
Rectangular Surface Parameterization—Supplemental Information
ETIENNE CORMAN, Université de Lorraine, CNRS, LORIA, France
KEENAN CRANE, Carnegie Mellon University, USA

ACM Reference Format:
Etienne Corman andKeenanCrane. 2025. Rectangular Surface Parameterization—

Supplemental Information. ACM Trans. Graph. 44, 4 (August 2025), 6 pages.
https://doi.org/10.1145/3731176

B Discrete Poisson Equation
For completeness, we describe the standard cotan discretization of

the Poisson equation [MacNeal 1949, Section 3.2], used to recover

our final parameterization coordinates in Section 5.2.

B.1 Discrete Laplacian
The cotan-Laplace matrix L is then a sparse |V | × |V | matrix with

nonzero entries

Li , j =

{
−wij , ij ∈ E,∑
ik wik i = j .

(1)

B.2 Discrete Divergence
The discrete divergence operator is a sparse |V | × |E | matrix with

nonzero entries

divi ,ij = sijwij , ∀i ∈ V , ij ∈ E, (2)

where sij = +1 when edge ij is oriented from i to j, and equals −1

otherwise.

B.3 Discrete Poisson Equation
Finally, we discretize the Poisson equation in Equation 13 as a scalar

Poisson equation for each coordinate f 1, f 2 of the final rectangular
parameterization f : V → R2, namely

Lf p = divµp , p = 1, 2. (3)

Here L, div, and µ are the discrete Laplacian, divergence, and differ-

ential given in Equations 1, 2, and 18, resp..

C Underdetermined Newton Solver
To solve our main optimization problem (Equation 19), we need a

method that can deal with underdetermined nonlinear constraints.

We use the method of Polyak and Tremba [2020], detailed here.

Similar to Newton’s method, this method finds a zero of the first

order optimality conditions by repeatedly solving linear systems,

using a carefully-chosen line search.

Authors’ Contact Information: Etienne Corman, Université de Lorraine, CNRS, LORIA,

Vandœuvre-lès-Nancy, France; Keenan Crane, Carnegie Mellon University, Pittsburgh,

PA, USA.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2025 ACM.

ACM 1557-7368/2025/8-ART

https://doi.org/10.1145/3731176

uniform
tangent length

constant area

uniform
normal length

prescribed aspect ratiofree boundary

uniform normal
& tangent length

Fig. 32. Here we show boundary conditions like those from Figure 18, but
without any cone singularities. This example illustrates both the robustness
of our method to extreme constraints—and also emphasizes the utility of
singularities for obtaining low distortion/good element quality.

More explicitly, let x := (u,v, θ) ∈ R2 |V |+ |F | be the primal vari-

ables and λ ∈ R |E | be the Lagrange multiplier, the critical points of

Equation 19 are solutions of the system of equations:

∇Φ(x) + JF (x)
⊤λ = 0

F (x) = 0,
(4)

where ∇Φ denote gradient of the objective chosen in Section 5.1.1,

and JF is the Jacobian of the constraint equation given in Section 4.1.

The nonlinear system of equations in Equation 4 is solved by

taking Newton steps, using a line search that directly encourages

satisfaction of this system. More explicitly, let xk and λk denote the

current guess at the kth step of optimization. Then we solve the

linear system[
∇2Φ(xk) + ∇(JF (xk)

⊤λk) JF (xk)
⊤

JF (xk) 0 |E |× |E |

] [
yk
δk

]
=

[
∇Φ(xk) + JF (xk)

⊤λk
F (xk)

]
(5)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://doi.org/10.1145/3731176
https://doi.org/10.1145/3731176

2 • Corman and Crane

for the descent directions yk and δk , where ∇
2Φ denote the Hessian

the objective function. The updated guesses are xk+1 = xk − τyk
and λk+1 = λk − τδk , where τ > 0 is a step size. The step size is

computed by performing backtracking line search until

∥∇Φ(xk − τyk) + JF (xk − τyk)
⊤(λk − τδk)∥ + ∥F (xk − τyk)∥

≤ (1 − τ
2
)
(
∥∇Φ(xk) + JF (xk)

⊤λk ∥ + ∥F (xk)∥
)
.

