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This paper describes a method for computing surface parameterizations

that map infinitesimal axis-aligned squares in the plane to infinitesimal

rectangles on the surface. Such rectangular parameterizations are needed for

a broad range of tasks, from physical simulation to geometric modeling to

computational fabrication. Our main contribution is a novel strategy for con-

structing frame fields that are perfectly orthogonal and exactly integrable,

in the limit of mesh refinement. In contrast to past strategies for achieving

integrability, we obtain maps that are less distorted and better preserve

target field directions. The method supports user-defined distortion mea-

sures, sharp feature alignment, prescribed or automatic cone singularities,

and direct control over boundary behavior (e.g., sizing or aspect ratio). By
quantizing and contouring these maps we obtain high-quality anisotropic

quad meshes, even without element-based optimization. Empirically, we

outperform state-of-the-art research and commercial mesh generation algo-

rithms in terms of element quality, accuracy, and asymptotic convergence

rate in end-to-end simulation tasks, are competitive with the widely-used

ZBrush package for automatic retopology, and provide Chebyshev nets of
superior quality to methods specifically tailored to digital fabrication.
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1 Introduction
Definition. A surface parameterization � (�,�) : � → R�

over

a region � ⊂ R2
is rectangular if ��

�� · ��
�� = 0, i.e., if the coordi-

nate axes get mapped to orthogonal directions on the surface. In

differential geometry, such a map is known as an orthogonal param-
eterization [Do Carmo 2016, Section 2.5]; we opt for “rectangular”

since “orthogonal” is often overloaded to mean orthonormal (orthog-
onal and unit length). Equivalently, � is rectangular if its Jacobian

can be expressed at each point as �� = �� where � is orthogonal

and � is diagonal, describing an axis-aligned scaling followed by a

rotation. At each point, the induced Riemannian metric � is hence

represented by a positive diagonal matrix �T
�
�� = �T�T�� = �2

,

generalizing conformal maps, where it is a positive multiple of the

identity. Importantly, not all parameterizations map (axis-aligned)

squares to rectangles—not even infinitesimally (Figure 2).
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Fig. 1. Left: a rectangular surface parameterization (RSP) can adapt to long,
skinny features, such as the folds of cloth in this bust. Right: such parameter-
izations lead to high-quality anisotropic quad meshes, even without any op-
timization or smoothing of mesh elements. Background: mesh quads sorted
from most to least rectangular (top left to bottom right). Non-rectangular
elements are largely due to irregular vertices, where more (or fewer) than
four quads must fit around a vertex.

Motivation. Numerous applications benefit from rectangular pa-

rameterization. In computational mechanics, it is a valuable start-

ing point for quadrilateral mesh generation, since rectangular el-

ements exhibit asymptotically faster convergence for quadrilat-

eral FEM [Arnold et al. 2002] (see Figure 7). In computational ar-

chitecture, special classes of orthogonal parameterizations corre-

spond to discrete nets with essential properties for physical con-

struction [Pottmann et al. 2007]. In digital fabrication, rectangular

rectangularMM

non-rectangularMM

UU

Fig. 2. A map � is rectangular if it exhibits no shearing of the coordinate
grid (top), but can still apply unequal scaling along the coordinate axes.
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Fig. 3. Past methods for making a field integrable can distort the input field, badly violating target properties such as orthogonality (bottom center), or incurring
severe scale distortion (bottom left). Our method explores the full space of integrable rectangular fields, yielding a perfect rectangular parameterization with low
metric distortion. Here for instance, our method (rectangular surface parameterization) applies just a gentle rotation of the input, yielding less-distorted and
better-aligned results than two standard techniques used in nearly all prior work on field-aligned parameterization (curl correction and Hodge decomposition).

networks are used to design piecewise developable surfaces [Rabi-

novich et al. 2018], optimize principal stress networks [Pellis and

Pottmann 2018], and model textiles via Chebyshev nets [Sageman-

Furnas et al. 2019]. Finally, in computer graphics, rectangular param-

eterizations help mimic structural and pigmentation patterns found

in nature [Knöppel et al. 2015] (Figure 4); lines of principal curva-

ture form a rectangular network commonly used for illustration and

visualization [Hertzmann and Zorin 2000]; and automatic retopology
guided by principal directions is commonly used for subdivision

modeling [Rouca 2019].

Integrability of Frame Fields. Our method for rectangular surface
parameterization (RSP) is based on field-guided mapping [Bommes

et al. 2013b, Section 3.5], where one first solves for a frame field that

encodes the principal directions of the mapping, then recovers the

mapping itself. At the heart of RSP is a procedure for making a given

frame field integrable, i.e., modifying it so that each frame axis locally

corresponds to the gradient of a coordinate function. This seem-

ingly small change has a big impact on the overall pipeline, since a

nonintegrable field distorts the parameterization, which degrades

mesh quality, and in turn diminishes performance of downstream

applications (Section 6.5).

Though great care has been put into designing frame fields [Vax-

man et al. 2016], there has been less intense study of how to preserve

essential properties (such as orthogonality) when going from the

field to a subsequent parameterization. Historically, two strategies

are used almost universally to address nonintegrability:

• Helmholtz-Hodge Decomposition makes a field � inte-

grable by extracting the curl-free or exact part, i.e., the com-

ponent � of � such that � = ∇� for some scalar function

� [Kälberer et al. 2007, Section 4]. Note that Hodge decom-

position is used implicitly in any method that seeks a “least

squares” type solution to the equation ∇� = � , since min-

imizing the residual ‖∇� − � ‖2 yields a normal equation

Δ� = ∇ ·� equivalent to the Poisson equation used in Hodge

decomposition. For instance, all methods based on mixed

integer quadrangulation [Bommes et al. 2009, Section 5] effec-

tively adopt the Hodge approach to integrability—even if not

cast as a direct modification of the field itself.

• Curl Correction seeks a pointwise rescaling � of � such

that curl(�� ) = 0, i.e., such that the rescaled field � is curl-

free [Ray et al. 2006; Zhang et al. 2010]. Since scaling is

isotropic, � describes derivatives of a conformal mapping.

Curl correction has been generalized to other settings, such

as polyvector fields [Diamanti et al. 2015], and is representa-

tive of any method that scales field magnitude while keeping

directions fixed [Zhang et al. 2010; Simons and Amenta 2024].

An attractive feature of these strategies is that they amount to sparse

linear solves. A major drawback, however, is that in both methods

the integrable field � is “anchored” to any flaws in the input field � :

Hodge decomposition seeks the closest integrable field � (in the �2

sense) to the input� ; curl correction keeps the directions of� fixed,

and is only able to modify magnitude. Hence, even if � exhibits

erroneous directions or a poorly-designed global flow, the final field

will retain some “memory” of this bad initial guess (Figure 3).

all fields
integrable fields

rectangular fields

isotropic fields

RSP
(ours)

input

Hodge
decompositioncurl

correction

Integrable Rectangular Fields. We

take a fundamentally different ap-

proach: we optimize any user-specified

quality criterion (smoothness, align-

ment, etc.) over the full space of ex-
actly integrable, rectangular frame

fields, i.e., fields where axes are or-

thogonal and positively-oriented, but

need not have the same magnitude. The price we pay is that we

must now solve a nonlinear problem rather than a linear one—yet

the method remains efficient, and reliably yields optimal results

(Figure 21). The benefit is that we often get fields that are better

than those produced by linear methods in all respects: they are

not only integrable, but are perfectly rectangular by construction,
and generally lead to lower-distortion mappings than past methods

(Figure 3, right).
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Fig. 4. A variety of natural phenomena exhibit rectangular patterns, where a
continuously varying aspect ratio is needed to adapt to changes in curvature
and pattern orientation. Our rectangular parameterizations can be used to
synthesize patterns with a natural orthogonal structure, as seen here in the
scales of scleropages formosus (Asian arowana).

input mesh 

integrable 
rectangular frame

rectangular 
parameterization 

seamless 
parameterization output quad mesh

(any field generation method)

solve main optimization 
problem (Equation 31)

quantize (§6.1.2)

contour (§6.1.2)

solve Poisson 
equation (§5.3)

initial frame

Fig. 5. The basic steps of our algorithm. The main cost is solving the op-
timization problem for the integrable rectangular frame. Optional steps
needed for mesh extraction are shown in gray.

