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A complex drawing in descriptive geometry

Denis Roegel

Abstract

This article describes the reproduction of a complex
drawing in descriptive geometry. The original plate
was published by Théodore Olivier in 1842 and rep-
resents the meshing of two gears on skew axes. The
drawing was analyzed and redone in METAPOST,
and the construction illustrates a number of typical
features of that programming environment.

1 Introduction

The French geometer Gaspard Monge (1746–1818)
developed “descriptive geometry”, and this discipline
flourished during the 19th century, at the same time
as the industrial revolution, and the construction
of machines, buildings, and other masterpieces of
architecture.

Geometry, and in particular descriptive geom-
etry, is a wonderful application for METAPOST en-
thusiasts (Goossens, Mittelbach, Rahtz, Roegel, and
Voß, 2007). METAPOST makes it possible to draw
lines and curves in a very exact way, and at the same
time relate different parts of a drawing to each other,
as they should be in descriptive geometry.

In this article, I go into the details of the con-
struction of a complex drawing, taken from the work
of Théodore Olivier (1793–1853), one of Monge’s
best followers. Olivier was a former student of the
École Polytechnique and went on to do groundbreak-
ing work in the geometrical theory of gears. In
1829 he was one of the founders of the École Cen-
trale des Arts et Manufactures. One of his most
important books is his Théorie géométrique des en-
grenages (Olivier, 1842), where exact drawings for
gearings are produced in an almost purely geometri-
cal way. Application of this theory led to the many
models found in the Musée des arts et métiers in
Paris.

One of the chapters in his book is devoted to the
meshing of wheels with non-intersecting axes, and
my purpose is to show how Olivier’s corresponding
drawing (figure 1) can be produced with a tool such
as METAPOST. But this article is neither meant as
an introduction to the theory of gears, nor to the
rules of descriptive geometry. I will focus only on
geometrical relations, without always stating why
things are so or so. I am taking the vantage point
of an engineer who has some drawing to produce, of

which he/she knows the geometrical relationships,
but the grounds for these relationships will not be
essential in our analysis. The reader interested in
more details may consult Olivier’s book or other
books on the theory of gears.

Figure 2 shows the final figure produced with
our code.

2 Olivier’s plate

Olivier writes (Olivier, 1842, p. 118) that the plate
represents the original-scale working-drawing which
was used to manufacture the gearing-model to trans-
mit rotation motion between two axes not in the
same plane and having an angle of 30◦ between them.

LT (figure 2) represents the “Earth line” (ligne
de terre). The axisA of the wheel—carrying twenty-
four cylindrical teeth with circle involute shapes—
is vertical; its projections are Ah and Av.

The axis A1 of the wheel—carrying eighteen
helical teeth— is in the vertical projection plane; its
projections are A1 and Ah

1 or LT .
The middle linesM andM1 are, on the vertical

projection plane, the vertical traces of the two planes
dividing the rings to cut in equal parts.

These lines M and M1 intersect at Xv which is
the vertical projection of the line X, intersection of
the two planes dividing the rings in equal parts.

The wheel attached to the inclined axis A1 was
turned around the line X, in order to bring this
wheel into a horizontal position.

It is in this horizontal position that the wheel
carrying eighteen teeth is represented by the working
drawing.

T is a vertical plane tangent to the cylinders H
and H1. The vertical line Y v is in the plane T .

For each wheel, the outer circle shows the base
circle of the involutes. The inner circle shows how
far the teeth from the other wheel penetrate one
wheel.

Olivier’s plate is also reproduced in von Seherr-
Thoss’s book on the development of gearing technol-
ogy (von Seherr-Thoss, 1965, p. 120), but the draw-
ing was redone and some errors were not corrected
(figure 3).

3 Involute cylindrical and helical teeth

3.1 Involute teeth

Figure 4 shows the construction of the involute curve
of a circle. It is straightforward to obtain its carte-
sian equations which are:

xM = r(cos θ + θ sin θ)
yM = r(sin θ − θ cos θ)

with θ being expressed in radians.
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Figure 1: Olivier’s plate, with a frame measuring 35cm × 42.5cm (Olivier, 1842). Note that a tooth is missing on
the lower wheel.