This strategy guarantees that we converge to a local minimizer of the

original optimization problem (Equation 19), at essentially the usual

rate of Newton’s method—see Polyak and Tremba [2020, Theorem

4.1]. In practice, we use a backtracking ratio of 0.9 for line search.

Crucially, we find that Equation 5 always admits a solution and is

only overconstrained when inadmissible boundary constraints are

imposed (Section 5.1.3).

D Singularities and Cuts
In the case where either (i) the field has singularities and/or (ii) the

domainM is not a topological disk, we must effectively cut along

the curve Γ, plus additional topological cuts, before flattening the
mesh. In practice, we compute topological cuts by considering the

traversal tree used to construct Γ, and taking the complementary

graph of primal edges not crossed by any edge in this dual tree. We

then iteratively remove any degree-1 vertex from the primal graph,

except for singular vertices, until no more vertices can be removed.

The remaining primal edges define the cut. (This approach is similar

in spirit to the tree-cotree strategy of Eppstein [2002].)

This problem of solving for a parameterization on a cut mesh

comes up frequently in geometry processing, and is a perennial

nuisance. Hence, we will first introduce a perspective that simplifies

the situation both conceptually and in terms of implementation,

before giving the details of our particular algorithm. We make just

one simple change to our basic setup: rather than store values at

vertices, we will store values at all triangle corners, using linear

constraints to identify equivalent values as needed. In the absence

of any cuts, our formulation ultimately yields the same solution as

before, but with the additional flexibility to easily incorporate cuts.

In more detail, for any function fi at vertices, we now store values

f
jk
i at all triangle corners. A sparse matrix U ∈ Rm×|C | encodes
equivalence of values at different corners, wherem is the number of

identifications, and |C | is the number of corners. Two corners around

a common vertex are equivalent if and only if they are not separated

by a cut edge. For the nth equivalence f
jk
i = f kli of consecutive

corners, U will have nonzero entries Un, jki
= 1 and Un,kli

= −1, i.e.,

the equation number determines the row index, and the corners are

specified via the column indices.

Next, supposewewant to solve any linear equationAf = b, which
in general may be under- or over-determined. We can express this

system in terms of values on corners, plus the identification matrix

U , as a least-squares problem subject to linear constraints:

minf ∈R|C | ∥Af − b∥
2

M
s.t. U f = 0.

(6)

Here |A|2M := A⊤MA denotes the ℓ-2 norm with a mass matrix

M ∈ R |C |× |C | . We use in particular a diagonal matrix with nonzero

entries

M jk
i ,

jk
i
= 1

2
cotα

jk
i ,

i.e., we use the cotan weight associated with each corner. In the case

where there is no cut, our problem amounts to solving the exact

same cotan-Poisson problem in Equation 3.

Equation 6 can be solved using any availablemethod—for instance,

the method of Lagrange multipliers, we find the solution to this

problem is given by the block linear system[
A⊤MA U⊤

U 0

] [
f
λ

]
=

[
A⊤Mb

0

]
,

where λ ∈ Rm are the Lagrange multipliers. By formulating the

problem this way, rather than directly applying least-squares to

the combined system [AU]⊤ f = [b0], we ensure that corner values
are identified exactly, and only the original equations are approx-

imated. Note that in general there may be more efficient ways to

solve this kind of problem—we find that this approach is simple, and

helps avoid implementation errors. For instance, one could directly

eliminate variables by hand (though modern direct solvers are of-

ten quite good at effectively performing this same elimination); a

general-purpose QP solver might also work fine depending on the

use case.

In the case of our particular problem, we also have to modify

Equation 3, splitting it into two different equations on the two sides

of every edge. In particular, for each edge ij in Γ we modify the right-

hand side so that both vectors µkij , µ
l
ji are in the same coordinate

system. In particular, consider the angles βij from Section 5.3.1,

which give the rotation between frames (after parallel transport)

across any cut edge ij. Hence, to evaluate Equation 3 for an edge

from corner
jk
i to corner

ki
j , we use

f kij − f
jk
i = 1

2
(µkij + R−ζij µ

l
ji), (7)

where ζij := π
2
⌈(β − π/4)/(π/2)⌉ is the closest quarter-rotation

taking the frame in triangle ijk to the frame in triangle jil . In other

words, we account for the jump in the frame across the cut. Likewise,

on the other side of the edge, with endpoints at corners
l j
i and

il
j ,

we have

f ilj − f
l j
i =

1

2
(Rζij µ

k
ij + µ

l
ji). (8)