Method Overview. How do we actually compute a rectangular

parameterization? One idea is to simply assert that its derivatives

must be orthogonal and positively oriented, but directly penalizing

the map itself can result in severe violation of injectivity (Figure 10).

Instead, we characterize a rectangular parameterization indirectly in

terms of the frame field induced by the parameterization (Section 3).

In particular, we ask, “if we already had a rectangular parameter-
ization, what must be true about how the corresponding coordinate
frame moves around on the surface?” Answering this question leads

to our main integrability condition (Equation 10) on data encoding

the frame at each point, namely, a rotation and positive scaling of an

arbitrary reference frame. In turn, we obtain a positively oriented

frame—and hence a locally injective map—by construction.
Algorithmically, we proceed in the opposite direction (Figure 5).

First, we compute an orthonormal reference frame � 0
via any

method. Second, we find rotation angles � and positive scale factors

�, � that describe an integrable rectangular frame � relative to � 0
.

Third, we solve a Poisson equation to recover the final map � from

� . Since � is integrable, any deviation from orthogonality is due

ARAP
[Liu et al 2008]

SLIM
[Rabinovich et al 2017]

BFF
[Sawhney & Crane 2017]

RSP
(ours)

0° 90° 180°

0° 90° 180°

0° 90° 180°

0° 90° 180°

Fig. 6. General-purpose parameterization methods like ARAP and SLIM
minimize overall metric distortion, but exhibit severe shearing. Conversely,
conformal methods like BFF give an orthogonal parameterization, but with
extreme area distortion. A rectangular parameterization offers the best of
both worlds: no shearing, yet far less area distortion than conformal maps.

only to a small amount of discretization error, which vanishes under

refinement (Figure 24). The final per-vertex map � can then be used

in any downstream application, such as quad meshing.

As with the metric scaling approach to conformal maps [Ben-

Chen et al. 2008; Springborn et al. 2008], expressing our parameteri-

zation in terms of log scale factors (which necessarily induce strictly

positive scaling) ensures it is flip-free, modulo discretization error.

Overall, starting with a principled discretization of an integrable

continuous formulation greatly improves results relative to past

methods (Section 6).

Outline. After reviewing related work (Section 2), we derive our

main integrability condition in the smooth setting (Section 3). We

then discretize this condition on triangle meshes (Section 4), and

describe how we optimize a frame for integrability, plus additional

quality objectives (Section 5). Section 6 numerically validates our

approach, via both synthetic metrics and end-to-end application

tasks. Section 7 covers limitations and future work.

2 Related Work
Here we detail connections with methods from mesh parameteri-

zation (Section 2.1), field-guided mapping (Section 2.2), and quad

meshing (Section 2.3). Overall, we find no past method able to opti-

mize a given distortion metric directly over the space of rectangular

maps. At one end of the spectrum, methods encourage orthogonality

via soft penalties which still permit substantial shear. At the other

end, conformal maps are exactly orthogonal, but exhibit major scale

distortion. Moreover, no past ansiotropic quad meshing scheme

(to our knowledge) guarantees convergence to perfect rectangular

elements under input mesh refinement.

2.1 Surface Parameterization
shear stretch scale

conformal
authalic

rectangular

Relative to traditional mesh param-

eterization, we break from the goal

of finding a map that is “as isomet-

ric as possible,” instead seeking the

least-distorted rectangular map. In other words, unless requested

by the user, we penalize neither uniform scale nor axis-aligned
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Fig. 7. As shown by [Arnold et al. 2002], quadrilateral FEM converges asymptotically faster on rectangular meshes than on general quad meshes. Empirically,
meshes produced by RSP achieve the theoretically-predicted optimal convergence rate on common problems, such as solving a Poisson equation (far right). In
contrast, past curl correction schemes lead to highly non-rectangular elements, yielding suboptimal convergence.

stretch—only shear is explicitly forbidden. In this way, rectangular

parameterization complements area-preserving or authalic maps

and angle-preserving or conformal maps (see inset). In fact, our ap-

proach provides a very natural generalization of the log scale factors
used to describe conformal maps. In particular, we augment the

conformal scale factor � with an additional authalic scale factor 


(Section 3.3.1).

The full landscape of parameterization methods is too vast to

detail here [Floater and Hormann 2005; Sheffer et al. 2007], but

we can get a sense of tradeoffs by comparing to representative

methods that penalize non-isometry, such as ARAP [Liu et al. 2008]

or SLIM [Rabinovich et al. 2017] , and to conformal methods like

BFF [Sawhney and Crane 2017]. Here we use the implementations

found in libigl example 503 [Jacobson et al. 2013]), Blender [2025],
and by Sawhney and Crane [2019], resp. As seen in Figure 6, RSP

achieves the best of both worlds: like a conformal map, it preserves

right angles between principal axes, yet like non-conformal methods

it does not exhibit extreme area distortion.

Distortion Measures. More broadly, many distortion metrics have

been used for surface parameterization (Rabinovich et al. [2017]

provide one list), but most are isotropic since they are expressed

via scalar invariants of the Jacobian. In contrast, rectangular map-

ping demands an anisotropic distortion measure, where both scalar

stretch and vectorial orientation are accounted for. In the field-

guided setting, Bommes et al. [2009, Section 5.1] use a penalty that

promotes a prescribed anisotropy along a fixed direction field. Unlike

RSP, this energy still permits large scale non-injectivity (Figure 10),

and does not jointly optimize for the directions and anisotropy that

best minimize distortion. Similarly, Levi [2023b] describe a shear re-
duction penalty that does not yield exact orthogonality (even under

refinement), and requires that an injective map is already given as

input. In contrast, RSP is orthogonal by construction, and jointly

optimizes both stretch and orientation to minimize distortion.

Local Injectivity. A variety of recent methods offer hard guar-

antees on local injectivity [Rabinovich et al. 2017; Gillespie et al.

2021b; Fu et al. 2021]. In the smooth setting, the mapping defined by

RSP is guaranteed to be locally injective, since positive scale factors

��+�, ��−� > 0 ensure the integrable frame (hence derivatives of the

map) cannot invert. In the discrete setting, however, edge vectors

mapped into the plane do fit together exactly (Section 4.2.1). Hence,

our final Poisson step, which integrates edges in a least-squared

sense, can in principle produce flipped triangles—though this rarely

occurs in practice. Any such failure to close also vanishes under

refinement (Figure 24), and is often mitigated by automatic cone

placement, which can help account for a reference frame � 0
with

poorly chosen global topology (Figure 20). Morever, nothing pre-

vents the almost perfectly integrable rectangular field generated

by RSP from being used as input to a locally-injective field-guided

parameterization method (e.g., [Myles et al. 2014]), rather than our

simple Poisson integration scheme.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.
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2.1.1 Conformal Mapping. Mathematically, RSP is a natural gener-

alization of themetric scaling approach to conformal flattening [Ben-

Chen et al. 2008; Springborn et al. 2008]. Here, a Riemannian metric

𝑔 is transformed into a flat metric 𝑔0 by a positive scaling 𝑔0 = 𝑒
2𝑢𝑔,

where 𝑢 : 𝑀 → R is the log conformal factor. This transforma-

tion preserves angles between tangent vectors, but uniformly scales

area. The factor 𝑢 is obtained by solving the linear Yamabe equa-
tion [Aubin 2013; Bunin 2008; Sawhney and Crane 2017] or by

minimizing a convex energy [Luo 2004; Springborn et al. 2008].

While this approach is efficient, it can induce extreme area distor-

tion, and does not always admit a solution when seeking feature

alignment [Myles and Zorin 2013]. RSP overcomes these limitations

via an additional log factor 𝑣 : 𝑀 → R that stretches the domain

while preserving area. Our integrability condition (Equation 10) can

be viewed as a generalization of [Myles and Zorin 2013, Proposition

3], which gives the relationship between the log conformal factor 𝑢

and the rotation rate of the frame induced by a conformal mapping.

