Fonctions polylogarithmes et intégrales itérées

Dorian Perrot

Université Strasbourg

26/08/2024

- Intégrales itérées
- 2 Application : homotopie invariance des intégrales itérées
- 3 Morphisme associé à un élément MC
- **4** Résolution $dF = F \cdot \varphi(A)$
- 6 Algèbre Image
- 6 Application : équation KZ_3

- Intégrales itérées
- 2 Application : homotopie invariance des intégrales itérées
- Morphisme associé à un élément MC
- 4 Résolution $dF = F \cdot \varphi(A)$
- 6 Algèbre Image
- 6 Application : équation KZ_3

Applications $\delta_{\mathcal{E}}$ et $\Phi_{\mathcal{E}}$

On se donne (\mathcal{E}, d) une dg-algèbre commutatives graduées.

Definition

On définit les applications linéaires

$$\delta_{\mathcal{E}}: \left| \begin{array}{ccc} Sh(\mathcal{E}^1) & \longrightarrow & Sh(\mathcal{E}^1) \otimes \mathcal{E}^1 \\ [\omega_1|\cdots|\omega_k] & \longmapsto & [\omega_1|\cdots|\omega_{k-1}] \otimes \omega_k \\ 1 & \longmapsto & 0 \end{array} \right|$$

$$\Phi_{\mathcal{E}}: \left| Sh(\mathcal{E}^{1}) \longrightarrow Sh(\mathcal{E}^{1}) \otimes \mathcal{E}^{2} \otimes Sh(\mathcal{E}^{1}) \right| \\
[\omega_{1}|\cdots|\omega_{k}] \longmapsto \sum_{i=1}^{k-1} [\omega_{1}|\cdots|\omega_{i-1}] \otimes (\omega_{i} \wedge \omega_{i+1}) \otimes [\omega_{i+2}|\cdots|\omega_{k}] \\
+ \sum_{i=1}^{k} [\omega_{1}|\cdots|\omega_{i-1}] \otimes d\omega_{i} \otimes [\omega_{i+1}|\cdots|\omega_{k}]$$

avec \triangle le produit de \mathcal{E} et la convention que le tenseur vide vaut 1.

Algèbre $Z^1(\mathcal{E})$

Definition

On pose $Z^1(\mathcal{E}) := \ker(\Phi_{\mathcal{E}})$.

Proposition

- On a $\delta_{\mathcal{E}}(Z^1(\mathcal{E})) \subset Z^1(\mathcal{E}) \otimes \mathcal{E}^1$.
- Soient $a, b \in Sh(\mathcal{E}^1(M))$ alors

$$\Phi_{\mathcal{E}}(a \sqcup b) = \Phi_{\mathcal{E}}(a) * \Delta_{c}(b) + \Phi_{\mathcal{E}}(b) * \Delta_{c}(a). \tag{1}$$

où Δ_c est la comultiplication de $Sh(\mathcal{E}^1)$ et $(a \otimes \Omega \otimes a') * (b \otimes b') := (a \coprod b) \otimes \Omega \otimes (a' \coprod b')$.

Corollary

L'ensemble $Z^1(\mathcal{E})$ est une sous-algèbre de $Sh(\mathcal{E}^1(M))$.

Définition I_{χ_0}

 $\varphi: (\mathcal{E}, \mathrm{d}) \to (\widetilde{\mathcal{E}}, \mathrm{d})$ un morphisme de dg-algèbre commutatives graduées. On suppose que $H^0(\widetilde{\mathcal{E}}) = \mathbb{C}$ et $H^1(\widetilde{\mathcal{E}}) = 0$ où $H^i(\widetilde{\mathcal{E}})$ désigne le i-ème groupe de la cohomologie de $\widetilde{\mathcal{E}}$. Notons $X(\widetilde{\mathcal{E}}) := Hom_{alg}(\widetilde{\mathcal{E}^0}, \mathbb{C})$.

Theorem

(num.1.5) Soit $\chi_0 \in X(\widetilde{\mathcal{E}}^0)$, il existe une unique application linéaire « intégrale itérée » $I_{\chi_0}: Z^1(\mathcal{E}) \to \widetilde{\mathcal{E}}^0$ telle que les diagrammes A et B soient commutatifs.

