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The investigation of the forms proper for the teeth of wheels is a useful
and interesting inquiry. The mechanical principles are very simple, and the
geometrical propositions on which it is immediately made to depend, admit of
being put in an elegant form. But all the theories which have yet been given,
are, I believe, very imperfect. Euler in the New Petersburgh Commentaries 1

for 1760 has treated the subject with great generality; but the analytical
method which he has used is very unfavourable for the discovery of the most
obvious properties of the curves. In all the other theories that I have seen,
no forms are mentioned but the involute of a circle, and the epicycloid and
hypocycloid. In this paper I propose to consider generally the figures which
must be given to the teeth of wheels to insure uniformity of action. The curves
above alluded to, though probably the most convenient of all, I shall shew
are particular cases of a very general construction: and the demonstration
which has usually been given for them, I shall apply to every other case.

That the mechanical effect which one wheel produces upon another, may
in all positions be the same, it is necessary that the line perpendicular to
the surfaces of the teeth,2 at the point of contact, intersect the line joining
the centers at a fixed point, which divides that line into two parts, the ratio
of which is the mechanical power. When this holds, the proportion of the
angular velocities will be constant. For let A and B (Plate XV. Fig. 1.)
be the centers of the wheels, C the point through which the line of action
passes: D the point of contact: upon moving the wheels with the teeth still

∗Transactions of the Cambridge Philosophical Society, vol. 2, 1827, p. 277–286 (and
plate XV). Typeset and annotated by Denis Roegel, 26 October–14 November 2006. Ver-
sion of December 3rd, 2006.

1Novi commentarii academiæ scientiarium Petropolitanæ 5 (1754/5), 1760, p. 299-316.
(Editor)

2This is called the line of action. (Editor)
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in contact through a very small angle, D in one tooth 3 will be carried to F ,
and in the other to G, FG being ultimately parallel to the tangent at D, or
perpendicular to CD , and DF , DG , perpendicular to AD , BD respectively.
Then,4

FD : GD :: sinG : sinF :: sinBDC : sinADC ::
BC

BD
:
AC

AD
;

therefore the angular velocities, which are as
FD

AD
:
GD

BD
, will be as BC : AC ,

a constant ratio.5 If then with centers A and B circles be described passing
through C, and these circles revolve so as to make the velocities of their
circumferences equal, the teeth of the wheels, if properly formed, will be in
contact, and the normals to both will pass through C. These circles we shall
call the principal circles of the wheels.

If the normals from every point of the tooth should be equally inclined
to the tangents of the circle at the points where they meet the circle, they

3We consider actually two points, D1 on A, and D2 on B. D1 is carried to F (on a
circle centered on A) and D2 is carried to G (on a circle centered on B). (Editor)

4a : b :: c : d :: e : f... means
a

b
=

c

d
=

e

f
= · · · . Now, since FG is parallel to the

tangent to the teeth at D, we have the following figure

C

A

B

D

G

F
δ ε

ω

ρ

η

ε

tangent

and δ = π − ρ =
π

2
+ η = B̂DC , ε =

π

2
− ω = ÂDC .

We have
sin F̂GD

FD
=

sin D̂FG
GD

, hence
FD
GD

=
sin F̂GD

sin D̂FG
=

sin δ
sin ε

=
sinG
sinF

=
sin B̂DC

sin ÂDC
. On

the other hand, we have also
sin B̂DC

BC
=

sin B̂CD
BD

=
sin ÂCD

BD
and

sin ÂCD
AD

=
sin ÂDC

AC
.