2.2 Field-Guided Parameterization
Past work on field-guided parameterization has focused heavily on

topological questions, e.g., the conditions under which a field can

be parameterized [Shen et al. 2022], or guarantees of local injectiv-

ity [Campen et al. 2019; Levi 2023a]. These properties are necessary

to ensure a quad mesh can be generated—but do not by themselves

guarantee that mesh elements will have good quality.

Geometric criteria are often secondary, and addressed indirectly

through weak requirements like bounded distortion [Chien et al.

2016], or soft penalties on metric distortion [Capouellez and Zorin

2024]. Likewise, while orthogonality of the input field promotes

orthogonality of the final map, this property is not achieved exactly

unless the field is already integrable (Figure 3, center).

2.2.1 Integrable Fields. Past methods for field integrability also

treat geometric quality as an “afterthought”—largely prioritizing

a topological property (integrability). For example, curl correction

achieves integrability through significant isotropic [Ray et al. 2006]

or anisotropic scaling [Zhang et al. 2010], but makes no attempt to

optimize the direction of anisotropy in order to reduce geometric

distortion. Diamanti et al. [2015] and Sageman-Furnas et al. [2019]

develop integrability schemes for polyvector fields, Pluta et al. [2021]
establishes an integrability condition for planar hexagonal meshing,

and Coiffier and Corman [2023] use (as we do) moving frames to

express integrability constraints for general fields—yet in all these

schemes, only soft penalties are used to encourage geometric quality.

Our approach to integrability guarantees that, under refinement,

the parameterization always approaches a geometrically orthogonal

one (Figure 24).

Less attention has been given to integrable orthogonal fields. Si-
mons and Amenta [2024] give conditions under which a frame with

fixed orientation admits a rectangular parameterization after axis-

aligned scaling. However, fixing frame directions can lead to severe

scale distortion, as seen in Figure 7, left. Jezdimirović et al. [2023]

study fields with fixed singularities and admissible rotations but fail

to provide a practical algorithm both constraining orthogonality

and minimizing distortion. Finally, Couplet et al. [2024] propose

an integrability condition for orthogonal frame fields represented
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Fig. 8. For field-guided mesh generation, starting with an integrable rectan-
gular field both reduces distortion during the parameterization step, and
helps elements adapt to geometric features. Each quad is colored according
to the maximum deviation from 90

◦ at any corner, and we give the me-
dian/mean/max such deviation across the entire mesh.

with orthogonally decomposable (odeco) tensors [Palmer et al. 2020].

Here, integrability is imposed only weakly, and the method struggles

to maintain orthogonality.
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Fig. 9. Compared to recent learning-based methods, our method also produces meshes that more closely resemble models created by professional artists, with
cleaner edge flow, fewer irregular regions, and better-shaped quads. Here for instance we compare against the Meshtron method of Hao et al [2024], which is
directly trained on artist-generated models.

[Bommes et al 2009] RSP (ours)

flipped/overlapping triangles alignment constraint

Fig. 10. Attempting to achieve orthogonality through penalty terms is un-
satisfactory, since penalties may “fight” with other energy terms. Left: fixing
field directions and promoting anisotropy during parameterization leads
to large noninjective regions, and many angles far from 90

◦. Right: our
method directly explores the space of rectangular maps, yielding injective,
orthogonal results even for difficult constraints.

2.3 Anisotropic Quad Meshing
Beyond field-guided parameterization, there are a variety of strate-

gies for generating anisotropic rectangular meshes.

In 2D, boundary layer meshes concentrate anisotropic elements

near the domain boundary to resolve characteristics of, e.g., flow
equations, without globally inflating mesh resolution. Here, paving
or advancing front methods incrementally add high-quality elements

starting at the boundary, but must introduce highly irregular connec-

tivity to resolve collisions between propagating wavefronts [Merhof

et al. 2007]. Likewise, indirect methods first triangulate the domain,

then merge triangles into quads [Remacle et al. 2013]—again result-

ing in many singularities and suboptimal, non-rectangular elements

(Figure 28, bottom, center-left). Explicit control over boundary condi-
tions enables RSP to produce such meshes (Figure 18, bottom), while

maintaining a regular, highly rectangular grid structure almost ev-

erywhere.

In 3D, early methods obtained anisotropic quads by dicing up

surfaces along lines of principal curvature [Alliez et al. 2003; Mari-

nov and Kobbelt 2004]. This local approach makes it difficult to

obtain good global structure, resulting in many low-quality, non-

quadrilateral elements. Field-guided methods addressed many of

these issues, with limitations discussed in Section 2.2. Other meth-

ods modify the metric of the surface to encourage rectangular el-

ements [Kovacs et al. 2010] or user-controlled anisotropy [Jiang

et al. 2015]. Yet metric-based approaches still provide no guaran-

tee that the field will be integrable with respect to the modified

metric—which means that any subsequent parameterization can

violate criteria like orthogonality.

Learning-Based Methods. Finally, some recent methods learn to

generate mesh geometry and connectivity based on a given training

set [Siddiqui et al. 2024; Son et al. 2024; Shen et al. 2024; Hao et al.

2024]. Here one could train on high-quality rectangular meshes

made by artists or engineers. However, current methods leave much

to be desired in terms of quality (Figure 9), ability to generalize to

unseen object categories, and generation cost (e.g., on the order

of minutes–hours for Meshtron [Hao et al. 2024], versus seconds–

minutes for our method). In this context, RSP provides a way to

generate high-quality training data for such networks; our integra-

bility condition (Equation 10) may also prove useful as a regularizer

for methods that generate fields [Dielen et al. 2021].

3 Smooth Formulation
We develop our method in the setting of continuous differential

geometry. An introduction to relevant concepts (including moving

frames) can be found in [O’Neill 2006]; further background on mov-

ing frames can be found in [Cartan et al. 2001]. Readers uninterested

in derivation of the method may wish to skip to Section 5, where

we describe the final algorithm.
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In the smooth setting, our algorithm consists of a few basic steps:

I Pick an orthonormal reference frame field (� 0

1
, � 0

2
).

II Solve for rotations � and per-axis scale factors �, � at each

point that transform the reference field into an integrable

rectangular field (���
1
, ���

2
).

III Use the rectangular field to construct the derivatives � of a

rectangular parameterization.

IV Integrate the derivative to obtain the parameterization � itself,

by solving a Poisson equation Δ� = ∇ · �.
This section is devoted to deriving the equation needed for Step II.

3.1 Basic Setup
Consider an oriented smooth surface
 with a Riemannian metric

� (Figure 11). Let �� : 	�
 → 	�
 denote a counter-clockwise

90
◦
rotation in each tangent space 	�
 compatible with the metric,

i.e., �� (� |� , �� |� ) = 0 for all vector fields � , at all points � ∈

 . For brevity we drop subscripts � throughout, implying that

relationships hold at all points � ∈ 
 . We use Δ for the Laplace-

Beltrami operator on (
,�), ∇ · � for the divergence operator, and

∇�� for the covariant derivative of � along the direction � .

3.2 Moving Frames on Surfaces
A moving frame is any pair of vector fields �1, �2 on 
 that are

orthonormal with respect to � and consistently oriented, i.e., �2 =
��1 and �(�� , � � ) = ��� , where ��� denotes the Kronecker delta. A

classic example is the Darboux frame, where �1, �2 are the principal

curvature directions—though in our casewe do notmake any special

Fig. 11. Given a surface � , we seek a parameterization � : � → R2

that takes an orthonormal frame (�1, �2 ) at each point to a rectangular
orthogonal frame (��1, 
�2 ) in the plane.

quantity description
� ⊂ R3 problem domain (surface)
� : � → R2 surface parameterization
�� : �� → R2 differential / Jacobian of parameterization
�,
 : � → R>0 width, height of infinitesimal rectangles
�, � : � → R logarithm of �,

�1, �2 ∈ R2 standard basis in the 2D parameter plane
�1, �2

: � → �� axes of infinitesimal rectangles (moving frame)

12

: �� → R 
12 (� ) is rotation rate of (�1, �2 ) in � direction
	1, 	2 : �� → R coframe 	� (� � ) = ���

Fig. 12. Basic quantities used in our formulation.

choice of frame. We assume only that the

frame varies smoothly away from a col-

lection of isolated points, which will cor-

respond to cone singularities in the final

parameterization. Singularities are further

discussed in Section 3.6; for now we con-

sider a frame without singularities.