Figure 3: Seherr-Thoss’s reproduction of Olivier’s
drawing (von Seherr-Thoss, 1965, p. 120). The most ob-
vious changes are the German labels, but actually, as a
close examination shows, the whole drawing was redone.
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Figure 4: The construction of an involute.

The following METAPOST code returns a path
for an involute tooth. The three parameters of the
macro involute_tooth are the radius r of the base
circle, an angle a for truncating the involute, and the
angular step s for θ. It turns out that s = 20 gives
an excellent approximation of the involute curve.
RAD=3.14159/180; % conversion degrees -> radians
vardef involute_tooth(expr r,a,s)=

save p,t;
path p;
p=(r,0)
for i=1 step s until 90:

..(r*(cosd(i) + RAD*i*sind(i)),
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Figure 2: The entire figure (except the ancillary drawings within the frame) reproduced from Olivier’s plate.

r*(sind(i) - RAD*i*cosd(i)))
endfor;
t=xpart(p intersectiontimes

(origin--(3r*dir(a))));
(subpath(0,t) of p)

enddef;

Two more macros are defined for the linear parts
of the cylindrical teeth of the lower wheel.
vardef cyl_full_tooth(expr r,a,b)=

save p,L;path p;pair L;
p=involute_tooth(r,a,20);
L=point length(p) of p;
(p--(L rotated b)--(r*dir(a+b)))

enddef;
vardef cyl_full_tooth_x(expr r,a,b,c)=

save p,L;
path p;pair L;

p=involute_tooth(r,a,20);
L=point length(p) of p;
((L rotated b)--(r*dir(a+b+c)))

enddef;

3.2 Tooth contact

Teeth can be put in contact easily, provided the
shapes of the curves to put in contact and the point
of contact are known. It is then only needed to find
out how much the standard teeth curves need to be
rotated.

In the example below, two involutes p1 and p2

are defined, and the angles a and b (from the centers
of the respective circles) between the horizontal and
the contact of the involutes with circles correspond-
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(a) Two involute teeth.

A BO

(b) The two rotated teeth meeting in O.

Figure 5: The contact of two involute teeth.

ing to the final contact are determined. Then the
two involutes are merely rotated according to these
two angles (see figure 5).
p1=involute_tooth(v,25,5);p2=p1 shifted z2;
a=angle(p1 intersectionpoint

circle(z1,.5arclength(z1--z2)));
b=angle((p2 intersectionpoint

circle(z2,.5arclength(z1--z2)))-z2);
draw p1 rotated -a;
draw p2 rotatedaround(z2,180-b);

3.3 Helical teeth with involute profiles

The teeth in Olivier’s upper (helical) wheel are ob-
tained from the envelope of the tangents to a helix
(see figure 6). The intersections of the envelope with
planes orthogonal to the cylinder axis are circle in-
volutes. This can be proved easily: let the helix
equation be

M =

r cos θ
r sin θ
aθ


A tangent vector to the helix in M is

dM

dθ
=

−r sin θ
r cos θ
a


A point T (α) of the tangent has the coordinates

T (α) =

r cos θ − αr sin θ
r sin θ + αr cos θ

aθ + αa


Taking aθ + αa = 0, we obtain α = −θ and

therefore the intersection with the plane z = 0 is

I(θ) =

r(cos θ + θ sin θ)
r(sin θ − θ cos θ)

0



I

ξ

Figure 6: Helical tooth with involute profiles. The
tooth is generated by an involute I moving along a helix
ξ. (In this drawing, the four non-working faces of the
tooth have been made planar.)

which is exactly the equation of the involute de-
scribed above. The intersection with any other plane
z = h also gives an involute, of course.