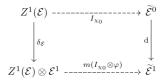


Figure 2 – Diagramme A

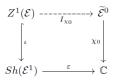


Figure 3 – Diagramme B

Idée démonstration

Considérer la filtration croissante totale de $Z^1(\mathcal{E})$

$$F_nZ^1(\mathcal{E}):=F_nSh(\mathcal{E}^1)\cap Z^1(\mathcal{E}).$$

Posons $F_{-1}Z^1(\mathcal{E}):=0$, alors pour tout entier n positif ou nul

$$\delta_{\mathcal{E}}(F_nZ^1(\mathcal{E}))\subset F_{n-1}Z^1(\mathcal{E})\otimes \mathcal{E}^1$$

Par récurrence sur $n \geq 0$. Notons HR(n) l'hypothèse de récurrence au rang $n: \ll II$ existe une unique collection d'applications $F_kI: F_kZ^1(\mathcal{E}) \to \widetilde{\mathcal{E}}^0$ pour $k=0,\ldots,n$ telles que pour tout $k=0,\ldots,n$, les diagrammes A_k et B_k commutent.

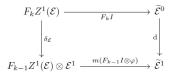


Figure 4 – Diagramme A_k

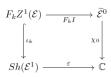


Figure 5 – Diagramme B_k

- Intégrales itérées
- 2 Application : homotopie invariance des intégrales itérées
- 3 Morphisme associé à un élément MC
- 4 Résolution $dF = F \cdot \varphi(A)$
- 6 Algèbre Image
- 6 Application : équation KZ_3

Application

Definition

Soit M une variété algébrique connexe, $\gamma:[0,1]\to M$ un chemin et $[\omega_1|\dots|\omega_n]\in Sh(\mathcal{E}^1(M))$. L'intégrale itérée de $[\omega_1|\dots|\omega_n]\in Sh(\mathcal{E}^1(M))$ suivant γ est

$$\int_{\gamma} \omega_1 \dots \omega_n := \int_{0 \le t_1 \le \dots \le t_n \le 1} \gamma^*(\omega_1(t_1)) \dots \gamma^*(\omega_n(t_n)).$$

Si n=0 alors on définit $\int_{\gamma}1=1$.

Proposition

Soient $\gamma_1, \gamma_2 : [0,1] \to \widetilde{M}$ deux chemins avec $\gamma_1(0) = \gamma_2(0)$ et $\gamma_1(1) = \gamma_2(1)$, et $\alpha \in Z^1(\mathcal{E})$ alors

$$\int_{\gamma_1} \alpha = \int_{\gamma_2} \alpha.$$

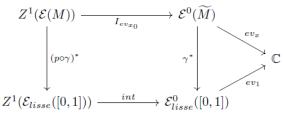
Idée démonstration

$$\begin{array}{cccc} \textit{int}: & \textit{Sh}(\mathcal{E}^1([0,1])) & \longrightarrow & \mathcal{C}^\infty([0,1]) \\ & [\omega_1|\cdots|\omega_k] & \longmapsto & \left(y\mapsto \int_{0\leq t_1\leq \ldots \leq t_n\leq y} \omega_1(t_1)\cdots\omega_n(t_n)\right) \\ & 1 & \longmapsto & 1 \end{array}$$

On a alors $\int_{\gamma_1} lpha = \mathit{ev}_1 \circ \mathit{int} \circ \gamma_1^*(lpha)$

Lemma

- Avec M = [0,1] et $\chi_0 = ev_0$ on a l'égalité des applications linéaires $I_{ev_0} = int \ dans \ \mathcal{L} \left(Sh(\mathcal{E}^1_{lisse}([0,1]), \mathcal{C}^{\infty}([0,1]) \right).$
- Le diagramme suivant est commutatif



- Morphisme associé à un élément MC

- 6 Application : équation KZ_3

Éléments de Maurer-Cartan

on se donne (\mathcal{E},d) une dg-algèbre commutative graduée et $\mathfrak a$ une algèbre de Lie graduée.

Definition

Un **élément de Maurer-Cartan** de degré 1 de $(\mathcal{E}, \mathfrak{a})$ est un élément $A \in \mathcal{E}^1 \otimes \mathfrak{a}_1$ telle que

$$\mathrm{d}A + \frac{1}{2}A \wedge A = 0$$

On note $MC_1(\mathcal{E},\mathfrak{a})$ l'ensemble des éléments de Maurer-Cartan de $(\mathcal{E},\mathfrak{a})$ de degré 1.

