2 : `̄s(x′, y) ` h0 : x 7→ u ∗ `̄s(u, y)

A
h3h4 . h1;h1h2 . h0;
h3 : x 7→ u;h4 : `̄s(u, x′);h2 : `̄s(x′, y) ` h0 : x 7→ u ∗ `̄s(u, y)

∃R
h3h4 . h1;h1h2 . h0;
h3 : x 7→ u;h4 : `̄s(u, x′);h2 : `̄s(x′, y) ` h0 : ∃u.x 7→ u ∗ `̄s(u, y)

`̄sR2
h3h4 . h1;h1h2 . h0;
h3 : x 7→ u;h4 : `̄s(u, x′);h2 : `̄s(x′, y) ` h0 : `̄s(x, y)

∗L

h1h2 . h0;h1 : x 7→ u ∗ `̄s(u, x′);h2 : `̄s(x′, y) ` h0 : `̄s(x, y)
∃L

h1h2 . h0;h1 : ∃u.x 7→ u ∗ `̄s(u, x′);h2 : `̄s(x′, y) ` h0 : `̄s(x, y)
`̄sL

(†) h1h2 . h0;h1 : `̄s(x, x′);h2 : `̄s(x′, y) ` h0 : `̄s(x, y)
∗L

h0 : `̄s(x, x′) ∗ `̄s(x′, y) ` h0 : `̄s(x, y)
→R

` h0 : (`̄s(x, x′) ∗ `̄s(x′, y))→ `̄s(x, y)

Figure 5 Cyclic proof of (`̄s(x, x′) ∗ `̄s(x′, y))→ `̄s(x, y) in GMSL.
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7→L1
ε : x = y; ε : y 7→ z `

IU
h1h2 . ε;
ε : x = y;h1 : y 7→ z `

IL
h1h2 . h0;h0 : I;
h0 : x = y;h1 : y 7→ z `

(†)

h1h5 . h4;h3h5 . h2;
h3h4 . h0;h1h2 . h0;
h0 : x 6= y;h3 : x 7→ u;h4 : ls(u, y);h1 : y 7→ z `

7→L7
h3h4 . h0;h1h2 . h0;
h0 : x 6= y;h3 : x 7→ u;h4 : ls(u, y);h1 : y 7→ z `

∗L

h1h2 . h0;h0 : x 6= y;h0 : x 7→ u ∗ ls(u, y);h1 : y 7→ z `
∃L

h1h2 . h0;h0 : x 6= y;h0 : ∃u.x 7→ u ∗ ls(u, y);h1 : y 7→ z `
lsL

(†) h1h2 . h0;h0 : ls(x, y);h1 : y 7→ z `
>L

h1h2 . h0;h0 : ls(x, y);h1 : y 7→ z;h2 : > `
∗L

h0 : ls(x, y);h0 : (y 7→ z ∗ >) `
¬R

h0 : ls(x, y) ` h0 : ¬(y 7→ z ∗ >)
→R

` h0 : ls(x, y)→ ¬(y 7→ z ∗ >)

Figure 6 Cyclic proof of (ls(x, y)→ ¬(y 7→ z ∗ >)) in GMSL.

(ALE) is valid in Reynold’s semantics if and only if for all states (s, h):

(s, h) |= ls(x, y) implies (s, h) 6|= y 7→ z ∗ >

(ALE) is obviously not valid for arbitrary list segments since a panhandle list needs to have y
pointing back somewhere in the list. However, (ALE) is valid for acyclic list segments (the
proof is in Appendix B).

A pre-proof of (ALE) in GMSL is given in Figure 6. The bud B and companion C of
this pre-proof are indicated by the (†) marks and respectively take the forms:

B
def= h1h5 . h4;GB ;h4 : ls(u, y);h1 : y 7→ z;ΓB ` ∆B

C
def= h1h2 . h0;h0 : ls(x, y);h1 : y 7→ z ` ∆B

Moreover, we have Cθσ ⊆ B with σ = [h5/h2, h4/h0 ] and θ = [ x 7→ u ]. This pre-proof is
also a cyclic proof because, in the bud B, h3h5 . h2 and h3 : x 7→ u imply that |h5| < |h2|
and it then follows from h1h2 . h0 and h1h5 . h4 that Size(B) |= {|h4| < |h0|}.

I Theorem 9. If there is a cyclic proof of ` h0 : F in GMSL, then F is valid in SL.

Proof. (Sketch) Proving the soundness of GMSL requires two things: first proving the local
soundness of the proof-rules and then proving the soundness of the cyclic mechanism.