4 The construction

Olivier’s drawing is reconstructed as follows:

4.1 Units

All the dimensions are expressed as multiples of a
conventional unit, so that it becomes easy to scale
the figure afterwards. In this case, the unit u was
1 cm on the original drawing. Changing the unit still
affects the drawing, in that text and line widths are
usually not changed when the unit is changed (but
they could be taken into account).
numeric u;
u=5mm;

4.2 Useful macros

A few useful macros are defined, in particular a
shortcut for a circle of center c and radius r:
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Figure 7: Step 1. The distance D = z0 − z200 is the shortest distance between the axes A and A1.

def circle(expr c,r)=
(fullcircle scaled 2r shifted c)

enddef;

% pathpoint(p) is some point on
% (point 0 of p, point 1 of p)
def pathpoint(text p)=

whatever[point 0 of p,point 1 of p]
enddef;

4.3 General layout

We start with the general layout of the figure, and
its various parameters. The number of teeth of the
lower (cylindrical) wheel is na = 24, whereas the
number of teeth of the upper (helical) wheel is nb =

18. The angle between the two wheel axes is β =
30◦. The (shortest) distance between the two axes
is d0.

On figure 7, the “Earth line” is p0 and separates
the horizontal projection (bottom) from the vertical
projection (top). Below p0, we see two wheels, one
with a vertical axis A (located at z0), and another
with an inclined axis A1. However, on the horizontal
projection, the wheel was first turned, so that its
axis in fact is also vertical. The base cylinders of
the two wheels therefore appear as circles on the
horizontal projection.

p0 is also the (horizontal) projection of the A1
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axis and point z200 is the projection of the point on
A1 which is at the closest distance from A.
na=24; % number of teeth of wheel 0
nb=18; % 1
beta=30; % angle between the wheel axes
z0=origin; % center of wheel 0
d0=23.3u; % distance between the axes of the wheels
z200-z0=d0*up;

The two cylinders H (lower wheel) and H1 (up-
per wheel) are provided with teeth and these teeth
are positioned on two bands. The (vertical) projec-
tions of the teeth for H are located between p0 and
p7, whereas those for H1 are located between p4 and
p5. The position of these bands determines the con-
tact between the two wheels and is a parameter of
the drawing. The intersection of the median planes
of these bands is a lineX whose vertical projection is
z201 = Xv. We use d1 and d2 as parameters locating
Xv. The line p0 can now be defined.
d1=2.9u; % distance from X to the line LT
d2=4.55u; % distance from X to the vertical A^v
z201-z200=(d2,d1);z210-z200=d1*up;
z203=z200+6u*left;
z204=z200+25u*right;p0=z203--z204; % LT line

The radii r1 and r2 of the two cylinders depend
both on the number of teeth and on the angle be-
tween the two axes. These values will serve as base
radii for the teeth’s involute curves, but teeth will be
undercut below these base radii for deeper meshing.
The undercut radii are r11 and r21. Finally, z1 is
the intersection between X and the tangency plane
common to the two cylinders H and H1. The (hor-
izontal) projection of this tangency plane T is p1.
r1=d0/(1+(nb/na)/cosd(beta)); % radius of wheel 0
r2=d0-r1; % radius of wheel 1
r11=11.7u; % inner radius of wheel 0
r21=9.6u; % inner radius of wheel 1

z1=(x201,r1);
z2=z0+r1*up+15.2u*left;
z3=z0+r1*up+22u*right;
p1=z2--z3; % tangent between the wheels

The upper wheel is rotated around X by an
angle β and the horizontal projection of its center
is z100. The intersection of p3 and A1 is z220. The
(vertical) projection of the point on A1 closest to A
is z219. Finally, we compute z202 and z207, a segment
parallel to A1 and going through Xv.
z100=whatever[z0,z1]

=whatever[z200,z200+right];
z220=z201+(x100-x201)*dir(beta);
z219=whatever[z200,z210]

=whatever[z220,z220+dir(90+beta)];
z202=whatever[z201,z201+z219-z220]

=whatever[z210,z219];
z207=whatever[z202,z201]

=whatever[z200,z100];