Coframe. Every moving frame has a corresponding coframe, i.e.,
a pair of differential 1-forms �1, �2 : 	
 → R such that

�� (� � ) = ��� , �, � ∈ {1, 2},
Intuitively, at each point � ∈ 
 the coframe measures the extent of

any given vector � along the frame directions, i.e., it gives the local
coordinates of � in the basis �1, �2.

Connection Form. We also have differential 1-forms��� : 	
 → R
for �, � ∈ {1, 2} defined by the relationship

��� (� ) := �� (∇�� � ),
for all tangent vector fields � . Intuitively,

��� (� ) describes the change in the �th

component of the �th frame direction as

we move along � , and hence expresses

change in the frame relative to the moving

basis of the frame itself. Since the frame

is orthonormal, we always have �11 = �22 = 0, i.e., a unit vector
cannot get longer or shorter. Moreover, �12 = −�21: from point

to point, the frame can only rotate, and �12 (� ) captures the rate
of rotation as we move in the � direction. We refer to �12 as the

connection form for the moving frame�1, �2, since it effectively tells

us how local coordinate systems at nearby points “connect.”

Structure Equations. One can show that any � and � that come

from a frame � must satisfy Cartan’s first structure equation

��1 = −�12 ∧ �2,

��2 = −�21 ∧ �1,
(1)

where � and ∧ are the exterior derivative and wedge product, resp.
In fact, for a given � , � is the unique 1-form satisfying this equa-

tion [O’Neill 2014, Corollary 1.8.5]. Note that for our algorithm

we will not need Cartan’s second structure equation, which in 2D

simply asserts that � is closed (�� = 0).

3.3 Rectangular Parameterization
We now characterize rectangular parameterizations in terms of

moving frames. Suppose in particular we want a parameterization

� : 
 → R2
that locally looks like a pure nonuniform scaling

along some orthonormal frame � , i.e., no shearing. In particular, let

�1 = (1, 0), �2 = (0, 1) be the standard basis for R2
. Then we want

our parameterization and moving frame to satisfy

�� (�1) = ��1,

�� (�2) = ��2,
(2)

where the differential of the parameterization �� : 	
 → R2
maps

tangent vectors � on the surface to the corresponding vectors in

the plane R2
, and �, � : 
 → R>0 are strictly positive functions that

describe the scaling along each frame direction (Figure 11).
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min max min max

connection formmoving frame

horizontal scale factor vertical scale factor

surface parameter domain

rectangular parameterization

Fig. 13. Any rectangular parameterization � : � → R2 can be associated
with an orthonormal frame (�1, �2 ) and a pair of scale factors �,
 along
the two axes. The value 
12 (� ) encodes the speed of rotation in any given
direction � , which can be though of as the inner product of � with the
representative vector for the connection form 
12. Here for instance the
frame rotates in the � direction, but remains parallel in the � direction.

3.3.1 Log Scale Factors. Alternatively, we can express our parame-

terization as

�� (�1) = ��+��1,
�� (�2) = ��−��2,

(3)

for arbitrary (i.e., not necessarily positive) functions �, 
 : 
 → R,
which we call the (log) conformal factor and (log) authalic factor,
resp. In particular, when 
 = 0 we get � = � = �� , i.e., the width and

height of infinitesimal rectangles are scaled by the same amount,

preserving angles. When � = 0 we get � = �� = 1/�, i.e., the width
and height are scaled by reciprocal amounts, preserving local area.

Log factors are natural for several reasons. First, exponentiation

guarantees that scale factors �, � are always nonnegative, avoiding

overlap (and helping to prevent inverted mesh elements). Second,

they yield an integrability condition linear in�, 
 , as discussed below.

Finally, they make it straightforward to express objective functions

and boundary conditions in simple geometric terms (e.g., angle or
area preservation); see Sections 5.1.1 and 5.1.3. This setup directly

generalizes the standard formulation of conformal maps in terms of

the log conformal factor (Section 3.4.2).

3.4 Integrability Condition
We next derive an expression for the connection form�12 associated

with a rectangular parameterization � , i.e., for the rotation speed

of a rectangular frame, in terms of the log scale factors �, 
 . This

relationship serves as an intermediate form of our final integrability

condition, which will ultimately be expressed in terms of a rotation

and scaling of a fixed reference frame (Section 3.4.1).

First note that the differential�� can be expressed via the coframe:

�� = ��1�1 + ��2�2 . (4)

Applying the exterior derivative to both sides of this equation (and

noting that �1, �2 are constant) then yields

0 = ��� = (�� ∧ �1 + ���1)�1 + (�� ∧ �2 + ���2)�2 . (5)

Since �1, �2 are linearly independent, we have

�� ∧ �1 + ���1 = 0,

�� ∧ �2 + ���2 = 0.

Applying the first structure equation (Equation 1) and making the

substitutions �� = �� (� + 
), �� = �� (� − 
) yields
� (� + 
) ∧ �1 = �12 ∧ �2,

� (� − 
) ∧ �2 = �21 ∧ �1 .
(6)

Applying the 2-forms on both sides of these equations to the vectors

�1, �2 (via the usual identity � ∧ � (�,� ) = � (� )� (� ) −� (� )� (� )),
and recalling that �� (� � ) = ��� , we get

� (� + 
) (�2) = −�12 (�1),
� (� − 
) (�1) = −�21 (�2) .

Noting that�12 can be expanded in the coframe as�12 = �12 (�1)�1+
�12 (�2)�2 (and recalling that �12 = −�21), we then get an equation

for the rotation speed of the rectangular frame �1, �2 in terms of

the log scale factors � and 
 :

�12 = −��2
(� + 
)�1 + ��1

(� − 
)�2 . (7)

Here ��� denotes the directional derivative of a scalar function �

along the vector field � .

0 1
0

1
Geometric Interpretation. Geometrically, this

equation tells us that in order for scale factors to

vary over space, an infinitesimal rectangle must

exhibit some amount of “bending” (see Figure 13

for an illustration). E.g., when
 ⊂ R2
, �12 = 0

only when the horizontal scaling � is purely a

function of � and the vertical scaling � is purely

a function of �. In contrast, the inset example

� (�,�) := (
√
�, 1

2
− 1

2
cos(��)) on the domain 
 = [0, 1]2 exhibits

independent scaling along each axis, and the frame does not rotate.

3.4.1 Final Integrability Condition. We can ex-

press the frame � in Equation 7 as a rotation of

some fixed reference frame � 0
by a continuously-

varying angle � : 
 → R:
��
1

:= cos(� )� 0

1
+ sin(� )� 0

2
,

��
2

:= − sin(� )� 0

1
+ cos(� )� 0

2
.

(8)

Since � is continuous, ��
will have the same singularities as � 0

(see

Section 3.6.2 for further discussion). Likewise, if �0 is the coframe

of � 0
, then

��
1

:= cos(� )�0
1
+ sin(� )�0

2
,

��
2

:= − sin(� )�0
1
+ cos(� )�0

2
.

(9)

We then have the following relationship between the rotation speed

of the original and rotated frames:
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Lemma 3.1. The connection form ��
12

of the rotated frame differs
from the connection form�0

12
of the reference frame by the differential

�� of the angle of rotation, i.e.,

��
12

= �0

12
− �� .

For example, for a constant reference frame on a flat region
 ⊂
R2

, we get just ��
12
(� ) = �� (� ), i.e., the rate of rotation is just

the change in angle as we move along any given direction � . See

Appendix A for a proof.