Morphisme associé à un élément de MC

on suppose que $\mathfrak a$ est de dimension finie en chaque degré. $\mathcal U(\mathfrak a)$ est une algèbre de Hopf graduée de dimension finie en chaque degré. Le dual gradué $\mathcal U(\mathfrak a)^\circ = \bigoplus_{n\geq 0} \mathcal U(\mathfrak a)[n]^*$ est également une algèbre de Hopf.

Definition

Donnons nous $J := \sum_{i \in I} a_i \otimes \omega_i$ un élément de $MC_1(\mathcal{E}, \mathfrak{a})$.

$$\Psi_{J}: \left| \begin{array}{ccc} \mathcal{U}(\mathfrak{a})^{\circ} & \longrightarrow & Sh(\mathcal{E}^{1}) \\ \xi & \longmapsto & \sum_{k\in\mathbb{N}} \sum_{i_{1},\ldots,i_{k}\in I} \xi(a_{i_{1}}\ldots a_{i_{k}})[\omega_{i_{1}}|\ldots|\omega_{i_{k}}] \end{array} \right|$$

Proposition

- $Im(\Psi_J) \subset Z^1(\mathcal{E})$.
- Ψ_J est un morphisme d'algèbres.

- 4 Résolution $dF = F \cdot \varphi(A)$
- 6 Application : équation KZ_3

Équation $dF = F \cdot \varphi(A)$

Definition

Donnons nous $A \in MC_1(\mathcal{E}, \mathfrak{a})$ et considérons

$$\begin{split} S_{A} := \{ F \in \widetilde{\mathcal{E}}^{0} \widehat{\otimes} \mathcal{U}(\mathfrak{a})^{\wedge} \mid \mathrm{d}F = F \cdot \varphi(A), \ (\mathrm{id} \otimes \Delta_{c})(F) = F^{12} \cdot F^{13} \\ & \text{et } (\mathrm{id} \otimes \varepsilon)F = 1 \ \mathsf{dans} \ \mathcal{E}^{0} \} \end{split} \tag{2}$$

avec \cdot le produit tensoriel du produit dans $\widetilde{\mathcal{E}}$ et du produit dans $\mathcal{U}(\mathfrak{a})^{\wedge}$, et avec $x\mapsto x^{12}$ et $x\mapsto x^{13}$ les morphismes d'algèbres de $\widetilde{\mathcal{E}}\widehat{\otimes}\mathcal{U}(\mathfrak{a})^{\wedge}$ dans $\widetilde{\mathcal{E}}\widehat{\otimes}\mathcal{U}(\mathfrak{a})^{\wedge}\widehat{\otimes}\mathcal{U}(\mathfrak{a})^{\wedge}$ donnés respectivement par $e\otimes u\mapsto e\otimes u\otimes 1$ et $e\otimes u\mapsto e\otimes 1\otimes u$.

Theorem

Soient $A \in MC_1(\mathcal{E}, \mathfrak{a})$ alors pour tout $\chi_0 \in X(\widetilde{\mathcal{E}}^0)$, il existe un unique $F_{\chi_0} \in S_A$ tel que $(\chi_0 \otimes \mathrm{id})(F_{\chi_0}) = 1$.

Préliminaires à la démonstration (existence)

 $\mathcal{B} := (\varepsilon_j)_{j \in J}$ une base graduée de \mathfrak{a} .

Definition

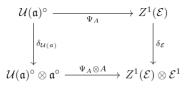
On définit $\delta_{\mathcal{U}(\mathfrak{a})}: \mathcal{U}(\mathfrak{a})^{\circ} \to \mathcal{U}(\mathfrak{a})^{\circ} \otimes \mathfrak{a}^{\circ}$ comme le dual des produits $m_n: \bigoplus_{k=0}^n (\mathcal{U}(\mathfrak{a})[k] \otimes \mathfrak{a}[n-k]) \to \mathcal{U}(\mathfrak{a})[n]:$

Lemma

• Pour tout $\xi \in \mathcal{U}(\mathfrak{a})^{\circ}$ la somme $\sum_{\varepsilon_{j} \in \mathcal{B}} \xi_{\varepsilon_{j}} \otimes \varepsilon_{j}^{*} \in \mathcal{U}(\mathfrak{a})^{\circ} \otimes \mathfrak{a}^{\circ}$ est finie (où

$$e_{j}^{k*} = e_{j}^{k*} (\bullet \cdot \varepsilon_{i})$$
 et est égale à $\delta_{\mathcal{U}(\mathfrak{a})}(\xi)$.