References
David Eppstein. 2002. Dynamic generators of topologically embedded graphs. arXiv

preprint cs/0207082 (2002).
Richard Henri MacNeal. 1949. The solution of partial differential equations by means of

electrical networks. Ph.D. Dissertation. California Institute of Technology.
Boris Polyak and Andrey Tremba. 2020. New versions of Newton method: step-size

choice, convergence domain and under-determined equations. Optimization Methods
and Software 35, 6 (2020).

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2020. OSQP: an operator

splitting solver for quadratic programs. Mathematical Programming Computation
12, 4 (2020), 637–672.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Rectangular Surface Parameterization—Supplemental Information • 3

E Pseudocode
Here we give detailed pseudocode for our rectangular parameteriza-

tion algorithm. We omit pre-processing (namely, generation of the

reference field) and post-processing (namely, quantization and con-

touring of the parameterization in the case of meshing), since these

steps are handled by existing algorithms. All other methods are

given explicitly in terms of basic operations on vectors and a stan-

dard halfedge mesh data structure, and should be easily translatable

to real code. The only subroutines not spelled out here are:

• Unit(v) — given a nonzero vector v ∈ R3, returns the unit
vector in the same direction.

• Objective(M,A,u,v, θ), gradObjective(M,A,u,v, θ),
hessObjective(M,A,u,v, θ) – implements one of the objec-

tive functions from Section 5.1.1, and its gradient/Hessian,

given the mesh connectivityM , the triangle areasA, log scale
factors u,v per vertex, frame rotation angles θ per face.

• Solve(A,b) — returns x solution of Ax = b
• SolveQP(H ,д, J , F)— solves a quadratic program of the form

miny
1

2
yTHy+yTд subject to Jy+F = 0. (We use OSQP [Stel-

lato et al. 2020].)

• SparseFromTriplets((I , J , S),n,m) — returns a sparse ma-

trix A of size n ×m whose coefficient AIi Ji is equal to Si for
all i . If a coefficient appears several times in the lists (I , J),
their corresponding values in S are summed.

• Append(L,a) — returns a new list appending the element a
to the list L.
• Angle(x,y, z)— returns the angle between the vectory−x ∈
R3 and z − x ∈ R3.

For simplicity we assumeM is without boundary.

Algorithm 1 FlattenMesh(M, x,W)

Input: A manifold, orientable, simply-connected triangle mesh

M = (V , E, F) with corners C , coordinates xi ∈ R
3
at each

vertex i ∈ V , and a cross field given by any one of four rep-

resentative unit vectorsWijk ∈ R
3
in each triangle ijk ∈ F

Output: Coordinates f : C → R2 describing the flattening of each

triangle into the 2D plane. Note that these values are stored

at triangle corners rather than vertices to accommodate

possible cuts.

1: for each ij ∈ E do ℓi j ← |xi − x j | ▷edge lengths

2: for each jk
i ∈ C do α

jk
i ← Angle(xi , x j , xk) ▷corner angles

3: for each ijk ∈ F do ▷cross field angles
▷compute a basis (N ,T1,T2) for triangle ijk adapted to edge ij

4: N1 ← (x j − xi) × (xk − xi) ▷unnormalized normal
5: Aijk ← |N1 |/2 ▷triangle area
6: N1 ← N1/(2Aijk) ▷normalize
7: T1 ← Unit(x j − xi)
8: T2 ← N1 ×T1
9: ξijk ← atan2(⟨T2,Wijk ⟩, ⟨T1,Wijk ⟩) ▷angle relative to ij

10: Γ, ζ , s,φ,ω0 ← ComputeCutJumpData(M,α, ξ)
11: u,v, θ ← SolveOptimizationProblem(M,A,α,φ,ω0, s)
12: f ← RecoverParameterization(M, Γ, ζ , ℓ,α,φ, θ,u,v)
13: return f

Algorithm 2 ComputeCutJumpData(M,α, ξ)

Input: A manifold, orientable triangle mesh M = (V , E, F) with
angles α

jk
i at each corner i of each triangle ijk ∈ F , angles

ξ : F → R describing one of the four directions of the cross

field in each triangle ijk ∈ F as a rotation relative to the

direction of the first edge ij.
Output: The curve Γ : E → {0, 1} cutting M to a topological disk,

the closest quarter-rotation ζ : E → R between two frame

in adjacent triangle, sign bits s : C → ±1 giving the sign

of v at each corner relative to the values stored at vertices,

angles φ : H → R which give the reference frame relative

to each halfedge, and angles ω0
: E → R describing the

rotation of the reference frame X 0
along each oriented dual

edge.