Substituting this expression for �12 into Equation 7 yields our

final integrability condition, which says how the rotation angles �

and log scale factors �, 
 must be related in a rectangular map:

�0

12
− �� = −�

��
2

(� + 
)��
1
+ �

��
1

(� − 
)��
2
. (10)

Note that since the frame ��
and coframe �� depend on � , this

equation is linear in �, 
 but nonlinear in � .

3.4.2 Relationship to Conformal Maps. A conformal map exhibits

scaling but not shearing—in terms of scale factors, conformal maps

correspond to the case � = �, or equivalently 
 = 0 (Equation 3).

If we also assume a constant reference frame � 0
(so that �0

12
= 0),

Equation 10 reduces to just

�� = (��2
�)�1 − (��1

�)�2,

or equivalently,

�� = ∗��, (11)

where ∗ denotes the Hodge star (since for any 1-form � on a two-

dimensional domain, ∗� (� ) = −� (�� ) for all � ). As discussed

in Myles and Zorin [2013, Proposition 3], this equation gives the

relationship between the scale factor � and the connection 1-form

�12 = − ∗ �� in a conformal parameterization.

3.5 Poisson Equation
Solving Equation 10 for �,�, 
 provides data sufficient to determine

the differential �� of a rectangular parameterization, which we can

then integrate to obtain the parameterization � itself. In particular,

we know from Equation 4 that we can express the differential as

� := ���
1
�1 + ���2 �2, (12)

i.e., as a 1-form that sends ��
1
to ��1 and �

�
2
to ��2. In the smooth

setting the equation �� = � is exactly solvable, and we could in

principle integrate � directly to obtain � . In the discrete setting,

however, there will be a small amount of nonintegrability arising

from discretization error (i.e., the fact that we use a mesh with

finitely many elements). Instead, as is standard practice in geome-

try processing, we seek the parameterization � that minimizes the

residual ‖�� − �‖2
�2
, leading to a vector-valued Poisson equation

Δ� = ∇ · �. (13)

Solving this equation yields our final parameterization � : 
 → R2
.

3.5.1 Local Injectivity. Since (i) � = ��+� and � = ��−� are strictly
positive, (ii) (��

1
, ��

2
) is a rotation of a positively-oriented frame, and

(iii) � is exactly integrable, the map � defined by our procedure has a

nondegenerate differential (i.e., Jacobian) by construction. Hence, in
the smooth setting, it is always locally injective. In the discrete set-

ting we no longer have a hard guarantee, due to discretization error.

However, since this error goes to zero under refinement (Figure 24),

we can reduce any overlap by simply refining the input mesh. In

contrast, methods based on minimizing, e.g., an elastic [Liu et al.

2008] or other isometric energy [Rabinovich et al. 2017] have no

such guarantee in the smooth setting—putting a far greater burden

on discrete optimization to provide injectivity.

3.6 Cone Singularities
An important observation first made by Kharevych et al. [2006] in

the context of conformal parameterization is that carefully-placed

cone singularities can significantly reduce distortion. A complemen-

tary perspective is that such cones correspond to singularities in

the frame field used for field-guided parameterization.

So far, we have considered a frame field � that varies smoothly

across the entire surface. Suppose instead that the field can discon-

tinuously jump in angle by multiples of �/2 along a network of

curves Γ ⊂ 
 . To find a parameterization � aligned with � , we can

now imagine cutting 
 along Γ before mapping it into the plane

(Figure 14). If we pull back the metric of the plane under � , we get a

metric on 
 that is intrinsically flat, except at vertices � ∈ Γ that

map to a corner � (�) of angle different from 2� (Figure 14, bottom
right). Gluing such a corner back together along cut edges forms a

cone—hence the name cone singularity.
In terms of our rectangular parameterization, the only thing we

need to consider is the behavior of the log scale factors � and 
 as

we cross the cut network Γ. From Equation 4 and the definition of

�, � and �1, �2, we have

�� (� ) = 〈��+��1, � 〉�1 + 〈��−��2, � 〉�2,

for any � . Suppose that � experiences a counter-clockwise 90-

degree rotation as we cross Γ, i.e., �̃1 = �2 and �̃2 = −�1. Then on

the other side of the cut we have

��̃ (� ) = 〈��̃+�̃�2, � 〉�1 − 〈��̃−�̃�1, � 〉�2 .

Fig. 14. Parametric distortion can be reduced by allowing cone singularities
in the parameterization, corresponding to points � around which the total
rotation of the frame is nonzero (e.g., ±90◦). To do so, we cut the surface
along a graph Γ that passes through all singular points and turns the surface
� into a topological disk.
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Since �� (� ) and ��̃ (� ) are also related by a 90
◦
rotation, we get

� = �̃ and 
 = −
̃ . (14)

I.e., conformal scaling (which is the same in all directions) is un-

changed, whereas authalic scaling (which has reciprocal magnitude

for �1 and �2) is applied to the opposite axis. A clockwise 90
◦
rota-

tion yields the same relationship. If the frame experiences a 180
◦

rotation, we instead have �̃ = � and 
̃ = 
 , i.e., both scale factors are

continuous at the cut. These relationships become linear conditions

in our discrete formulation (Section 4).

Note that only the choice of singularities, and not the particular

cut Γ, affects the quality of the final parameterization.

3.6.1 Singularity Index. We can assign each point � ∈ Γ an index,
equal to the number of times the frame rotates as we walk around

� . More precisely, recall that �12 (� ) gives the angular velocity of

the frame in the direction � . Hence, if �� is a small loop around � ,

then the index of � is

ind(�) := 1

2�

∫
��

�0

12
.

Since we allow only 90
◦
rotations, all singularities in our theory

will have index �/4, � ∈ Z, though one typically wants only singu-

larities of index ±1/4 to avoid significant distortion (corresponding

to irregular vertices of degree beyond 3 or 5 in the resulting quad

mesh).

3.6.2 Preservation of Singularities. Recall that the frame ��
used

for rectangular parameterization differs from the reference frame

� 0
by an angle � at each point. Since � varies continuously, the

rotated field will (by construction) exhibit the same singularities as

the reference field. In particular, applying Stokes’ theorem, the new

index around any point � is given by

1

2�

∫
��

(�0

12
− �� ) = ind(�) −

������� 0

1

2�

∫
���=∅

� = ind(�) .

48 singularities
mean scale distortion: 14%

52 singularities
mean scale distortion: 13%

56 singularities
mean scale distortion: 12%

min
log scale distortion

max

0 90 1800 90 1800 90 180

Fig. 15. We adopt a cone placement strategy that does not penalize rectan-
gular stretching, yet still yields lower area distortion as the number of cones
increases (left to right). Even with many cones, the discrete parameterization
remains almost perfectly rectangular. Inset histograms tabulate the angle
between columns of the Jacobian of � −1 across triangles.

3.7 Discussion
Note that, due to Equation 5, our formulation implicitly relies on

Poincaré’s lemma, i.e., that on a simply connected domain, every

closed differential form is also exact. However, our final algorithm

still applies to nonsimply connected surfaces, since we effectively

cut our surface into a disk (and apply boundary conditions that

ensure seamless transitions across the cut); see Section 3.6.

It is also natural to wonder whether other, “simpler” equations

established earlier in our derivation might provide a suitable start-

ing point for rectangular parameterization. For instance, one could

attempt to discretize Equation 2 and solve simultaneously for � ,

�1, �2, �, and �. However, it is unclear in this setting how to in-

corporate singularities, due to discontinuities in �1, �2 as well as

�, �; moreover, one must still solve a system of nonlinear equations.

Likewise, rather than work with a reference frame, one could try to

solve Equation 7 directly, but would have to then incorporate the

structure equations into the constraints, and would give no direct

way to prescribe singularities. Our formulation, in terms of just an

unknown rotation � and log scale factors�, 
 , is much closer in spirit

to classical conformal mapping, easily incorporates singularities,

and leads to a robust discretization, as explored in the next section.

4 Discretization
We next describe how to discretize the two main equations needed

for our algorithm: the integrability condition (Equation 10) and the

Poisson equation (Equation 13). We consider a manifold oriented

triangle mesh
 = (� ,  , ­ ), using indices � ∈ � for vertices, pairs

of indices �� ∈   for edges, and triples of indices ��� ∈ ­ for triangles.