Two contours p101 and p102 are now determined
for the purpose of framing or clipping parts of the
drawing under construction: p101 frames the whole
drawing, and p102 frames the upper part. These
contours will be used to hide parts of the teeth, as
in Olivier’s original plate.
% contours:
z301=z0+1.3r1*left;
z302=(xpart(point 1 of p0),y0);
z303=(x302,y100+1.3r2);
z304=(x301,y303);
% frame for the whole drawing:
p101=z301--z302--z303--z304--cycle;
z251=(x0,y303); % vertical edge
% contour for clipping the upper teeth:
z305=(x303,y100);
z306=(x304,y100);
p102=z301--z302--z305--z306--cycle;

The linesM ,M1 (dividing the teeth bands) and
their parallels are now easily defined:
p2=(xpart(point 0 of p0),y210)

--(z201+4(z201-z210)); % M
p3=(z220+2(z220-z201))--(z201-2(z220-z201)); % M1
p4=p3 shifted (d1*dir(90+beta)); % parallel to M1
p5=p3 shifted (d1*dir(-90+beta)); % parallel to M1
p7=p2 shifted (d1*up);

Next we define p6 (the A1 axis) using z221 and
z222. This axis being partly drawn dashed, we in-
troduce two intermediate points z223 and z223.
z221=.4[z219,z220];z222=(z220+.65(z220-z219));
p6=z221--z222; % A1 axis
z223=p6 intersectionpoint p4;
z224=p6 intersectionpoint p5;

The projection of the rotated axis A1 is p8:
z101-z100=z100-z102=r2*up;
p8=z101--z102;

The contacts between the helical teeth of the
upper wheel and the cylindrical teeth of the lower
wheel are vertical segments which are parallel to A,
and one of them is the segment (z228, z233). Since
the upper wheel is rotated for the drawing, the seg-
ments need to be rotated too. A number of arcs on
figure 7 show the points and their position after rota-
tion. For instance, z223 (intersection of axis A1 and
p4) becomes z225. For the main contact between the
wheels, we define points z226 (p), z227 (p′), z228 (iv),
z229 (q′), z230 (q), z231 (i′v), z232 (l′v) and z233 (lv).
The segment p9 = l′v − i′v is the vertical projection
of the main rotated contact.
z225=p8 intersectionpoint p7;

% rotation arcs
z226=z201+d1*dir(90+beta); % p
z227=z201+d1*up; % p’
z228=whatever[z201,z201+up]

=whatever[z226,z226+dir(beta)]; % i^v
z229=z201+d1*down; % q’
z230=z201+d1*dir(-90+beta); % q
z231=z228 rotatedaround(z201,-beta); % i’v
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Figure 8: Excerpt of Olivier’s plate: contact segments.
The arc at the lower right corner seems incorrect.

z232-z201=z201-z231; % 232=l’v
z233-z201=z201-z228; % 233=l^v
p9=z232--z231; % l’v - i’v

At a given time, several teeth are in contact. In
our case, three teeth are in contact. We call these
teeth 1, 2 and 3. The segment p9 is the contact for
the second lower tooth.

The vertical line through Xv is tangent to one
of the cylindrical teeth. The next vertical tangent to
the right is at a distance which is the circumference
of the lower wheel divided by na. The intersection
with LT is z234. The contact segment on the upper
band is (z236, z238). The horizontal projection of
that contact is point z12 on the cylinder tangency
line.

z234=z229+(2*3.14159*r1/na)*right;
% intersection with p4 (=upper line parallel to M1)
z236=pathpoint(p4)=z234+whatever*up;
% intersection with p5 (=lower line parallel to M1)
z238=(z236--z234) intersectionpoint p5;
z12=(x236,y0+r1); % contact with lower tooth

p10 is the rotated contact segment for the third
tooth. It is obtained by translating the second con-
tact segment.
z235=z236 rotatedaround(z201,-beta); % end of arc
% parallel to l’v-i’v:
p10=p9 shifted (z235-z231);
z239=point 0 of p10; % p10=z239--z235

z238 is used to define the two lines p11 and p12.
z241=(z236--z12) intersectionpoint p2;
% parallel to M going through ‘a’:

p11=p2 shifted (z241-z238);
% parallel to M going through ‘b’:
p12=p2 shifted (z238-z241);

z211 and z212 are the intersections of p11 and
p12 with the vertical projection of A:
z211=p11 intersectionpoint (z0--z219); % a
z212=p12 intersectionpoint (z0--z219); % b