A label mapping for a labelled sequent S = G;Γ ` ∆ is a function ρ mapping each heap
label in the sequent to an actual heap of the heap model of SL and such that ρ(ε) = ε and
for all hihj . hk ∈ G, ρ(hi)ρ(hj) = ρ(hk). A realization for S is a pair (s, ρ) where s is a
stack and ρ a label mapping for S such that for all hi : A ∈ Γ , (s, ρ(hi)) |= A and for all
hi : A ∈ ∆, (s, ρ(hi)) 6|= A. S is realizable if there is a realization for S. Local soundness
follows the standard pattern of proving that every proof-rule preserves realizability (i.e.,
that the realizability of the conclusion of a proof-rule entails the realizability of at least
one of its premisses) and has already been proven for the most part of the proof-rules in
TSL [8] and LSSL [9]. The new proof-rules of GMSL are easily proven along the lines of their
intuitive justifications at the beginning of Section 4. The local soundness of the unfolding
rules obtained by Definition 3 is an easy consequence of the production rules being read as a
disjunction

∨
i Ci of inductive clauses.
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G;Γ [e2 7→ e1] ` ∆[e2 7→ e1]
LS1

G;Γ ; ε : ls(e1, e2) ` ∆
LS2

G;Γ ` ε : ls(e, e);∆

G;Γ ;h : I ` ∆
LS3

G;Γ ;h : ls(e, e) ` ∆

G;Γ [e 7→ nil];h : I ` ∆[e 7→ nil]
LS4

G;Γ ;h : ls(nil, e) ` ∆

G;Γθ1;h : I ` ∆θ1 G;Γθ2;h : ls(e1θ2, e2θ2) ` ∆θ2
LS5

G;Γ ;h : ls(e1, e2);h : ls(e3, e4) ` ∆

h1h2 . h0;G;Γ ;h1 : ds(e1, e2);h0 : ls(e1, e3);h2 : ls(e2, e3) ` ∆
LS6

h1h2 . h0;G;Γ ;h1 : ds(e1, e2);h0 : ls(e1, e3) ` ∆

h1h2 . h0;G;Γ ;h1 : ds(e2, e3);h0 : ls(e1, e3);h2 : ls(e1, e2) ` ∆
LS7

h1h2 . h0;G;Γ ;h1 : ds(e2, e3);h0 : ls(e1, e3) ` ∆

h1h2 . h0;h1h3 . h4;G;
Γ ;h1 : ds(e1, e2);h3 : ad(e3) ` h2 : ls(e2, e3);h0 : ls(e1, e3);h : G(ad(e3));∆

LS8
h1h2 . h0;h1h3 . h4;G;
Γ ;h1 : ds(e1, e2);h3 : ad(e3) ` h0 : ls(e1, e3);h : G(ad(e3));∆

IC
h1h2 . h0;G;Γ ;h1 : ad(e1);h2 : ad(e1)′ ` h3 : G(ad(e1));h3 : G(ad(e1)′);∆

Abbreviations and side conditions:
ds(e, e′) is either (e 7→ e′) or ls(e, e′).
ad(e) stands for one of (e 7→ e′), (e 7→ e′, e′′), ls(e, e′), for some e′, e′′. Similarly for ad(e)′.
G(ad(e)) is defined as G(e 7→ e′) def= G(e 7→ e′, e′′) def= ⊥, G(ls(e, e′)) def= (e = e′).
In LS5, θ1 = mgu({(e1, e2), (e3, e4)}) and θ2 = mgu({(e1, e3), (e2, e4)}).
In LS8, if e3 is nil, then h1h3 . h4, h3 : ad(e3) and h : G(ad(e3)) in the conclusion are optional.
In LS8, if ds(e1, e2) is (e1 7→ e2), then h1h3 . h4, h3 : ad(e3) and h : G(ad(e3)) in the conclusion are optional, on
the condition that h′ : (e1 = e3) occurs in the RHS of the conclusion, for some h′.

Figure 7 Rules for acyclic list segments in LSSL.

Let us prove that the cyclic mechanism is globally sound. Suppose otherwise, then we
have a cyclic proof (D,R) for a sequent ` h0 : F but F is not valid in SL. Then the root
sequent S is not realizable and we have a branch in D with a bud B and a companion C
satisfying the conditions of Definition 8. Travelling in D from S to B and then jumping
back to C to cycle all over again between C and B, we can construct an infinite sequence of
sequents S = (Si)(i∈N) with S0 = S. It then follows from local soundness and the fact that
S0 is not realizable that no sequent in (Si)(i∈N) can be realizable. Moreover, there exists a
predicate symbol P such that each time S reaches an occurrence of the bud B, the heap
associated with this occurrence of P in B has a size strictly lower than the size of the heap
associated with the same occurrence of P in the previous occurrence of C and B in S. Thus,
we can construct an infinite sequence of heaps the size of which is strictly decreasing, which
is impossible because, by definition, the size of a heap, which is the size of its (finite) domain,
cannot be lower than 0. J

I Theorem 10. The rules for lists in LSSL (given in Figure 7) are derivable in GMSL.

Proof. The detailed proof is in Appendix A. J
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A Proofs of LSSL acyclic list segment rules in GMSL

In this section we prove that all the rules of LSSL for acyclic list segments depicted in Figure 7
are derivable in GMSL.