We let � be the set of oriented halfedges, using ⇀
�� ≠ ⇀

�� to denote

two opposite orientations, and let � be the set of all 3|­ | triangle
corners, using �

��
�

to denote a quantity � at corner � of triangle ��� .

Fig. 16. The discrete quantities used in our formulation.
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Discrete quantities are illustrated in Figure 16. We assume trian-

gles have nonzero corner angles �
��
�

∈ (0, �) and areas ���� ∈ R>0,

and use vertex areas �� := 1

3

∑
��� ���� . We let ��

��
:= 1

2
cot�

��

�
de-

note the cotan weight for halfedge �� in triangle ��� [MacNeal 1949,

Equation 3.17]; the weight��� for edge �� is then the sum of cotan

weights over its halfedges (two on the interior; one on the bound-

ary). Nominally, we encode log scale factors as values �� , 
� at each

vertex � ∈ � , though to handle singularities we more generally store

values 

��
�

at corners (Supplement, Appendix E).

The reference frame is encoded as a pair of orthonormal vectors

(� 0

1
)��� , (� 0

2
)��� ∈ R2

relative to a local coordinate system in each

triangle ��� , which by convention we align with the first edge �� . We

use ���� to denote the angle of (� 0

1
)��� in this coordinate system;

we use ��
 to denote the angle of this same vector relative to the

direction of any of the three halfedges
⇀
�� ∈ {⇀�� ,⇀��,⇀�� }. We likewise

use ���� to denote the rotation of the current frame��
relative to the

reference frame � 0
. Hence, the angle of the rotated frame direction

��
1
is given by ��

���
:= ���� + ���� . We can parallel transport any

vector ���� to a neighboring triangle ��� to get the vector

����→��� := �� ��−���+����� , (15)

where �� denotes a counter-clockwise rotation by � . Finally, the

1-form describing the rotation of the reference frame is encoded as

a dual discrete 1-form, i.e., a value �0

��
at each (dual) edge that gives

the counter-clockwise angle of rotation from � 0

���
to � 0

���
, where

���, ��� are the two triangles containing edge �� .

4.1 Discretized Integrability Condition
To discretize Equation 10, we integrate it

along the dual edge �� associated with each

edge �� ∈  . Throughout we assume each in-

terior edge �� is contained in two triangles

���, ��� , and let � and � be the circumcenters

of ��� and ��� (resp.), which we connect to the

edge midpoint� to form the dual edge. We

use 	 to denote the intrinsic unit vector tan-

gent to dual edge ��. The left-hand side of

Equation 10 is discretized via discrete exterior
calculus [Desbrun et al. 2006], yielding

�0

�� − (���� − � ��� ). (16)

To discretize the right-hand side, consider any facewise affine func-

tion interpolating values �� at vertices. Integrating over the dual

edge ��, we have∫
�


(�
��
1

�)��
2
=
∫
�


〈��
1
,∇�〉〈��

2
,	 〉 ��,

and similarly for (�
��
2

�)��
1
. To obtain a more explicit formula, we

perform integration piecewise over the two segments �� and��.

We then evaluate these expressions for � = � − 
 and � = � + 
 ,

and add these terms to Equation 16. After some simplification, the

contribution of triangle ��� to the right-hand side is

��
��
(�, 
, � ) := 1

2
cot�

��

�

(
(� � − �� ) + cos(2���� (� )) (
 � − 
� )+

sin(2���� (� ))
(
cot���

�
(
� − 
� ) + cot�

��
�

(
� − 
 � )
) )
.

For any boundary edge �� , we let ��
��
= 0. Also, since this formula

assumes the reference frame is expressed relative to edge �� , we

must re-express � relative to edges �� and �� when evaluating terms

for those edges. In particular, if ��� := ���� + ���� , then

� �� := ��� − (� − ���� ) and ��� := � �� − (� − �
��

�
).

To get the full residual corresponding to edge �� , we add the corre-

sponding term ��
��
from the neighboring triangle ��� , and subtract

the discrete left-hand side, yielding our final discrete condition

­�� (�, 
, � ) := ���� (�, 
, � ) + ���� (�, 
, � ) + (���� − � ��� ) − (�0

12
)�� = 0,

(17)

which must hold for each edge �� ∈  . Assembly of the overall

residual and its Jacobian is detailed in Appendix E of the supplement.

When 
 = 0 (pure conformal scaling), Equation 17 reduces to

a standard (cotan) discretization of Equation 11. Note also that

Equation 17 is invariant to rotations � ↦→ � + � , correctly reflecting

the fact that we only care about how much scaling there is along the

horizontal/vertical axis, and not the particular direction.

4.2 Discretized Poisson Equation
We discretize the Laplace and divergence operators in Equation 13

using the usual cotan formula (see Appendix B of the supplement).

4.2.1 Discrete Differential. We discretize the

term � in Equation 13 by integrating the right-

hand side of Equation 12 along each edge. Geo-

metrically, ��� ∈ R2
gives the vector along edge ��

in the parameter domain. Ideally, we could sum

these vectors incrementally to get final coordi-

nates �� . Due to discretization error, however, they do not fit together

perfectly—we instead solve a discrete Poisson equation (Supplement,

Appendix B) that effectively finds a least-squares solution.

More explicitly, for each edge �� we compute average scale factors

��� := � (��+� �+��+�� )/2, ��� := � (��+� �−��−�� )/2,

which for 
 = 0 agree with the edge length ratios appearing in the

theory of discrete conformal equivalence [Springborn et al. 2008,

Equation 2]. Likewise, since �� (� ) = 〈��
�
, � 〉, we take the average

inner product of the vector ��� along each edge with the frame

directions ��
�
in the two neighboring triangles—being careful to

account for different coordinate systems. Overall, each triangle ���

makes the following contributions to equations along its three edges:

��
��

= ℓ��

[
+��� cos(���� )
+��� sin(���� )

]
,

��
��

= ℓ��

[
−� �� cos(���� + ���

�
)

−� �� sin(���� + ���
�
)

]
,

�
�

��
= ℓ��

[
−��� cos(���� − �

��
�
)

−��� sin(���� − �
��
�
)

]
.

For each edge �� contained in a pair of triangles ���, ��� we then let

��� := ���� + ���� . (18)

For edges �� on the domain boundary, we let � �� = ��� , i.e., we
effectively just use the frame from the single triangle containing �� .
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Fig. 17. Since our fields are rectangular by construction, the shear-free condition does not “fight” with other objectives. We are therefore free to minimize any
user-defined distortion metric Φ over the space of rectangular parameterizations. Here we minimize angle, metric, and area distortion (left to right).

5 Algorithm
Our final algorithm is comprised of three basic steps:

(1) Compute a reference frame (or cross field) 𝑋 0
, using any

algorithm. Section 6.1 details algorithms used in this paper.

(2) Solve for scale factors 𝑢, 𝑣 and rotations 𝜃 that transform 𝑋 0

into an integrable rectangular field (Section 5.1).

(3) Recover the final parameterization from this field (Section 5.2).

A diagram of these steps is shown in Figure 5; detailed pseudocode

can be found in the supplement (Appendix E).