The vertical tangent to the first tooth, going
through z242, is obtained from the two other tan-
gents (going through z229 and z234). z11 is the con-
tact with the first tooth on the tangency line T .
z242=z229-(z234-z229);
% intersection with p11:
z243=(x242,y241+(y241-y238));
z11=(x242,y0+r1);
p13=z11--z243; % vertical tangent to lower tooth 1

Next we rotate the contact segment and obtain
p14.
z244=z243 rotatedaround(z201,-beta);
% parallel to l’v-i’v:
p14=p9 shifted (z244-z231);
z245=point 0 of p14; % p14=z245--z244
z246=z245 rotatedaround(z201,beta);

4.4 Tangents to the lower teeth

The three contact segments have the horizontal pro-
jections z11, z1 and z12. The intersections of these
segments with the planes whose (vertical) projec-
tions are p4 and p5 are located on involutes, as shown
in figure 6. These involutes are actually tangent to
a line orthogonal to the (horizontal) projection of
the contact segment, as one can easily see. The six
involutes under consideration go through the points
z111, . . . , z116 (figure 9).
% tangent 1 with upper tooth 1:
z111=(x245,y0+r1);p15=z245--z111;
z112=(x244,y0+r1);p16=z244--z112; % tang. 2/tooth 1
z113=(x232,y0+r1);p17=z232--z113; % tang. 1/tooth 2
z114=(x231,y0+r1);p18=z231--z114; % tang. 2/tooth 2
z115=(x239,y0+r1);p19=z239--z115; % tang. 1/tooth 3
z116=(x235,y0+r1);p20=z235--z116; % tang. 2/tooth 3

4.5 Construction of the upper wheel teeth

Figure 10 shows a detail of Olivier’s plate. The con-
struction of the upper teeth is shown in figure 11.
On this figure, the main helical tooth is bounded by
two involute curves, p55 and p56. These two curves
are obtained as follows.

We know that p55 goes through z111 and that
p56 goes through z112. We start with an involute
curve p51 on the upper wheel. We obtain a point
z105 on p51, at exactly the distance d4 between z111
and z100. This point z105 is then used to rotate p51

in such a way that it goes through z111, the new
path being p52:
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Figure 10: Excerpt of Olivier’s plate: upper teeth construction.

111

112

p55
p56

p57

p61

d4

d5

109 122

123

124
126

d6

127

128
129

130

131

132

245

244

100

Figure 11: Step 3. Construction of the upper teeth: the lines (123,126) and (112,111) are two of the generating
lines of the surface making up the helical teeth.

p51=involute_tooth(r2,10,20) shifted z100;
d4=arclength(z100--z111);
z105=p51 intersectionpoint circle(z100,d4);
p52=p51 rotatedaround

(z100,angle(z111-z100)-angle(z105-z100));

Similarly, we obtain p54 going through z112:
p53=involute_tooth(r2,5,20) shifted z100;
d5=arclength(z100--z112);
z106=p53 intersectionpoint circle(z100,d5);
p54=p53 rotatedaround

(z100,angle(z112-z100)-angle(z106-z100));

The two involutes p52 and p54 extend below the

tangency line, and we cut them so that they end at
that line. We now have three edges of the projected
tooth: p55, p56 and p57.
p55=p52 cutafter circle(z100,d4);
p56=p54 cutafter circle(z100,d5);
p57=z111--z112;

The other faces of the tooth are non-working,
and they can be determined in different ways, taking
into account the way they are manufactured and the
material used. The tooth thickness is a parameter
of the drawing and we determine z109 by rotating
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going through z111, . . . , z116.