• le diagramme suivant est commutatif



Démonstration partie 1

Notons $(e_i^k)_{i \in J_k}$ une base de $\mathcal{U}(\mathfrak{a})[k]$, ainsi $\bigoplus_{k \in \mathbb{N}} (e_i^k)_{j \in J_k}$ est une base graduée de $\mathcal{U}(\mathfrak{a})$. Considérons $\mu_A:=I_{\gamma_0}\circ\Psi_A:\mathcal{U}(\mathfrak{a})^\circ\to\widetilde{\mathcal{E}}^0$ (possible car Aest MC) et

$$F:=\sum_{k\in\mathbb{N}}\sum_{j\in J_k}\mu_{\mathcal{A}}(e_j^{k^*})\otimes e_j^k$$

Montrons que $dF = F \cdot \varphi(A)$. On a

$$dF = \sum_{k \in \mathbb{N}} \sum_{j \in J_k} d \circ \mu_A(e_j^{k^*}) \otimes e_j^k$$

$$= \sum_{k \in \mathbb{N}} \sum_{j \in J_k} d \circ I_{\chi_0} \circ \Psi_A(e_j^{k^*}) \otimes e_j^k$$

$$= \sum_{k \in \mathbb{N}} \sum_{j \in J_k} m \circ (I_{-\infty} \circ \circ) \circ \delta \circ \circ W_k$$

 $I = \sum_{i} \sum_{j} m \circ (I_{\chi_0} \otimes \varphi) \circ \delta_{\mathcal{E}} \circ \Psi_{\mathcal{A}}(e_j^{k^*}) \otimes e_j^k$ $k \in \mathbb{N} \ i \in J_k$

par le théorème 1.5

$$=\sum_{k\in\mathbb{N}}\sum_{j\in J_k}m\circ (\mathit{I}_{\chi_0}\otimes\varphi)\circ (\Psi_{A}\otimes A)\circ \delta_{\mathcal{U}(\mathfrak{a})}(e_j^{k^*})\otimes e_j^k \text{ lemme précédent}$$

Démonstration partie 2

 $= F \cdot \varphi(A)$

$$\begin{split} \mathrm{d}F &= \sum_{k \in \mathbb{N}} \sum_{j \in J_k} m \circ (I_{\chi_0} \otimes \varphi) \circ (\Psi_A \otimes A) \circ \delta_{\mathcal{U}(\mathfrak{a})}(e_j^{k^*}) \otimes e_j^k \\ &= \sum_{k \in \mathbb{N}} \sum_{j \in J_k} m \circ (\mu_A \otimes (\varphi \circ A)) \circ \delta_{\mathcal{U}(\mathfrak{a})}(e_j^{k^*}) \otimes e_j^k \\ &= \sum_{k \in \mathbb{N}} \sum_{j \in J_k} \sum_{\varepsilon_i \in \mathcal{B}} \mu_A(e_j^{k^*}_{\varepsilon_i}) \cdot \varphi(A(\varepsilon_i^*)) \otimes e_j^k \operatorname{car} \delta_{\mathcal{U}(\mathfrak{a})}(e_j^{k^*}) = \sum_{\varepsilon_i \in \mathcal{B}} e_j^{k^*}_{\varepsilon_i} \otimes \varepsilon_j^* \\ &= \sum_{k \in \mathbb{N}} \sum_{j \in J_k} \sum_{\varepsilon_i \in \mathcal{B}} \mu_A(e_j^{k^*}) \cdot \varphi(A(\varepsilon_i^*)) \otimes e_j^k \varepsilon_i \\ &= \left(\sum_{k \in \mathbb{N}} \sum_{j \in J_k} \mu_A(e_j^{k^*}) \otimes e_j^k\right) \cdot \left(\sum_{\varepsilon_i \in \mathcal{B}} \varphi(A(\varepsilon_i^*)) \otimes \varepsilon_i\right) \end{split}$$

- Intégrales itérées
- 2 Application : homotopie invariance des intégrales itérées
- Morphisme associé à un élément MC
- 4 Résolution $dF = F \cdot \varphi(A)$
- 6 Algèbre Image
- 6 Application : équation KZ_3

Morphisme associé à une solution

Definition

À un élément $F \in S_A$ on peut lui associer

$$\begin{array}{ccc} S_A & \longrightarrow & \textit{Hom}((\mathcal{U}(\mathfrak{a}))^{\circ}, \widetilde{\mathcal{E}}^0) \\ F & \longmapsto & (\xi \mapsto \langle \xi, F \rangle) := \langle \cdot, F \rangle \end{array}$$

Objectif

Connaitre les images des $\langle \cdot, F \rangle$ pour tout $F \in S_A$.