5.1 Optimization
Given a reference frame 𝑋 0

, we use constrained optimization to

find log scale factors 𝑢, 𝑣 and angles 𝜃 that satisfy our integrability

condition (Equation 10) while minimizing an objective Φ(𝑢, 𝑣, 𝜃 )
that encodes quality criteria such as angle or area preservation

(Section 5.1.1 gives several examples). Letting 𝐹 be our discretized

integrability equation from Equation 17, we solve the problem

min

𝑢,𝑣:𝑉→R
𝜃 :𝐹→R

Φ(𝑢, 𝑣, 𝜃 ) s.t. 𝐹 (𝑢, 𝑣, 𝜃 ) = 0. (19)

5.1.1 Objective Functions. The constraint 𝐹 = 0 restricts our search

to shear-free rectangular maps; we can then optimize any other

objective Φ over this space. For instance:

• Φiso (𝑢, 𝑣, 𝜃 ) :=
∑
𝑖∈𝑉 𝐴𝑖 (𝑢2𝑖 + 𝑣

2

𝑖
) — tries to make parameteri-

zation as isometric as possible

• Φarea (𝑢, 𝑣, 𝜃 ) :=
∑
𝑖∈𝑉 𝐴𝑖𝑢

2

𝑖
— encourages area preservation

by minimizing scale distortion

• Φ
angle
(𝑢, 𝑣, 𝜃 ) := ∑

𝑖∈𝑉 𝐴𝑖𝑣
2

𝑖
— encourages angle preservation

by minimizing stretching

• Φ
align
(𝑢, 𝑣, 𝜃 ) :=

∑
𝑖𝑗𝑘∈𝐹 𝐴𝑖𝑗𝑘𝜃

2

𝑖𝑗𝑘
— encourages alignment

with the given field 𝑋 0

Figure 17 demonstrates the effect of several different objectives.

Since 𝑢 and 𝑣 are logarithmic scale factors, we obtain an infinite

energy barrier to degenerate maps—further encouraging local in-

jectivity beyond the reasons already discussed in Section 3.5.1. One

can of course use other objectives, e.g., Section 6.6 describes how to

find a parameterization close to a Chebyshev net.

5.1.2 Regularizer. Equation 10 links the rotation speed of 𝑋𝜃
with

derivatives of the log scale factors 𝑢 and 𝑣 . In theory, the frame can

rotate arbitrarily fast; in practice, however, rotation speed must be

limited. For instance, our discretization does not distinguish between

a frame that makes a full turn along a dual edge, and one that is

not turning at all. This ambiguity introduces numerical instability,

preventing convergence of the optimizer. Instead of constraining

rotation along dual edges, we regularize variation in the authalic

factor 𝑣 by adding a discrete Dirichlet energy to our objective:

Φreg (𝑢, 𝑣, 𝜃 ) := 𝜀𝑣⊤𝐿𝑣.

As 𝜀 →∞ the authalic factor is constant, and Equation 10 reduces to

the well-behaved linear integrability condition for conformal maps

(Equation 11). By default we use 𝜀 = 10
−2
, except in Section 6.6

where more variability is needed and we set 𝜀 = 10
−4
.

5.1.3 Boundary Conditions. Rectangular parameterizations accom-

modate a variety of boundary conditions, naturally expressed as

linear constraints on the log scale factors 𝑢, 𝑣 and frame rotations 𝜃 .

Feature Alignment. To align the parameterization to boundary or

feature curves (as in Figure 8), we simply constrain 𝜃 in triangles

adjacent to feature edges, and omit integrability constraints 𝐹𝑖𝑗 = 0

for these edges. In our case, we start with a feature-aligned reference

field 𝑋 0
and set 𝜃 = 0.

Element Shape. We can also prescribe the shape of rectangles—

and ultimately, mesh elements—near the boundary (Figure 18). Note
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constant area
uniform

normal length

prescribed
aspect ratiofree boundary

Fig. 18. Using scale factors as primary variables provides direct control
over element sizing near the boundary. Here we prescribe values of � and �

along the inner boundary, leaving the outer boundary free. Automatic cone
singularities help adapt the rest of the field to these boundary conditions.

that �� and �/� quantify local area and aspect ratio, resp., and that

� = 1

2
log(��) and 
 = 1

2
log(�/�).

Assuming � 0

1
is tangent to the boundary, we then have:

• � |�� = � — prescribed area

• 
 |�� = � — prescribed aspect ratio

• (� − 
) |�� = � — prescribed normal length

• (� + 
) |�� = � — prescribed tangent length

for any prescribed function � (defined at boundary vertices). As with

conformal maps, not all boundary conditions are feasible [Sawh-

ney and Crane 2017, Section 3.2.1], and we do not have a clear

characterization of compatibility conditions—in practice the solver

may simply fail if the boundary is overconstrained. Note also that

extreme boundary conditions can induce distortion (Supplement,

Figure 32), which can be mitigated via cone singularities (Figure 18).

5.1.4 Solver. To solve Equation 19, we apply a constrained Newton

method to the first order optimality conditions (see Supplement,

Appendix C). In practice we always converge to a valid solution,

despite the nonlinearity of this problem. The initial guess for �, 
 ,

and � seems to have no impact on results (Section 6.2). We hence

initialize with � = 
 = � = 0, i.e., no scaling or rotation of � 0
.

5.2 Recovering Parameterization
After optimization, we have log scale factors�, 
 and frame rotations

� that describe some rectangular parameterization � . However, we

still need to recover � itself, i.e., we need to solve a discrete Poisson

equation (corresponding to Equation 13) for the unknown vertex

coordinates � : � → R2
. This equation is solved independently for

each scalar coordinate function, possibly after cutting the surface

into a topological disk. As in many parameterization methods, the

main implementation challenge is handling cuts through cones. See

Supplement, Appendix Band Dfor further details.

5.3 Cone Singularities
To incorporate singularities, we start with a cross field [Vaxman

et al. 2016, Section 2], and extract a frame field� 0
with ±90◦ or 180◦

jumps. Since the initial field is free to rotate, only its singularities—

and not the field quality—will have an impact on the solution (unless

we explicitly encourage alignment with � 0
).

5.3.1 Jump Curve and Sign Bit. We first identify edges where � 0
is

discontinuous, corresponding to the cut network Γ from Section 3.6.

In accordance with Equation 14, we also track the change in the

sign of 
 as we cross each edge. We mark edges in the cut network

via a binary labeling Γ :   → {0, 1}, and encode flips in the sign of


 via values � :   → {−1, +1}.
i

j

kl

To determine these values, we ini-

tialize Γ�� ← 0 and ��� ← 1 on all

edges. We then perform breadth-first

traversal: starting in any triangle ��� ,

we pick any of the four frames � 0

���
aligned with the cross field, and trans-

port it to each neighboring triangle

��� , via Equation 15. If ��� has not been

visited, we set � 0

���
to the cross direc-

tion closest to the transported frame

� 0

���→���
. Otherwise, if it has been visited, we let ��� ∈ [−�, �) be

the angle from the transported frame to the existing value of � 0

���
.

If � 0

���
is not the closest of the four possible rotations (i.e., if ��� is

greater than ±�/4), there is a jump, and we set Γ�� to 1. Moreover, if

the closest frame differs by a quarter rotation (i.e., if � ∈ [�/4, 3�/4)
or � ∈ [−3�/4,−�/4)), then 
 requires a sign flip, and we set ��� to

-1. Traversal continues until all faces have been visited.

Per-edge sign bits ��� in turn determine the sign of 

��
�

at each

triangle corner, relative to a single value 
� stored at vertex � ∈ � . In

particular, let �0, . . . , �� be the neighbors of � in counter-clockwise

order. Then the value of 
 at any corner around vertex � is



�� ��+1
�

:= �
�� ��+1
�


� ,

where the sign � for each corner is given by

�
�� ��+1
�

:=
�−1∏
�=0

����+1 . (20)

5.3.2 Automatic Singularities. So far we have assumed cone singu-

larities are fixed ahead of time. However, we can adapt the method of

Myles and Zorin [2013] to find singularities that help minimize the

objective Φ. We start by cutting the mesh into a disk along edges (as
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ours
S=1.05

ours
S=1.08

ours
S=1.02

ours
S=1.02

conformal
S=2.69

conformal
S=6.99

conformal
S=1.06

conformal
S=1.03

shrinkage expansion

large shear
no shear

Fig. 19. Our greedy cone placement strategy for rectangular parameteriza-
tion works better than even optimal cone placement strategies for conformal
maps. Here we compare with the method of Li et al. [2022], yielding lower
total root mean square stretch � [Sander et al. 2001, Section 3]. Colors plot
local scaling

√
�1�2 and shearing �1/�2 on a log scale, where �1, �2 are sin-

gular values of the affine map from 3D to 2D triangles.

default field

greedy cones

quad mesh

positive cone

negative cone

overlapping triangle

Fig. 20. As with any field-guided method, solution quality depends on
the global field topology. Here, for example, our default field generation
strategy struggles on meshes with challenging limit cycles (left). Switching
to automatic cone placement yields a flip-free parameterization (center)
that is easily quantized and contoured to generate a quad mesh (right).

shown in the inset), and flatten it using the proce-

dure from Sections 5.1 and 5.2. We then glue back

together the edge �� that incurs the smallest residual

­�� (Equation 17). If the angle ��� between frames

across the glued edge is closest to a nonzero mul-

tiple of �/2, we add this edge to the curve Γ. This
process is repeated until all edges are glued back

together, at which point Γ determines the configu-

ration of singularities (à la Section 5.3.1). To make this process more

efficient, we glue batches of edges together after each solve, rather

than just a single edge. In particular, we glue the largest batch of

edges whose absolute error |­�� | sums to less than � .

