
TUGboat, Volume 0 (2060), No. 0 1001

Kanji-Sudokus:
Integrating Chinese and Graphics

Denis Roegel

1 Introduction

Recently, I have had the need to get my hands on
Werner Lemberg’s excellent CJK package, for a talk
on the Chinese calendar. There, I wanted to use
METAPOST figures with Chinese labels. This worked
almost seamlessly.

Actually, this isn’t quite true, but CJK is better
and better integrated into TEXlive these days, and
writing in Chinese, Japanese or Korean has become
pretty much mundane with an up-to-date TEX en-
vironment. This wasn’t so even a year ago. Nowa-
days, you still need to install various Linux (say)
packages, and one is likely to run into trouble be-
cause some crucial element is missing. For instance,
on my latest Ubuntu, the TEXlive setup wasn’t com-
plete and I was missing some Korean fonts I needed.
By the time you read this, the problem may have
been solved already.

To sum up, with the latest TEXlive 2007 setup,
and perhaps with a few additional linux packages,
as well as the latest emacs, you are all set for type-
setting beautiful CJK documents! Typesetting CJK
has even become easier, because one can now write
almost everything in UTF-8, without a need to post-
process the input file with emacs macros (this pro-
cedure used to output a .cjk file which could only
then be processed by LATEX). Now, the file you write
is the file you process, and processing has become
faster.

For METAPOST figures, the matter was also
made easier. Up until recently, when including Chi-
nese in METAPOST, one had first to produce a .cjk
file, which could unfortunately not be processed by
METAPOST. The .cjk file had to be slightly altered
first, because the emacs macros were not aware of
the METAPOST format. This could have been cor-
rected within the emacs macros, but in fact, since
the conversion to the .cjk file is now mostly an old
story, the processing problems have also vanished.
So, my advice is not only to switch to the latest
TEXlive and linux, but also to write CJK in UTF-8.
It works!

2 A small example

I will illustrate the integration of Chinese and META-
POST on a small example. I will draw a Sudoku grid,
not with Hindu-Arabic numerals, but with Chinese
numerals. These numerals are一 (1), 二 (2), 三 (3),
四 (4), 五 (5), 六 (6), 七 (7), 八 (8), and 九 (9).

A typical Sudoku problem reads as follows (this
example from Wikipedia):

8 7 9
4 1 9 5

6 2 8
7 2 6
4 8 3 1
8 6 3

9 8 6
6 1 9 5
5 3 7

2.1 The grid

The whole Sudoku problem can be drawn as follows
in METAPOST:

beginfig(1);
string sol[];
drawgrid(1.5pt,.5pt);
% first row at the bottom
% last row at the top
sol1="000080079";sol2="000419005";
sol3="060000280";sol4="700020006";
sol5="400803001";sol6="800060003";
sol7="098000060";sol8="600195000";
sol9="530070000";
fillgrid(sol)(false);

endfig;

The drawgrid macro is straightforward and pro-
duces the horizontal and vertical lines (with u being
for instance equal to 1 cm):

def drawgrid(expr tha,thb)=
pickup pencircle scaled thb;
for i=0 upto 9:
draw (i*u,0)--(i*u,9u);
draw (0,i*u)--(9u,i*u);

endfor;
pickup pencircle scaled tha;
for i=0 upto 3:
draw (3i*u,0)--(3i*u,9u);
draw (0,3i*u)--(9u,3i*u);

endfor;
enddef;

2.2 Filling the grid

In order to fill the grid, we need to access the posi-
tion (i, j), where i is the column and j is the row, all



1002 TUGboat, Volume 0 (2060), No. 0

numbered from 1 at the bottom-left cell. We there-
fore define the following macro, which takes i, j and
a label that it centers in the middle of the cell. In
our case, the label is scaled 200%, but how much
you scale depends on the dimensions of the frame
and on the base size of the font.

def pos(expr i,j,l)=
label(l scaled 2,((i-.5)*u,(j-.5)*u));

enddef;

2.3 Cell entries

In order to put, say the value 3, at position (2,9),
we could write

pos(2,9,btex 3 etex);

