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AnyWalker – an ultra-mobile chassis robot
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Inverted pendulums
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Reaction-wheel pendulum
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System dynamics:

Jr θ̈r (t) + Jr θ̈(t) = kI(t),
(J + Jr )θ̈(t) + Jr θ̈r (t) = mlg sin θ(t),

where I(t) is the input current.
Measured signals: θ(t), θr (t).
Unmeasured signals: θ̇(t), θ̇r (t)
Control goal: to stabilize at the upper
equilibrium.

Can be easily solved with a full-state
feedback controller, if the velocities are

available:

I(t) = −k1θ(t)− k2θ̇(t)− k3θ̇r (t).
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Velocity observers
Model-based state observers

I require good model knowledge,
I estimate the full state vector (coupled),
I provide good performance for a good model.

E.g., linearization-based designs, nonlinear observers.

Model-free differentiators
I no need for a model (series expansion),
I decoupled, estimate for each DoF separately,
I worse performance than model-based designs (with a good model).

E.g., linear (FIR) differentiators.

Model-based differentiators
I use the (partial) model knowledge,
I decoupled,
I better performance than model-free designs (with a good model).

E.g., sliding-mode (exact) differentiators, high-gain designs,
homogeneous differentiators.
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Problem statement
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For our system, we use the model-based
homogeneous observer (HOMD).

The bias problem
The bias in the measurements of θ(t)

propagates through the model and yields the
biased velocity estimation.

⇓
The performance degrades and the

stabilization controller can be compromised.
⇓

To stabilize the system, a bias observer has
to be designed and combined with the

velocity observer.
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HOMD (1/2)
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Let us consider the system

ÿ(t) = f (v(t)),

where v(t) is measured and f (v) represents the known part of the
dynamics.
The HOMD velocity observer is given by

ẋ1(t) = x2(t)− k1dx1(t)− y(t)cα,
ẋ2(t) = f (v(t))− k2dx1(t)− y(t)c2α−1,̂̇y(t) = x2(t),

where
dxcα := |x |α sgn(x).
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HOMD (2/2)
Define the estimation error e1 := x1 − y and e2 = x2 − ẏ . Then the error
dynamics is

ė1(t) = e2(t)− k1de1(t)cα,
ė2(t) = −k2de1(t)c2α−1.

Finite-time convergence
Propositiona. Choose k1, k2 such that the polynomial s2 + k1s + k2 is
Hurwitz and α ∈

(
1
2 , 1
)
. Then the origin e1 = e2 = 0 is finite-time stable,

i.e. there exists T = T (e(0)) > 0 such that e(t) is defined and unique on
[0,T ), bounded, and limt→T e(t) = 0. T is called the settling-time
function of the system.

aSee Perruquetti, W., Floquet, T., and Moulay, E. “Finite-time observers:
Application to secure communi- cation”, IEEE Trans. on Automatic Control,
2008.
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Reaction-wheel pendulum velocity observer
1
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The pendulum dynamics is given by

θ̈(t) = −k
J I(t) + mlg

J sin(θ(t)),

and the HOMD-based velocity observer is
˙̂xp,1(t) = x̂p,2(t)− k1dep,1(t)cα,

˙̂xp,2(t) = −k
J I(t) + mlg

J sin(θ(t))− k2dep,1(t)c2α−1,
̂̇
θ(t) = x̂p,2(t),

where ep,1 := xp,1 − θ.
It has the same error dynamics and provides the finite-time convergence.
Stanislav Aranovskiy Differentiator-based velocity observer with sensor bias estimation 5 September 2019 11 / 29



1 Motivation and Problem Statement

2 HOMD-based velocity estimation

3 Estimation under the biased measurements

4 Bias estimation

5 Experiments

6 Conclusion

Stanislav Aranovskiy Differentiator-based velocity observer with sensor bias estimation 5 September 2019 12 / 29



Biased measurements
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Consider now the case when the measurements are biased, and the
available signal is

y(t) = θ(t) + d ,
where d is a constant.
Assumption
We assume that the constant displacement d is sufficiently small and the
following approximation holds:

sin(y) = sin(θ + d) ≈ sin(θ) + cos(θ)d .

What happens when we apply the same observer?
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Biased estimation
The previous error dynamics was:

ėp,1(t) = ep,2(t)− k1dep,1(t)cα,
ėp,2(t) = −k2dep,1(t)c2α−1.

The new error dynamics is

ėp,1(t) = ep,2(t)− k1dep,1(t)− dcα,
ėp,2(t) = a1 cos(θ(t))d − k2dep,1(t)− dc2α−1,

where a1 := mlg/J . The origin ep,1 = ep,2 = 0 is not an equilibrium any
more!