z111 of a certain angle.
z109-z100=(z111-z100) rotated 2.5; % empirical

z122 is obtained as an intersection of a circle
going through z112 and a line parallel to p57 and
going through z109. However, although this makes
it easy to draw the figure, it produces a face which
is not planar. Since Olivier did so in his plate, we
reproduced it. In figure 6, however, we made sure
the corresponding face is planar.
p58=z111--z109;
z110-z112=z109-z111;
z121-z110=z110-z109;
z122=(z109--z121) intersectionpoint circle(z100,d5);
p59=z109--z122;
p60=z112--z122;

z124 is obtained as the intersection of the base
circle with a parallel to (z109,z100) going through
z122. As a consequence, the face which is opposite
the working-face can be made planar.
z123=point 0 of p56;
z124=(z122--(z122+(z100-z109)))

intersectionpoint circle(z100,r2);
p61=z122--z124;

And when the wheels turn, the contact segment
shifts from the outside to the inside of the tooth,
or in the opposite direction. When the contact oc-
curs at the base radius, the contact segment which
is involved is the segment (z123, z126), and z126 is
computed as follows:
z126=p55 intersectionpoint

(z123--(z123+(z100-z123) rotated 90));
p62=z123--z126;

We now cut the tips of the helical teeth, in order
to limit their projection inside the cylindrical wheel.
We compute a radius d6 based on the value of r11
measured on Olivier’s plate. p63 is the circle for the
maximum extent of the helical teeth.
r10=arclength(z0--z100);
d6=.99(r10-r11);

p63=circle(z100,d6);

Using the previous circle, we cut a part of the
helical tooth. For that, we determine three points:
z127=p55 intersectionpoint p63;
z128=p57 intersectionpoint p63;
z129=p59 intersectionpoint p63;

Then, we define several paths. p64 is the arc
going from z127 to z129. p65 is the part of p55 that is
left once we cut what goes beyond p63. p66 and p67

are two more edges produced by this cut.
p64=the_arc(z127,z100,

angle(z129-z100)-angle(z127-z100));
p65=p55 cutafter p63;
p66=z128--z112;
p67=z129--z122;

The macro the_arc is defined as follows:
vardef the_arc(expr s,c,a)=

save p,t;
path p;
p=if a<0:reverse fi

fullcircle rotated (angle(s-c))
scaled (2arclength(s--c)) shifted c;

t=xpart(p intersectiontimes
(c--(c+2(s-c) rotated a)));

(subpath(0,t) of p)
enddef;

Several points are defined for the purpose of
drawing the line from z100 to the tip z109:
z130=(z109--z100) intersectionpoint

circle(z100,r21);
% dashed line to the tip of the upper tooth (1):
p68=z109--z130;
z131=(z109--z100) intersectionpoint p63;
z132=(z109--z100) intersectionpoint circle(z100,r2);
% dashed line to the tip of the upper tooth (2):
p69=z131--z132;

Finally, we construct a contour for the whole
upper wheel (figure 12). This contour is made of
the three paths p71, p64, p70, and these paths are
repeated to form the contour p73:
% construction of a contour for drawing
% the dashed lines of the lower teeth:
p70=p67 cutafter (p55 rotatedaround(z100,(360/nb)));
p71=p65 cutbefore

(p67 rotatedaround(z100,-(360/nb)));
p72=p64--p70--(p71 rotatedaround(z100,(360/nb)));

% contour to hide the lower teeth:
p73=p72 for i=1 upto nb-1:

--(p72 rotatedaround(z100,i*(360/nb)))
endfor--cycle;

Four additional paths are defined for the variant
teeth shown for the upper wheel in Olivier’s plate:
p74=p65 cutafter

(p67 rotatedaround(z100,-(360/nb)));
p75=p55 cutbefore

(p67 rotatedaround(z100,-(360/nb)));
p76=p62 cutbefore

(p61 rotatedaround(z100,-(360/nb)));
p77=p62 cutafter

(p61 rotatedaround(z100,-(360/nb)));
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Figure 12: Step 4. Construction of the upper wheel contour.