However, we want to be more general and draw
our figures from the string array sol. That way,
some program can produce a problem and/or a so-
lution, and the problem can easily be plugged into
our macros. So, instead, we could write

pos(2,9,TEX(s));

where s is a string provided to the TEX macro. The
latter is defined by loading the package TEX:

input TEX;

This, however, is not very efficient, because it
will call TEX up to 81 times. And besides, it won’t
take care of Chinese numerals when we need them.
So, we are looking for something more flexible. The
latexmp METAPOST package will suit our needs.
The previous label is now obtained with

pos(2,9,textext(s));

One of the advantages of the latexmp package
is that it will only require two runs of LATEX, and not
one for every label. This package also makes it easy
to load LATEX packages, in particular for Chinese.
So, our METAPOST file will begin as follows:

input latexmp;

setupLaTeXMP(class="article",
packages="CJKutf8",
preamble=(

"\let\N\newcommand"
&"\N\0{}\N\1{一}\N\2{二}\N\3{三}"
&"\N\4{四}\N\5{五}\N\6{六}\N\7{七}"
&"\N\8{八}\N\9{九}"
&"\AtBeginDocument{"
& "\begin{CJK}{UTF8}{bsmi}}"
&"\AtEndDocument{\end{CJK}}"));

This preamble loads the CJKutf8 package, which
is what we need for UTF-8 input. It then defines the
commands \0 (for void), \1 (Chinese numeral 1), \2
(Chinese numeral 2), etc., up to \9.

Then, we start an appropriate (for these char-
acters) CJK environment at the \begin{document}
hook:

\AtBeginDocument{
\begin{CJK}{UTF8}{bsmi}}

and we close the environment at the end of the doc-
ument:

\AtEndDocument{\end{CJK}}

2.4 Putting all the pieces together

We now have a definition of cell values, we can draw
a grid, and we have macros for Chinese numerals.
What’s next? Well, we want to be able to do two
kinds of things. First, we want to draw problems,
and solutions. For our purpose, a problem is merely
an array of cell values with some cells being equal
to 0. These 0s will be displayed as empty cells. In
addition to this switch, we want to display the non-
void values either with Hindu-Arabic numerals or
with Chinese numerals.

Our coding of cell values makes this rather easy,
because we will use 4 for the Hindu-Arabic numeral,
and \4 for the Chinese numeral, for instance. So,
care must be taken for this additional \ when needed,
and the special case of 0 must also be considered,
because the Hindu-Arabic numeral 0 must not be
displayed, whereas the Chinese \0 can be displayed,
since it is void.

The ‘0’ switch is handled with the zerospace
macro. This macro takes a character s and replaces
this character by a space only when it is 0 and when
the output uses Hindu-Arabic numerals.

def zerospace(expr chinese,s)=
if not chinese and (s="0"):
" "

else: s
fi

enddef;

Finally, filling the grid is done with fillgrid.
The first parameter is the name of the string array
and the second parameter is a switch for Chinese
or Hindu-Arabic numerals. substring is used to
isolate the character of interest.

def fillgrid(text grid)(expr chinese)=
for i=1 upto 9:for j=1 upto 9:
pos(j,i,textext(if chinese: "\" & fi

zerospace(chinese,
substring(j-1,j) of grid[i])));

endfor;endfor;
enddef;

The result is then as follows for the problem
and the solution, with Chinese numerals:



TUGboat, Volume 0 (2060), No. 0 1003

八 七 九

四 一 九 五

六 二 八

七 二 六

四 八 三 一

八 六 三

九 八 六

六 一 九 五

五 三 七

三 四 五 二 八 六 一 七 九

二 八 七 四 一 九 六 三 五

九 六 一 五 三 七 二 八 四

七 一 三 九 二 四 八 五 六

四 二 六 八 五 三 七 九 一

八 五 九 七 六 一 四 二 三

一 九 八 三 四 二 五 六 七

六 七 二 一 九 五 三 四 八

五 三 四 六 七 八 九 一 二

3 Conclusion

This example demonstrates how straightforward the
integration of Chinese and METAPOST has become.
What now remains to be done is to link these macros
with a general problem solving algorithm for Su-
dokus.

� Denis Roegel
LORIA, BP 239
54506 Vandœuvre-lès-Nancy
FRANCE
roegel (at) loria dot fr

http://www.loria.fr/~roegel