Therefore
sin B̂DC

BC
=

AD
AC · BD

sin ÂDC and
sin B̂DC

sin ÂDC
=

(
BC
BD

)(
AC
AD

) which completes the

proof. (Editor)
5 FD
AD

is the angle by which wheel A has turned, when FD is very small.
GD
BD

is the

angle by which wheel B has turned, when GD is very small. Hence
(

FD
AD

)(
GD
BD

) =
FD
GD

× BD
AD

=

BC ·AD
BD ·AC

× BD
AD

=
BC
AC

. (Editor)
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evidently would if produced be tangents to a circle, whose radius : radius
of circle described :: cosine of inclination of normal with tangent of circle
described : 1.6 In this case both teeth would be involutes of circles. If the
inclinations are not equal, we must make use of the following theorem. It is
always possible to find a curve which by revolving upon a given curve, shall
by some describing point, in the manner of a trochoid, generate a second
given curve: provided that the normals from all points of the second curve
meet the first.

To prove this let AB , (Fig. 2.) be the first curve, AC the second; from
the points C and E, which are very near, draw the normals CD , EF ; if a
describing point P be taken, and PQ , PR, be made respectively equal to
CD , EF , and QR equal to DF , and this process be continued, a curve will
be formed, which by revolving upon BA, will, by the describing point P ,
generate the curve AC .7 For if Q coincide with D, then R will afterwards
coincide with F , and so on for all succeeding points, since QR = DF . Also
DC = QP , &c. And the angles made by these with the tangents are equal.
For the cosines of the angles, drawing DG , QS , perpendicular to EF , PR, are
FG

FD
and

RS

RQ
, in which the numerators are the differences of equal lines,8 and

the denominators are equal. Hence P will describe AC . And the formation
of the curve RQ is always possible, because RQ is greater than RS ; for FD is
necessarily greater than FG . As an example of this, suppose it were required
to find the curve, which revolving on one straight line AB , (Fig. 3.) would
generate another straight line AC . Since the angles made by the line PQ
with the tangent, must be constant, it follows, that the curve would be the
logarithmic spiral, P being its pole.9

6We have the following construction, where cosα = sinβ =
r

R
. Hence r : R :: cosα : 1.

R

r

β

α

(Editor)
7P is a fixed point on a new curve. (Editor)
8The reasoning uses the fact that EG = CD , which is true because EG and CD are

normals to AC , and because E and C are very near. (Editor)
9A logarithmic spiral is a curve that makes a constant angle with its radius vector. We

can obtain its polar equation as follows. Let the polar equation of the curve be ρ = r(θ).
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The entire theory of the teeth of wheels, may now be included in this
proposition. If the tooth HD , (Fig. 4.) be generated by the revolution of
any curve on the outside of the circle HC , and if DK be generated by the
revolution of the same curve in the same direction, in the inside of the circle
KC , then the normal at the point of contact of the teeth, will pass through
C. For let the generating curve be brought to the position LC , so as to touch
the circle HC at C; DC will be the normal of HD at D; and that the teeth
may be in contact, the same generating curve in the other circle must touch
KC at C; in which case it will coincide with this; D therefore will be in
the surfaces of both of the teeth, and CD the normal of both at that point;
therefore they will touch at D, and the line of action CD , will pass through
the fixed point C.10 If now we give equal velocities 11 to the circumferences
CH , CK , the same will be found at all times to be true. These forms then
are proper for the teeth of wheels.

Suppose then this problem proposed. Given the form of the teeth of one
wheel, to find the form of those of another, that they may work together
correctly.12 The following is the obvious solution. Divide the line joining the
centers of the circles at C, into two parts, whose proportion is the mechanical
power. Describe the circles CH , CK . Find the curve which by revolving
upon CH , will generate the given tooth HD . Make the same curve revolve
in CK , and with the same describing point let it generate KD ; KD is the
form required.