4.6 Construction of the lower wheel teeth

The lower teeth are easier to draw, since they are
purely cylindrical (figure 13). They are positioned
in the same way as the involutes for the upper teeth.
In other words, the involutes are rotated in such a
way that the contact occurs on z1. The teeth shapes
are made of two paths, p22 and p24, and the same
technique is applied for both. Only the macro used
is not the same.
p21=cyl_full_tooth(r1,5,2);
d3=arclength(z0--z1);
z14=p21 intersectionpoint circle(origin,d3);
p22=p21 rotated (angle(z1)-angle(z14));
% second part of the tooth:
p23=cyl_full_tooth_x(r1,5,2,1);
p24=p23 rotated (angle(z1)-angle(z14));

Finally, the lower teeth are partly hidden by
drawing them all and then using the hiddenpath
macro.
def draw_lower_teeth=

for i=-5 upto 7: % Olivier forgot the case i=7
draw p22 rotatedaround(origin,i*(360/na));
draw p24 rotatedaround(origin,i*(360/na));
% we remove what lies inside p73:
hiddenpath(p22 rotatedaround(origin,i*(360/na)),

p73,dashtype(1));
hiddenpath(p24 rotatedaround(origin,i*(360/na)),

p73,dashtype(1));
endfor;

enddef;

The hiddenpath macro is defined as follows.
hiddenpath(under,over)(dt) draws that part of

the path “under ” which is within path “over ” with
dashes of type “dt”.
vardef hiddenpath(expr under,over)(text dt)=

save p,q;
picture p,q;
p=image(draw under);clip p to over;
undraw p;
q=image(draw under dt);
clip q to over;
draw q;

enddef;

and the various dashes are obtained with:
def dashtype(expr n)=

if n=0: dashed withdots
elseif n=1: dashed evenly
elseif n=2: dashed

dashpattern(
on 6bp off 2bp on 1bp off 2bp on 1bp off 2bp)

elseif n=3: dashed
dashpattern(on 6bp off 2bp on 1bp off 2bp)

fi
enddef;

5 Drawing the figure

Given all the previous definitions, drawing the figure
is pretty straightforward, and we won’t describe it
in detail. We will merely give an insight into the
hatched line LT and the clipping of parts of the
drawing.

The hatched line LT is drawn with the macro:
vardef hatch(expr p,n,l)=

save A,B;
pair A,B;
A=point 0 of p;B=point 1 of p;
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Figure 13: Step 5. Lower wheel teeth construction, and dashing.

for i=0 upto n:
draw (i/n)[A,B]--((i/n)[A,B]+l*dir(-45));

endfor;
enddef;

and 400 marks are produced with a call to
hatch(p0,400,.2u);

Clipping the upper wheel may be seen as tricky,
especially if parts of the lower wheel have been pre-
viously drawn, and we want to retain them. The
solution is to save the current picture in a picture
variable, then to reset the current picture, to draw
the upper wheel, then to clip it, and finally to re-
draw the saved picture. This is summarized in the
following macro:
vardef draw_upper_wheel=

save oldpic;
picture oldpic;
oldpic=currentpicture;
currentpicture:=nullpicture;
draw_upper_teeth;
draw_upper_wheel_structure;
clip currentpicture to p102; % we cut beyond p102
draw oldpic;

enddef;

6 Conclusion

We were able to produce a very faithful copy of
Olivier’s original plate. We think that we identi-
fied two errors in Olivier’s drawing (or rather in the
etching which was made from his drawing). First,
the wheel with cylindrical teeth is obviously missing

one tooth in Olivier’s drawing. Second, the arc be-
tween points z224 and z100 is incorrectly represented.

Other than that, reproducing Olivier’s figure
has provided an understanding that would be diffi-
cult to reach by merely gazing at the drawing. By
reproducing it, one is led to find the relationships
between the parts, and, in particular, to try to min-
imize the number of parameters, such that the figure
becomes as general as possible.
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