Simplification

En fait il suffit de connaitre une seule image pour les connaitre toutes.

Détails simplification

Notons $\mathcal{G}(\mathcal{U}(\mathfrak{a})^{\wedge})$ le groupe des éléments primitifs de $\mathcal{U}(\mathfrak{a})^{\wedge}$.

Si $g \in \mathcal{G}(\mathcal{U}(\mathfrak{a})^{\wedge})$ et $F \in S_A$ alors $(1 \otimes g) \cdot F \in S_A$. On a donc une action de $\mathcal{G}(\mathcal{U}(\mathfrak{a})^{\wedge})$ sur S_A .

Proposition

L'action de $\mathcal{G}(\mathcal{U}(\mathfrak{a})^{\wedge})$ sur S_A est libre et transitive.

On peut faire agir $\mathcal{G}(\mathcal{U}(\mathfrak{a})^{\wedge})$ sur $Hom((\mathcal{U}(\mathfrak{a}))^{\circ}, \widetilde{\mathcal{E}}^{0})$ par $g \bullet \gamma(\xi) = (\gamma \otimes g) \circ \Delta(\xi)$ pour tout $\xi \in \mathcal{U}(\mathfrak{a}))^{\circ}$. Si $F \in S_{A}$ et $g \in \mathcal{G}(\mathcal{U}(\mathfrak{a})^{\wedge})$ alors

$$g \bullet \langle \cdot, F \rangle = \langle \cdot, g \bullet F \rangle \tag{3}$$

Proposition

Soit $\gamma \in Hom((\mathcal{U}(\mathfrak{a}))^{\circ}, \widetilde{\mathcal{E}}^{0})$ et $g \in \mathcal{G}(\mathcal{U}(\mathfrak{a})^{\wedge})$ alors $Im(\gamma) = Im(g \bullet \gamma)$ dans $\widetilde{\mathcal{E}}^{0}$.

- 6 Application : équation KZ_3

Cadre

On note $\mathsf{P}^1_\mathbb{C}$ la droite projective sur \mathbb{C} .

Definition

L'espace de configuration à n points de $P^1_{\mathbb{C}}$, noté $C_n(P^1_{\mathbb{C}})$, est l'ensemble des n-uplets de $(P^1_{\mathbb{C}})^n$ privé des diagonales, autrement dit

$$C_n(P_{\mathbb{C}}^1) := \{(x_1, \dots, x_n) \in (P_{\mathbb{C}}^1)^n \mid x_i \neq x_j (i \neq j)\}.$$

Definition

L'espace de modules de $\mathsf{P}^1_{\mathbb{C}}$, noté $\mathfrak{M}_{0,n}$ est le quotient de $\mathsf{C}_n(\mathsf{P}^1_{\mathbb{C}})$ par $\mathsf{PGL}_2(\mathbb{C})$, autrement dit

$$\mathfrak{M}_{0,n} := \mathsf{PGL}_2(\mathbb{C}) \backslash \mathsf{C}_n(\mathsf{P}^1_{\mathbb{C}}).$$

Cadre: notre cas

$$n=4$$
, $M=\mathfrak{M}_{0,4}\simeq \mathsf{P}^1_\mathbb{C}\backslash\{0,1,\infty\}$, $\mathfrak{a}=\mathfrak{Lie}(A,B)$ et $A=\Omega^\mathfrak{m}_{KZ}$.

Équation KZ_3

Definition

Notons $F_{as} \in \widetilde{\mathcal{E}}^0 \otimes \mathcal{U}(\mathfrak{a})^\wedge$ la solution du système

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}z}F(z) = \left(\frac{A}{z} + \frac{B}{z-1}\right)F(z) \\ F(z) \underset{z \to 0}{\sim} z^{A} \end{cases}$$

où $z^{-\alpha}$ est définie comme $\exp(-\alpha \log(z))$.

Proposition

La fonction F_{as} appartient à S_A .