The usual construction of the involute of a circle, would seem to require

Then the radius vector of the curve is directed along ~r = (r cos θ, r sin θ) and its tangent

along ~v = (
dr

dθ
cos θ − r sin θ,

dr

dθ
sin θ + r sin θ). Then ~r · ~v = r

dr

dθ
cos2 θ − r2 sin θ cos θ +

r
dr

dθ
sin2 θ + r2 sin θ cos θ = r

dr

dθ
= ||~r|| · ||~v|| · cosα. Hence cosα =

r dr
dθ

r

√(
dr
dθ

)2
+ r2

=

dr
dθ√(

dr
dθ

)2
+ r2

. If this expression is constant, it follows easily that
dr

dθ
= ar, and therefore

dr

r
= adθ, hence ln r = aθ+ c and r = beaθ, where a and b (and c) are constants. (Editor)

10This can be summarized as follows. Take a point D on one of the generated curves.
Find the pair XP of the generating curve such that CD = XP and draw the generating
curve with X at C. The P coincides with D. Likewise, the corresponding point D′ on
the mating tooth is found such that BD ′ = BD . The generating curve is positioned in the
same way. (It is the same curve.) Then, since the generating curve rolls on HC or KC , C
is the center of instantaneous rotation, and therefore CD is perpendicular to the tangent
of both teeth. (Editor)

11Airy probably meant that the circumferences receive some uniform motion, but the
velocities of both circumferences can be different. (Editor)

12By correctly, it is meant that the ratio of velocities will be constant. (Editor)
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that the circles AH , and BK , should be separated.13 If however DH be the
involute formed in the usual way from the circle MN , (Fig. 5.) the normal

CM will be inclined at a constant angle to CA, (since its sine =
AM

AC
), and

the construction given before shews 14 that the involute HD may be generated
by the revolution of a logarithmic spiral upon CH , the describing point being
the pole of the spiral, and the angle between its radius and tangent, the same
as the angle made by MC , with the tangent of the circle at C. In the same
way the revolution of this spiral in the second circle will generate another
involute; and hence if the teeth of one wheel be involutes, those of the other
wheel must also be involutes. The generating circles of the involutes must
have radii proportional to AC , BC .15

It will be seen immediately, that we may if we please suppose successive
parts of the curve described by different generating curves; or we may make
one curve revolve on the outside of the circle CH , and another on the inside,
making the same curves revolve on the inside and outside of CK respectively,
and thus an infinite variety of curves may be found. The construction last
mentioned gives forms approximating most nearly to the usual forms of teeth.
We may even give different forms to different teeth but this probably would
not be desirable.

It may be desirable to know when the nature of the teeth will admit of
an alteration in the distance of the centers of the wheels. Suppose then DL
and FP , (Fig. 6.) to be the principal circles when the wheels are in the first
position;16 KS and HR, the principal circles when the distance of the centers
is increased. Suppose in the first position C was in contact with E, and M
with O; suppose in the second position, G and Q are in contact with E and
O; draw normals to all these points as in the figure. Since the wheels in the
first position work correctly, by supposition, the angles at D and N will equal
those at F and P . And if they work correctly in the second position, HG
will = KE , &c. HR will = KS , and the angles at H and R will equal those
at K and S. By attending to this condition, when the tooth EO is given, we

13This is because we usually take a circle and add the involutes beyond the circle. This
wouldn’t be possible with the principal circles. (Editor)

14Fig. 3 showed the rolling of a logarithmic spiral on a straight line, producing a straight
line, but the same spiral rolling on other curves generates other curves. On a circle, it
generates an involute of a smaller circle. (Editor)

15This is a consequence of the relationship between the angles of the normals with the

principal circles which must be the same. Then
AM
AC

=
BN
BC

and hence
AM
BN

=
AC
BC

.
(Editor)

16In that position, these two circles are tangent, but they are shown apart. The position
of the principal circles are determined by the velocity ratio. (Editor)
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can always form a tooth CQ , which will work with it in two positions of the
wheels. Since the angles at H and R equal those at K and S, the angles at
L and T will equal those at F and P ;17 and therefore will equal those at D
and N . It is evident that this condition will always be satisfied, if CQ be the
involute, and therefore if the teeth be involutes, the distance of the centers
may be altered, to any degree, allowing the teeth to act on each other.