1: for each ijk ∈ F do ▷for convenience, express cross directions
relative to halfedges

2: ξ⇀
i j ← ξijk

3: ξ⇀
jk ← ξ⇀

i j − (π − α
ki
j)

4: ξ⇀
ki ← ξ⇀

jk − (π − α
i j
k)

▷Perform breadth-first traversal (Section 5.3.1)
5: ijk ← First(F) ▷get the first triangle in the mesh
6: for each ijk ∈ F do φijk ←∞ ▷frame not yet set

7: φijk ← ξijk ▷reference frame gets one of the four cross directions
8: Push(Q,

⇀
ij) ▷push any halfedge of ijk onto a queue

9: while NotEmpty(Q) do
10:

⇀
ij ← Pop(Q) ▷go from ijk to jil

11: φi j→ji ← φi j + π ▷parallel transport

12: n∗ ← Mod(Round(2
φi j→ji−ξ ji

π), 4) ▷closest cross index
13: ζi j ←

π
2
n∗ ▷jump angle across ij

14: ξ ∗ ← ζi j + ξ ji ▷closest cross
15: ω0

i j ← φi j − ξ
∗ + π ▷smallest rotation to neighboring cross

16: if φ ji == ∞ then ▷neighboring frame not yet set
17: Γi j ← 0 ▷primal edge not in cut
18: si j ← +1 ▷no sign change
19: φ ji ← ξ ∗ ▷set reference frame in triangle
20: φ⇀

jk ← φ⇀
i j − (π − α

ki
j)

21: φ⇀
ki ← φ⇀

jk − (π − α
i j
k)

22: Push(Q,
⇀
il) ▷visit other two neighbors

23: Push(Q,
⇀
l j)

24: else ▷neighboring frame already set
25: Γi j = 0 ▷primal edge could be in cut
26: if IsOdd(n∗) then si j = −1
27: else si j = +1
28: end while

▷Compute relative signs at corners
29: for each i ∈ V do ▷iterate over vertices
30: S = 1 ▷cumulative product (Equation 20)
31: for p ← 0, . . . ,Degree(M, i) − 1 do
32: s

jp jp+1
i ← S

33: S ← si jp+1S
▷compute angle defect

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Corman and Crane

34: Ki ← 0

35: for each ijk ∈ F do
36: Ki ← Ki + α

jk
i

37: Kj ← Kj + α
ki
j

38: Kk ← Kk + α
i j
k

39: K ← 2π − K
▷compute cones indices at vertices

40: ci ← K
41: for each i ∈ V do
42: for each j ∈ V such that ij ∈ E do ▷edge incident to i
43: w ← ω0

i j
44: if i > j thenw ← −w

45: ci ← ci +w ▷accumulate all rotations
▷compute the cut

46: r ← True

47: while r do
48: d ← 0 ▷initialize degree of unvisited edges
49: for each Γi j == 1 do ▷iterate over unvisited edges
50: di ← di + 1
51: dj ← dj + 1

52: r ← False

53: for each i ∈ V do ▷iterate over vertices
54: if di == 1 and ci == 0 then ▷if degree-1 and not a cone
55: for each ij ∈ E do Γi j = 0 ▷remove edge

56: r ← True

57: end while
58: return (Γ, ζ , s,φ,ω0)

Algorithm 3 SolveOptimizationProblem(M,A,α,φ,ω0, s)

Input: Amanifold, orientable, simply-connected trianglemeshM =

(V , E, F), areas Aijk for each triangle ijk ∈ F , angles α
jk
i at

each corner
jk
i ∈ C , angles φ

⇀
i j describing the angle of the

reference frame relative to each halfedge
⇀
ij ∈ H , angles ω0

i j
describing the rotation of the reference frame across each

edge ij ∈ E, and values s
jk
i ∈ {±1} giving the sign of the

value at each corner
jk
i relative to a value stored at vertex i .