Conséquence

Afin d'identifier les images des $\langle \cdot, F \rangle$ pour $F \in S_A$, il suffit de connaître $Im(\langle \cdot, F_{as} \rangle) = Im(\mu_{as})$.

Sélection des mots convergents

 $\mathcal{U}(\mathfrak{a})_{reg}^{\wedge}=\mathbb{C}\oplus B\cdot\mathcal{U}(\mathfrak{a})^{\wedge}=$ ensemble des mots « réguliers » $\mathcal{U}(\mathfrak{a})^{\wedge}=\mathcal{U}(\mathfrak{a})_{reg}^{\wedge}\oplus A\cdot\mathcal{U}(\mathfrak{a})^{\wedge}=\pi:\mathcal{U}(\mathfrak{a})^{\wedge}\to\mathcal{U}(\mathfrak{a})_{reg}^{\wedge}$ l'application de projection correspondant à cette décomposition.

But

Obtenir une expression de F avec seulement des mots convergents

Definition

Introduisons α une indéterminée de degré 1 qui commute avec les variables A et B. On a deux applications :

$$\mathcal{U}(\mathfrak{a})^{\wedge} \stackrel{u}{\to} \mathcal{U}(\mathfrak{a})^{\wedge}[[\alpha]] \stackrel{v}{\to} \mathcal{U}(\mathfrak{a})^{\wedge}$$

avec u est l'unique morphisme d'algèbres complètes vérifiant $u(A) = A - \alpha$ et u(B) = B et v est l'unique morphisme d'espaces vectoriels complets tel que

et v est l'unique morphisme d'espaces vectoriels complets tel que $v(w\alpha^n) = A^n w$ pour tout $w \in \mathcal{U}(\mathfrak{a})^{\wedge}$.

Seconde équation de F

Proposition

On a $v \circ u(A \cdot \mathcal{U}(\mathfrak{a})^{\wedge}) = 0$.

On en déduit l'égalité $v \circ u = v \circ u \circ \pi$.

Proposition

On a

$$u(F(z)) = F(z)z^{-\alpha}.$$

Démonstration

 $z\mapsto u(F(z))$ et $z\mapsto F(z)z^{-\alpha}$ sont solutions du système

$$\frac{\mathrm{d}}{\mathrm{d}z}G(z) = \left(\frac{A-\alpha}{z} + \frac{B}{z-1}\right)G(z) \qquad G(z) \underset{z\to 0}{\sim} z^{(A-\alpha)}$$

Théorème

On a

$$(v \circ u \circ \pi)(F(z)) = (v \circ u)(F(z)) = z^{-A}F(z)$$

Expression de $\pi(F(z))$

Parallèlement, on sait que

$$\pi(F(z))=1+\sum_{w\in B\cdot W_+^s} I_w(z)w \quad ext{ avec } w=BA^{n_1}BA^{n_2}\cdots BA^{n_r}.$$

- W_+^* est l'ensemble des mots de longueur au moins 1 formé avec les lettres A et B.
- $I_w(z) := \int_0^z \frac{dt}{t-1} \circ \frac{dt}{t} \circ \cdots \circ \frac{dt}{t} \circ \cdots \circ \underbrace{\frac{dt}{t-1} \circ \frac{dt}{t} \circ \cdots \circ \frac{dt}{t}}_{n_m+1 \text{ termes}}, \text{ ce}$ sont des polylogarithmes.

Théorème

$$F(z) = z^{A}(v \circ u) \left(1 + \sum_{w \in B \cdot W_{+}^{*}} I_{w}(z)w \right)$$
 (4)

Algèbre image

Expression de F

Après calcul on obtient

$$F(z) = 1 + \sum_{w \in W_+^*} F_w(z)w$$

avec

$$F_{w}(z) = \sum_{k=0}^{m} \sum_{\substack{w' \in W^{*}, \\ w_{0} \in J_{k}(w')}} (-1)^{k} \frac{\log(z)^{m-k}}{(m-k)!} I_{w'}(z)$$

pour $w = A^m B A^{n_1} B A^{n_2} \cdots B A^{n_r} = A^m w_0$ et où $J_k(w) := \{ m \in W^* \mid |m|_B = |w|_B, |m| = |w| - k \text{ et } m \leq w \}.$

Conclusion

L'image de $\mu_{as} = \langle \cdot, F_{as} \rangle$ est l'algèbre engendrée par les fonctions polylogarithmes multiples I_w et les puissances du logarithmes.