1. Derivation of LS1

G;Γ [ e2 7→ e1 ] ` ∆[ e2 7→ e1 ]
=L

G;Γ ; ε : e1 = e2 ` ∆
IL

G;Γ ; ε : e1 = e2; ε : I ` ∆

7→L1
G;Γ ; ε : e1 6= e2; ε : e1 7→ u; ε : ls(u, e2) ` ∆

IU
h1h2 . ε;G;Γ ; ε : e1 6= e2;h1 : e1 7→ u;h2 : ls(u, e2) ` ∆

∗L

G;Γ ; ε : e1 6= e2; ε : e1 7→ u ∗ ls(u, e2) ` ∆
∃L

G;Γ ; ε : e1 6= e2; ε : ∃u.e1 7→ u ∗ ls(u, e2) ` ∆
lsL

G;Γ ; ε : ls(e1, e2) ` ∆

2. Derivation of LS2

=R
G;Γ ` ε : e = e

IR
G;Γ ` ε : I;∆

∧R
G;Γ ` ε : e = e ∧ (∃u.e 7→ u ∗ ls(u, e));∆

lsR1
G;Γ ` ε : ls(e, e);∆

3. Derivation of LS3

G;Γ ;h : I ` ∆
=L

G;Γ ;h : e = e;h : I ` ∆

=R

G;Γ ;h : ∃u.e 7→ u ∗ ls(u, e) ` h : e = e;∆
¬L

G;Γ ;h : e 6= e;h : ∃u.e 7→ u ∗ ls(u, e) ` ∆
lsL

G;Γ ;h : ls(e, e) ` ∆

4. Derivation of LS4

G;Γ [ e 7→ nil ];h : I ` ∆[ e 7→ nil ]
=L

G;Γ ;h : nil = e;h : I ` ∆

NIL
h1h2 . h;G;Γ ;h : e 6= nil;h1 : nil 7→ u;h2 : ls(u, e) ` ∆

∗L

G;Γ ;h : e 6= nil;h : nil 7→ u ∗ ls(u, e) ` ∆
∃L

G;Γ ;h : e 6= nil;h : ∃u.nil 7→ u ∗ ls(u, e) ` ∆
lsL

G;Γ ;h : ls(nil, e) ` ∆

5. The other cases are similar.

B Validity of (ALE)

Let us prove the validity of the following (ALE) entaiment:

(ALE) def= ls(x, y) |= ¬(y 7→ z ∗ >)

1. Trivial case: |h| = 0
We simply show that (s, h) 6|= y 7→ z ∗ >.
Let us suppose that (s, h) |= y 7→ z ∗ >. Then, there are wo heaps h1 and h2 such
that h1#h2, h = h1 · h2, (s, h1) |= y 7→ z and (s, h2) |= >. Therefore |h| = 1 + |h2|,
which implies |h| > 0, a contradiction to the assumption that |h| = 0 in the trivial case.
Consequently, (s, h) 6|= y 7→ z ∗ >.
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2. Inductive case: |h| = n with n > 0
We use the following induction hypothesis:

∀h.∀x, y, z. if |h| < n then (s, h) |= ls(x, y) implies (s, h) 6|= y 7→ z ∗ >

Let us now suppose that (s, h) |= ls(x, y). We show that (s, h) |= y 7→ z ∗ >.
Since |h| > 0 implies (s, h) 6|= I, by definition of ls, (s, h) |= ls(x, y) implies:

(s, h) |= x 6= y ∧ ∃u. x 7→ u ∗ ls(u, y)
⇔ (s, h) |= x 6= y and (s, h) |= ∃u. x 7→ u ∗ ls(u, y)
⇔ (s, h) |= x 6= y and (s[u 7→ v], h) |= x 7→ u ∗ ls(u, y)
⇔ (s, h) |= x 6= y and ∃h1, h2. h1#h2, h = h1 · h2, (s[u 7→ v], h1) |= x 7→ u,

and (s[u 7→ v], h2) |= ls(u, y)

From (s[u 7→ v], h1) |= x 7→ u, we obtain |h1| = 1. From h = h1 · h2, we obtain
|h| = |h1| + |h2| = 1 + |h2|, and thus |h2| < h. From (s[u 7→ v], h2) |= ls(u, y), by
induction hypothesis, we obtain (s[u 7→ v], h2) 6|= y 7→ z ∗ >.
From (s[u 7→ v], h2) 6|= y 7→ z ∗ >, we obtain (s, h2) 6|= y 7→ z ∗ >. Therefore, since
h = h1 ·h2, the only way to have (s, h) |= y 7→ z ∗> would be that (s, h1) |= y 7→ z, which
cannot be the case because

(s, h) |= x 6= y implies s(x) 6= s(y) and
(s[u 7→ v], h1) |= x 7→ u implies that s(x) is the only address in the domain of the
heap h1.

We can then conclude that (s, h) 6|= y 7→ z ∗ >.
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