The new equilibrium (for fixed θ) is now

e0p,2 := k1
(a1 cos(θ)

k2
|d |
) α

2α−1
sgn(d).
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Bias propagation

What is the result of the bias propagation?
The measurement bias d propagates through the model of the dynamics
and yields a bias in the velocity estimation.
If this biased estimate is applied for control as

I(t) = −K
[
y(t) ̂̇

θ(t) ̂̇
θr (t)

]>
,

then the closed-loop system equilibrium is θθ̇
θ̇r

 =

 0
0

e0p,2 k3−k2
k3 − d k1

k3

 .
We have to estimate the bias.
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How to estimate the bias if the velocities are available?
Define z :=

[
θ θ̇ d

]>
, then y =

[
1 0 1

]
z . Let ẑ be an estimate of z

and define e := ẑ − z .
Then the dynamics of z can be written as

ż =

 z2
−k

J I + a1 sin(z1)
0

 ≈
 z2
a1 cos(y − ẑ3)e3

0

+

 0
βz
0

 ,
where the signal βz := −k

J I + a1 sin(y − ẑ3) is available.
If the velocity z2 is measured, then the Luenberger-like observer is

v̇ = βz ,

d̂ = ẑ3 = L0(v − z2),

where L0 > 0. Then

ė3 = −L0a1 cos(y − ẑ3)e3,

and e3 → 0 under reasonable assumptions.
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The coupled dynamics

θI
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The coupled dynamics:

˙̂z1 =ẑ2 − k1dẑ1 + ẑ3 − ycα,
˙̂z2 =βz − k2dẑ1 + ẑ3 − yc2α−1,
v̇ =βz ,

ẑ3 =L0(v − ẑ2).

Recall that z =
[
θ θ̇ d

]>
.

The error dynamics

ė1 = e2 − k1de1 + e3cα,
ė2 = −a1 cos(z1)e3 − k2de1 + e3c2α−1,
ė3 = L0k2de1 + e3c2α−1.

When is this system stable?
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Stability analysis (1/3)

Define s :=
[
e1 + e3 e2 e3

]>
. Then the observers dynamics:

ṡ1 = s2 − k1ds1cα + L0k2ds1c2α−1,
ṡ2 = −a1 cos(z1)s3 − k2ds1c2α−1,
ṡ3 = L0k2ds1c2α−1.

Under the reasonable assumption cos(z1) > c0 for some c0 > 0, the only
equilibrium is the origin s = e = 0.
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Stability analysis (2/3)
The system can be approximated by

ṡ = A0(z1)s − A1

1− α0
0

ψ(s1), ψ(s1) :=
{

ln
(
s21
)
s1 for s1 6= 0,

0 for s1 = 0

where

A0(z1) :=

−k1 + L0k2 1 0
−k2 0 −a1 cos(z1)
L0k2 0 0

 , A1 :=

L0k2 − 1
2k1 0 0

−k2 0 0
L0k2 0 0

 .
Define Am and AM as the values of A0(z1) for cos(z1) = c0 and
cos(z1) = 1. Suppose there exists P = P> > 0 such that for some γ > 0
and µ ∈ R:

Q := −
(
PA1 + A>1 P

)
≥ 0,

PAm + A>mP + µQ + γP ≤ 0,
PAM + A>MP + µQ + γP ≤ 0.
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Stability analysis (3/3)

Consider V = s>Ps. Then V̇ ≤ −γs>Ps for s1 = 0 and otherwise

V̇ ≤ −γs>Ps −
(
µ− ln

(
s21
)

(1− α)
)
s>Qs.

There can be found C = C(µ, α,P) such that for the set
Ω := {s : s>Ps < C} it holds V̇ < 0.

Stability of the coupled observers
For the considered observers, choose parameters such that the LMIs are
feasible. Then there exist ε > 0 and a compact set Ω, such that for
α ∈ (1− ε, 1] and all initial conditions s(0) ∈ Ω it holds s → 0 and
limt→∞ |ẑ − z | = 0.
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An alternative solution1
Apply the static feedback control

I(t) = −K
[
y(t) ̂̇

θ(t) ̂̇
θr (t)

]>
.

Then the closed-loop system equilibrium is θθ̇
θ̇r

 =

 0
0
θ̇0r


for some constant θ̇0r , e.g., θ̇0r = e0p,2 k3−k2

k3 − d k1
k3 .

As we approach the equilibrium, θ(t)→ 0⇒ y(t)→ d .
The idea is to use y(t) to estimate d :

d̂(t) = γ

p + γ
y(t).

1M. Gajamohan, M. Merz, I. Thommen, and R. D’Andrea, “The cubli: A cube that
can jump up and balance,” Conference on Intelligent Robots and Systems, 2012.
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The hardware

Description Symbol Value
Mass of the pendulum, kg mp 0.58
Pivot – pendulum’s center of mass distance, m lp 0.10
Mass of the reaction wheel, kg mr 0.35
Pivot – reaction wheel axis distance, m lr 0.22
Resolution of the pendulum angle measurement, rad – 6.28·10−4
Sampling frequency, Hz – 500
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The closed-loop stabilization without bias estimation,
d = −0.08.
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The closed-loop stabilization with the low-pass bias
observer, d = −0.08.
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The proposed HOMD and linear bias observer, d = −0.08.
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θ̂ = y − d̂
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Conclusion

The measurement bias can propagate through model-based
differentiators.
A bias observer has to be designed.
One particular case has been studied in this research, that is the
combination of the HOMD differentiator with the linear bias observer.

Our ongoing research is to apply it to the AnyWalker robot.

The takeaway message
In applications, when we combine well-known elements, they can yield an

interesting interaction.
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