In all, however, that has yet been stated, we have only considered the
mathematical conditions of the contact of two curves. That these forms may
be applicable in practice, it is necessary that the curvature of the convexity
of one tooth, should be greater than that of the concavity of the other, or
else that both should be convex. For this purpose we must investigate the
curvature at any point.

Take then two points on the circle near each other, and the two points
of the generating curve which will touch them; join these with the center of
curvature of the generating curve, and with the describing point; let φ, θ, ψ,
(Fig. 7.) be the small angles at the center of curvature, the describing point,
and the center of the circle;18 suppose the lines from the describing point,
when in contact with the circle, to be produced 19 respectively, and let the
angle at their point of intersection = χ. Also let α and β be the angles which
those lines make with the radii of the circle. Then we shall have 20

θ − φ = α− β; ψ − χ = α− β; ∴ χ = ψ + φ− θ.

But calling R the radius of the circle, r the radius of curvature,21 s the
distance of the describing point, x the distance of the point of intersection,22

ψ =
arc
R

; φ =
arc
r

; θ =
arc. cosα

s
; χ =

arc. cosα

x
;

∴
cosα

x
=

1

R
+

1

r
− cosα

s
; x =

cosα
1
R

+ 1
r
− cos α

s

;

∴ x+ s = s
1
R

+ 1
r

1
R

+ 1
r
− cos α

s

= rad. of curvature of tooth;

∴ curvature =
1

s
·

1
R

+ 1
r
− cos α

s
1
R

+ 1
r

=
1

s
−

cos α
s2

1
R

+ 1
r

.

17This follows from simple proportions. (Editor)
18In Fig. 7, the generating curve is drawn above the principal circle. (Editor)
19= prolonged. (Editor)
20By consideration of triangles, we have obviously α + φ = β + θ and α + χ = β + ψ.

(Editor)
21of the describing curve. (Editor)
22In the expressions for θ and χ, arc.cosα is arc × cosα, not the arccos function. All

the equations follow easily. (Editor)
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From an examination of this expression, it appears, that when α is < 90◦,
r may be positive or negative, but must be less than the radius of the circle
in the same direction; when α is > 90◦, r may be positive or negative, and
must be greater than the radius in the same direction.

If then, as is the case in general, α be < 90◦, that part of the tooth which
is without the circle,23 must be formed by the revolution of some curve upon
the circle, and that which is within it by the revolution of some curve within
the circle. This kind of tooth is represented in Fig. 4. But if α may be > 90◦,
the whole of the teeth may be formed by the revolution of a single curve; an
instance of this is represented in (Fig. 8.) where the teeth GH and KL are
formed by the motion of MN , carrying the describing point P . In the last
case, if the curve be a circle equal to one of the circles, one tooth will be
reduced to a point, the other will be an epicycloid or epitrochoid, according
as the describing point is in the circumference of the circle, or in any other
part.

It will easily be seen, that where the acting surface of the driving tooth
is above the circle, the action takes place after passing the line joining the
centers; when below the circle, it is before passing that line. Now practical
men always think it proper, that the action should take place only after
passing the line of centers. It is thought necessary that the direction of the
friction should be such as to wipe off the dust, &c. from the teeth. For this
purpose then, the curve which has been found for the lower part of the teeth,
must be considered as a limit which that tooth must not reach. In the case
in which the whole is formed by the revolution of one curve, the whole action
takes place after passing the line of centers.