Output: Scale factors ui ,vi ∈ R at each vertex i ∈ V , and angles

θijk ∈ R for each triangle ijk ∈ F .

1: u,v ← 0 ∈ R |V | ▷initialize scale factors
2: θ ← 0 ∈ R |F | ▷initialize frame angles
3: λ← 0 ∈ R |E | ▷initialize Lagrange multiplier
4: while True do
5: H ← hessObjective(M,A,u,v, θ)
6: д← gradObjective(M,A,u,v, θ)
7: D ← BuildHessian(M,α,u,v, λ, s,φ, θ) ▷constraint

Hessian
8: J ← BuildJacobian(M,α,u,v, s,φ, θ) ▷constraint Jacobian
9: F ← BuildSystem(M,α,u,v, s,φ, θ ,ω0) ▷constraint value
10: x ← (u,v, θ, λ) ▷current guess

11: A←

[
H + D J⊤

J 0 |E |× |E |

]
▷linear system

12: b ←

[
д + J⊤λ

F

]
▷right hand side

13: y ← Solve(A,b)
14: τ ← LineSearch(M,α, s,φ,ω0, J , F ,д, x,y)
15: (u,v, θ , λ) ← x + τy ▷update guess
16: if ∥д + J⊤λ∥ + ∥F ∥ < ε then
17: break
18: end while
19: return (u,v, θ)

Algorithm 4 LineSearch(M,α, s,φ,ω0, J , F ,д, x,y)

Input: A manifold, orientable triangle mesh M = (V , E, F) with
angles α

jk
i at each corner i of each triangle ijk ∈ F , sign bits

s : C → ±1 giving the sign ofv at each corner relative to the

values stored at vertices, angles φ : H → R giving the angle

of the reference frame relative to each halfedge, angles ω0
:

E → R describing the rotation of the reference frame X 0

across each edge, a sparse matrix J ∈ R |E |×(2 |V |+ |F |) giving
the Jacobian of the constraint, values F : E → R giving

the discrete residual of Equation 17, a vector д ∈ R2 |V |+ |F |

giving the gradient of the objective function, two vectors

x,y ∈ R2 |V |+ |F | describing the current estimate and the

descent direction

Output: Step size τ > 0 decreasing the Lagrangian gradient norm

1: (u,v, θ, λ) ← x
2: E ← ∥д + J⊤λ∥ + ∥F ∥ ▷norm of gradient Lagrangian
3: τ ← 1 ▷step size
4: while True do
5: (u,v, θ, λ) ← x + τy ▷update estimate
6: д← gradObjective(M,A,u,v, θ) ▷gradient of objective
7: J ← BuildJacobian(M,α,u,v, s,φ, θ) ▷constraint Jacobian
8: F ← BuildSystem(M,α,u,v, s,φ, θ,ω0) ▷constraint value
9: Enew ← ∥д + J⊤λ∥ + ∥F ∥ ▷update gradient norm
10: if Enew ≤

(
1 − τ

2

)
E then

11: break ▷stop when sufficient decrease
12: else
13: τ ← 0.9τ ▷decrease step size
14: end while
15: return τ

Algorithm 5 BuildSystem(M,α,u,v, s,φ, θ,ω0)

Input: A manifold, orientable triangle mesh M = (V , E, F) with
angles α

jk
i at each corner i of each triangle ijk ∈ F , values

u,v : V → R at each vertex giving the log scale factors, sign

bits s : C → ±1 giving the sign of v at each corner relative

to the values stored at vertices, angles φ : H → R giving the

angle of the reference frame relative to each halfedge, angles

θ : F → R describing the current frame Xθ
1
as a rotation

of the reference frame, angles ω0
: E → R describing the

rotation of the reference frame X 0
across each edge.

Output: Values ρ : E → R giving the residual of our discrete equa-

tion (Equation 17) on each edge.

1: for each ij ∈ E do ▷left-hand side of Equation 10
2: ρi j ← (θijk − θ jil) − ω

0

i j ▷k and l are left/right of ij

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Rectangular Surface Parameterization—Supplemental Information • 5

3: for each ijk ∈ F do ▷right-hand side of Equation 10 ▷add
contribution to residual from dual edges inside this triangle

4: ρi j ← ρi j + Residual(i, j,k,α,u,v, s,φ⇀
i j + θijk)

5: ρ jk ← ρ jk + Residual(j,k, i,α,u,v, s,φ
⇀
jk + θijk)

6: ρki ← ρki + Residual(k, i, j,α,u,v, s,φ
⇀
ki + θijk)

7: return ρ

Algorithm 6 Residual(i, j,k,α,u,v, s,η)

Input: Three vertices i, j,k of a triangle, the angles α at triangle

corners, the log scale factors u,v at vertices, the signs s at

triangle corners, and the angle η of the current frame Xθ
1

relative to a coordinate system aligned with edge ij.
Output: The contribution to the residual of equation Equation 17

due to the piece of the edge dual to ij within triangle ijk .

1: (v
jk
i ,v

ki
j ,v

i j
k) ← (s

jk
i vi , s

ki
j vj , s

i j
k vk) ▷values at corners

2: ρ ← uj − ui ▷conformal part
3: ρ ← ρ + cos(2η)(vkij −v

jk
i) ▷non-conformal part

4: ρ ← ρ + sin(2η) cotαkij (v
i j
k −v

jk
i)

5: ρ ← ρ + sin(2η) cotα
jk
i (v

i j
k −v

ki
j)

6: ρ ← 1

2
cotα

i j
k ρ

7: if i > j then
8: ρ ← −ρ ▷account for edge orientation
9: return ρ

Algorithm 7 BuildJacobian(M,α,u,v, s,φ, θ)

Input: A manifold, orientable triangle mesh M = (V , E, F) with
angles α

jk
i at each corner i of each triangle ijk ∈ F , values

u,v : V → R at each vertex giving the log scale factors,

signs s : C → ±1 describing the values of v at corners

relative to the values stored at vertices, angles φ : F → R
describing the reference frame X 0

1
in each triangle ijk ∈ F

as a rotation relative to the direction of the first edge ij , and

angles θ : F → R describing the current frame Xθ
1
as a

rotation of the reference frame.

Output: A sparse matrix J ∈ R |E |×(2 |V |+ |F |) giving the Jacobian of

the constraint equations computed by BuildSystem.

1: Lv ← () ▷list of nonzeros of Jacobian with respect to v
2: Lθ ← () ▷list of nonzeros of Jacobian with respect to θ
3: for each ij ∈ E do ▷Jacobian of left-hand side of Equation 10
4: Lθ ← Append(Lθ , (ij, ijk,+1))
5: Lθ ← Append(Lθ , (ij, jil,−1))

6: for each ijk ∈ F do ▷Jacobian of right-hand side of Equation 10
7: ηi j ← φijk + θijk ▷angle of Xθ

1
relative to each edge

8: ηjk ← ηi j − (π − α
ki
j)

9: ηki ← ηjk − (π − α
i j
k)

10: ▷append contribution to Jacobian from dual edges in this triangle
11: (Lu , Lv , Lθ) ← Jacobian(i, j,k,α,u,v, s,ηi j , Lu , Lv , Lθ)
12: (Lu , Lv , Lθ) ← Jacobian(j,k, i,α,u,v, s,ηjk , Lu , Lv , Lθ)
13: (Lu , Lv , Lθ) ← Jacobian(k, i, j,α,u,v, s,ηki , Lu , Lv , Lθ)

14: ▷Build Jacobian blocks from lists of nonzeros
15: Ju ← SparseFromTriplets(Lu , |E |, |V |)

16: Jv ← SparseFromTriplets(Lv , |E |, |V |)
17: Jθ ← SparseFromTriplets(Lθ , |E |, |F |)
18: return [Ju Jv Jθ] ▷assemble overall |E | × (2|V | + |F |) Jacobian

Algorithm 8 Jacobian(i, j,k,α,u,v, s,η, Lu , Lv , Lθ)

Input: The same inputs as Residual, plus the cumulative lists of

entries Lu , Lv , Lθ of the three Jacobian blocks built so far.

Output: Modified lists Lu , Lv , Lθ that account for the derivatives

(with respect to u, v and θ) of the residual due to the piece

of the edge dual to ij within triangle ijk .