To find what the friction really amounts to, we have merely to observe,
that in Fig. 1. if D be brought to G in one tooth, and to F in the other,
GF is the friction, and if BDC = α, FG : FD :: sinADB : sinα;24 there-

fore frictional motion ∝ sinADB

sinα
∝ sinADB

sinBCD
nearly,25 (the teeth being so

small, that DF may be considered as nearly representing the motion of the
circumference.) Also the pressure occasioned by a given force in given cir-

cumstances ∝ 1

sinBCD
; and the mechanical effect of friction is proportional

to the pressure by which it is caused multiplied by the velocity of the rubbing
23that is, beyond the principal circle. (Editor)
24With the notations of note 4, we have

FG
sin(δ + ε)

=
FD
sin δ

, that is
FG

sin ÂDB
=

FD

sin B̂DC
,

QED. (Editor)
25We approximate sin B̂DC by sin B̂CD , which is valid when the teeth are small (in

proportion). (Editor)
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surfaces; and therefore ∝ sinADB

sin2 BCD
nearly. The numerator is proportional

to the distance from the line of centers; and therefore will be the same for all
teeth, when that distance is the same. But the denominator is largest when
the face of the tooth is parallel to the radius of the circle. I imagine then that
it is advisable to make the teeth work a little before as well as a little after
the line of centers. And I should think that a tooth similar to that formed by
the union of the epicycloid and hypocycloid, is preferable to any other form
whatever. For the line of action is always very nearly perpendicular to the
radius; by which means not only is the friction made much less, but also the
strain upon the axes is considerably diminished.

If it be thought desirable to prevent back-lashing, this can be done by
giving proper forms on the same principles to the faces of the teeth, which are
not the working faces. But the chance of very greatly increasing the friction,
makes the propriety of this consideration very doubtful.

The whole of what has been stated with regard to circles, it is evident will
apply equally to straight lines. Thus the teeth of rack-work may be formed
as a combination of cycloids, in which case those of the wheel must consist of
epicycloids, and hypocycloids; they may be straight, which will make those
of the wheel the involutes of a circle, (both being generated by the revolution
of a logarithmic spiral;) they may be mere pins, in which case the teeth of
the wheel will be involutes, or curves described in nearly the same manner
as involutes. In this case, and in the case of trundles, if it be required to
take account of the diameter of the pins, this will be done by taking a curve,
whose normal distance from the curve found by considering them as points,
shall at all parts be equal to the radius of the pin. Or the form of the teeth
may be found by the general theorem.

For crown wheels, as the contrate wheel of a watch, the teeth without
sensible error may have the same form as for rackwork. The theory may be
extended to bevelled wheels, without any difficulty.

There is one case which ought to be mentioned particularly. It may be
desired that the teeth of one wheel have plane surfaces passing through the
axis of the wheel. Since a straight line is the hypocycloid, in which the
radius of the generating circle is half that of the fixed circle, the teeth of the
other wheel must be epicycloids, the radius of the generating circle being half
that of the first wheel. The action here takes place entirely after the line of
centers, and the direction of the action is nearly perpendicular to that line.
I imagine this to be a good construction for pinions with a small number
of teeth driven by a large wheel. If each tooth consist of a line within the
principal circle, and an epicycloid without it, the radius of the generating
circle of each epicycloid, being half that of the other principal circle, a very
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good form will be produced. The action takes place before as well as after
the line of centers, and is always nearly perpendicular to that line. The figure
usually given to the teeth of watch-wheels approaches very nearly to this.

I have confined my attention entirely to uniformity of action, and unifor-
mity of motion, as I conceive them to be of far greater consequences than
the diminution of friction. The friction can never be made = 0, except the
point of contact be always in the line of centers; a condition which may be
satisfied by an infinite number of curves, and amongst others by two logarith-
mic spirals. But the mechanical action and the motion would be dreadfully
irregular.

I am informed by engineers, that this question is now little more than
one of mere curiosity. In consequence of the very extensive use of iron, where
wood was formerly employed, the teeth of wheels are now made so small,
that it is of little consequence whether they have, or have not, the exact
theoretical form. Almost all teeth are now made with plane faces passing
through the axis of the wheel, and are expected to wear themselves in a
short time into proper forms. This is the case with nearly all the modern
iron wheels that I have examined; in the wheels of clock and watch-work,
some attention to the figure is however thought necessary.

G. B. AIRY

Trinity College,
April 30, 1825.
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