1: w ← 1

2
cotα

i j
k ▷cotan weight

2: if i > j then
3: w ← −w ▷account for edge orientation
4: ▷conformal part w.r.t. u
5: Lu ← Append(Lu , (ij, i,−w))
6: Lu ← Append(Lu , (ij, j,+w))
7: ▷non-conformal part w.r.t v
8: Lv ← Append(Lv , (ij, i,−ws

jk
i (cos(2η) + sin(2η) cotα

ki
j)))

9: Lv ← Append(Lv , (ij, j,+ws
ki
j (cos(2η) − sin(2η) cotα

jk
i)))

10: Lv ← Append(Lv , (ij,k,+ws
i j
k sin(2η)(cotαkij + cotα

jk
i)))

11: ▷non-conformal part w.r.t θ
12: (v

jk
i ,v

ki
j ,v

i j
k) ← (s

jk
i vi , s

ki
j vj , s

i j
k vk) ▷values at corners

13: Lθ ← Append(Lθ , (ij, ijk,−2w sin(2η)(vkij −v
jk
i)))

14: Lθ ← Append(Lθ , (ij, ijk,+2w cos(2η) cotαkij (v
i j
k −v

jk
i)))

15: Lθ ← Append(Lθ , (ij, ijk,+2w cos(2η) cotα
jk
i (v

i j
k −v

ki
j)))

16: return (Lu , Lv , Lθ)

Algorithm 9 BuildHessian(M,α,u,v, λ, s,φ, θ)

Input: A manifold, orientable triangle mesh M = (V , E, F) with
angles α

jk
i at each corner i of each triangle ijk ∈ F , values

u,v : V → R at each vertex giving the log scale factors,

values λ : E → R at each dual-edge giving the Lagrange

multiplier associated to the constraint, signs s : C → ±1
describing the values of v at corners relative to the values

stored at vertices, angles φ : F → R describing the reference

frameX 0

1
in each triangle ijk ∈ F as a rotation relative to the

direction of the first edge ij , and anglesθ : F → R describing

the current frame Xθ
1
as a rotation of the reference frame.

Output: A sparse matrix H ∈ R(2 |V |+ |F |)×(2 |V |+ |F |) giving the Jaco-
bian of the matrix computed by Jacobian multiplied by the

Lagrange multiplier λ.
1: Lu ← () ▷list of nonzeros of Jacobian with respect to u
2: Lv ← () ▷list of nonzeros of Jacobian with respect to v
3: Lθ ← () ▷list of nonzeros of Jacobian with respect to θ
4: for each ijk ∈ F do ▷Jacobian of right-hand side of Equation 10
5: ηi j ← φijk + θijk ▷angle of Xθ

1
relative to each edge

6: ηjk ← ηi j − (π − α
ki
j)

7: ηki ← ηjk − (π − α
i j
k)

8: ▷append contribution to Jacobian from dual edges in this triangle
9: (Lv , Lθ) ← Hessian(i, j,k,α,u,v, λ, s,ηi j , Lv , Lθ)
10: (Lv , Lθ) ← Hessian(j,k, i,α,u,v, λ, s,ηjk , Lv , Lθ)

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Corman and Crane

11: (Lv , Lθ) ← Hessian(k, i, j,α,u,v, λ, s,ηki , Lv , Lθ)

12: ▷Build Jacobian blocks from lists of nonzeros
13: Hv ← SparseFromTriplets(Lv , |V |, |F |)
14: Hθ ← SparseFromTriplets(Lθ , |F |, |F |)

15: return

0 |V |× |V | 0 |V |× |V | 0 |V |× |F |
0 |V |× |V | 0 |V |× |V | H⊤v
0 |F |× |V | Hv Hθ

 ▷assemble overall

(2|V | + |F |) × (2|V | + |F |) Jacobian

Algorithm 10 Hessian(i, j,k,α,u,v, λ, s,η, Lv , Lθ)

Input: The same inputs as BuildHessian, plus the cumulative lists

of entries Lv , Lθ of the two Hessian blocks built so far.

Output: Modified lists Lv , Lθ that account for the derivatives (with

respect to v and θ) of the Jacobian due to the piece of the

edge dual to ij within triangle ijk .

1: w ← 1

2
cotα

i j
k ▷cotan weight

2: if i > j then
3: w ← −w ▷account for edge orientation
4: ▷non-conformal part w.r.t v
5: Lv ← Append(Lv , (i, ijk, 2s

jk
i λi jw(sin(2η) − cos(2η) cotα

ki
j)))

6: Lv ← Append(Lv , (j, ijk, 2s
ki
j λi jw(− sin(2η)−cos(2η) cotα

jk
i)))

7: Lv ← Append(Lv , (k, ijk, 2s
i j
k λi jw cos(2η)(cotαkij + cotα

jk
i)))

8: ▷non-conformal part w.r.t θ
9: (v

jk
i ,v

ki
j ,v

i j
k) ← (s

jk
i vi , s

ki
j vj , s

i j
k vk) ▷values at corners

10: Lθ ← Append(Lθ , (ijk, ijk,−4λi jw cos(2η)(vkij −v
jk
i)))

11: Lθ ← Append(Lθ , (ijk, ijk,−4λi jw sin(2η) cotαkij (v
i j
k −v

jk
i)))

12: Lθ ← Append(Lθ , (ijk, ijk,−4λi jw sin(2η) cotα
jk
i (v

i j
k −v

ki
j)))

13: return (Lv , Lθ)

Algorithm 11 RecoverParameterization(M, Γ, ζ , ℓ,α,φ, θ,u,v)

Input: The mesh connectivityM = (V , E, F), the cut curve Γ : E →
{0, 1} cutting the mesh to disk topology, the closest quarter-

rotation ζ : E → R between two frame in adjacent triangle,

the length ℓi j ∈ R≥0 of each edge ij ∈ E, angles α
jk
i at each

triangle corner, the angle φijk ∈ R of the reference frame

relative to edge ij in each triangle ijk , the angle θijk of the

optimized frame relative to the reference frame, and the log

scale/stretch factors ui ,vi at each vertex i ∈ V .

Output: f : C → R2 giving the uv-coordinates per triangle corner.
1: for each ij ∈ E do ▷edge scale from log-scale
2: aij ← e(ui+uj+vi+vj)/2

3: bij ← e(ui+uj−vi−vj)/2

4: for each ijk ∈ F do
5: ηi j ← φijk + θijk ▷angle of Xθ

1
relative to each edge

6: ηjk ← ηi j − (π − α
ki
j)

7: ηki ← ηjk − (π − α
i j
k)

8: ▷target edge vector
9: µki j ← ℓi j (+aij cos(ηijk),+bij sin(ηijk))

10: µijk ← ℓjk (−ajk cos(ηijk + α
ki
j),−bjk sin(ηijk + α

ki
j))

11: µ
j
ki ← ℓki (−aki cos(ηijk − α

jk
i),−bki sin(ηijk − α

jk
i))

12: ▷right hand-side in Equation ??
13: for each i j

k ∈ C do bi jk ←
1

2
(Rζi j µ

k
i j + µ

l
ji)

14:

15: LA ← ()
16: LU ← ()
17: p ← 0

18: for each i j
k ∈ C do

19: ▷build matrix A in Equation 6
20: LA ← Append(LA, (i jk ,

jk
i ,+1))

21: LA ← Append(LA, (i jk ,
ki
j ,−1))

22: ▷build matrixU in Equation 6
23: if Γi j == 0 then ▷if ij not in the cut, add corner constraints
24: LU ← Append(LU , (p, jki ,+1))
25: LU ← Append(LU , (p, l ji ,−1))
26: LU ← Append(LU , (p + 1, kij ,+1))
27: LU ← Append(LU , (p + 1, ilj ,−1))
28: p ← p + 2

▷Build Jacobian blocks from lists of nonzeros
29: A← SparseFromTriplets(LA, |C |, |C |)
30: U ← SparseFromTriplets(LU ,p, |C |)
31: f ← SolveQP(A⊤WA,−A⊤Wb,U , 0) ▷corner coordinates

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	B Discrete Poisson Equation
	B.1 Discrete Laplacian
	B.2 Discrete Divergence
	B.3 Discrete Poisson Equation

	C Underdetermined Newton Solver
	D Singularities and Cuts
	References
	E Pseudocode