Like Myles et al., we do not make any claim of global optimality—

but do obtain good results in practice, even for challenging field

topology (Figure 20). Conversely, optimal cones for conformal pa-
rameterization can perform poorly for rectangular parameterization

(Figure 19). As always, there is a tradeoff between number of singu-

larities (which reduce field smoothness) and overall distortion. We

control this tradeoff with a regularization term

Φ
smooth

:= �
smooth

∑
��∈�

��� ((�0

12
)�� + ���� − � ��� )2 .

The effect of �
smooth

is illustrated in Figure 15.

6 Evaluation and Examples

6.1 Implementation
We implemented our algorithm in MATLAB, in double precision.

Timings were measured a 2019 iMac with a 3.6GHz Intel Core i9

processor and 32GB of RAM. On our largest examples (about 50k

input triangles), our method took no more than about a minute

for the parameterization step (excluding the cost of reference field

generation and mesh extraction).

6.1.1 Reference Field Generation. To generate a reference field � 0

with prescribed singularities, we use the trivial connections method

of Crane et al. [2010]. Alternatively, for organic surfaces, we start

with a globally optimal direction field à la Knöppel et al. [2013],

then improve this field via iterative Ginzburg-Landau (GL) smooth-

ing [Viertel and Osting 2019]. Finally, for hard surface (e.g., CAD)

models, we modify the definition of parallel transport near acute

corners à la Desobry et al. [2022], identify sharp edges where the

angle between face normals is greater than 40
◦
, and again apply

GL smoothing. For curvature-aligned examples, we use the method

of Cohen-Steiner and Morvan [2003] (using a stencil of nine edges

from four adjacent triangles), plus a small amount of GL smoothing.

6.1.2 Mesh Extraction. For meshing examples, we need to (i) quan-

tize the parameterization � computed by our algorithm onto a

regular grid, and (ii) contour the quantized parameterization to

obtain mesh elements. For the first step we use the method of

Coudert-Osmont et al. [2024]. For the second step we use the QEx
method [Ebke et al. 2013], though since the method of Coudert-

Osmont et al. [2024] already requires the parameterization to be

locally injective, we do not rely on the robustness properties of this

method (and simply use the QEx code for convenience).
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initial
guess

solution

LSCM+ARAPLSCMdirect integrationconformalu,v,θ randomu,v = 0, θ randomθ = 0, u,v randomθ,u,v = 0

Fig. 21. Empirically, we tend to get the same solution independent of how we initialize the solver—suggesting that our results may be globally optimal (even
though the formulation is nonconvex). Here we plot the initial scale factors �, � and frame orientation � , obtaining the same solution across constant, random,
and structured initializations. We consistently observe this behavior for examples throughout the paper.

6.2 Initialization, Optimality, and Robustness
Given the nonconvexity of our optimization problem, it is natural

to wonder if we always get a high-quality solution. Importantly, to

get a valid, integrable field, it is sufficient to find any feasible point

satisfying Equation 17—we do not need a globally optimal solution. In
practice, however, we do appear to obtain optimal solutions, since

very different initialization strategies lead to identical results. E.g., in
Figure 21 we initialize with 1 �, 
 = 0 (no scaling) and � = 0 (no ro-

tation of the reference frame), 2 � = 0 and �, 
 sampled uniformly

at random from [−1, 1], 3 �, 
 = 0 and uniformly random � , 4

uniformly random �, 
 , and � , 5 an intrinsic conformal parameteri-

zation where 
 = 0, � solves Δ� = ��0
, and � solves Δ� = � ∗�0

, 6

�, 
 and � obtained by breadth-first integration of a nonintegrable

reference field, 7 �, 
, � extracted from LSCM [Lévy et al. 2002],

and 8 �, 
, � extracted from LSCM followed by ARAP [Liu et al.

2008]. If we intentionally try to break the solver (e.g., using large

random initial values) it can get stuck near a saddle point, but we

did not encounter this problem naturally on any of our models. In

practice, we therefore default to just � = 
 = � = 0.

As seen in Figure 22, RSP is also robust to difficult singularity

configurations. In all cases we obtain a valid rectangular parameter-

ization, and highly rectangular quads (away from singular points).

6.3 Convergence
Under refinement of the input mesh 
 , we observe linear con-

vergence to a smooth rectangular parameterization. Consider for

instance Figure 24. Here, letting (�1, �2) be the Jacobian of the map

� , non-orthogonality is the deviation of the angle between �1 and

�2 from �/2; integration error is the Frobenius norm of the differ-

ence between (��
1
, ��

2
) and (�1, �2); angle deviation is the angle

between (��
1
, ��

2
) and the rotation matrix � closest to (�1, �2); and

scale/stretch deviation is the difference between �, 
 and the log mag-

nitudes of (�1, �2), resp. In each case we plot the area-weighted

ℓ2 norm. Figure 23 again indicates that this error is quite small in

absolute terms even on coarse meshes, and becomes smaller for

fine meshes. Overall, Equation 17 appears to do an excellent job of

characterizing integrability even at the discrete level.

positive singularity
negative singularity
cut

0° 90° 180° 0° 90° 180°

0° 90° 180°
0° 90° 180° 0° 90° 180°

Fig. 22. Starting with an integrable rectangular field helps with robustness
throughout the rest of the pipeline. Here we obtain valid, highly-rectangular
meshes even for difficult cone configurations that are structured (top left),
random (top right), or have increasingly large index (bottom row).

10k 20k 30k 40k 50k
faces

0.5%

1.0%

1.5%

2.0%

2.5%
median error (Frobenius norm of target vs. integrated frame)

Fig. 23. As predicted by the smooth theory, our discrete frame fields are
almost perfectly integrable. Here we plot numerical integration error as a
function of mesh size, for the 88 MAMBO models in our dataset; notice that
error tends to get smaller as the mesh gets finer. As visualized on the left,
integration error is tiny even for very coarse meshes.
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non-orthogonality
integration error
angle deviation
scale deviation
stretch deviation

mean edge length

error

Fig. 24. Our smooth theory guarantees that fields are exactly orthogonal,
and exactly integrable. In the discrete case, any failure of integrability is
hence due only to discretization error—which vanishes under mesh refine-
ment. Here we compare the gradient of the final piecewise linear parame-
terization (shown in the background) to the input field, achieving a linear
reduction in error with respect to mean edge length of the input mesh.

6.4 Quadrilateral Mesh Generation
A central motivation for orthogonal frame field generation is field-

guided quadrilateral remeshing [Bommes et al. 2013b]. As noted in

Section 1, rectangular elements are especially desirable in this set-

ting due to, e.g., better asymptotic convergence rates for FEM [Arnold

et al. 2002], superior mechanical properties [Pottmann et al. 2007],

and optimal geometric approximation (Section 6.4.2). However, an

orthogonal frame alone is not sufficient to obtain near-rectangular

mesh elements: in general, the initial frame field will be distorted

during the parameterization step (Figure 3), quantization of the pa-

rameterization (to “snap” it to a regular grid [Bommes et al. 2013a]),

and extraction of quadrilateral elements [Ebke et al. 2013], where

angles around irregular-degree vertices must deviate from 90
◦
.

Though some distortion is inevitable, startingwith a near-integrable

rectangular field significantly improves mesh quality relative to state

of the art methods. Here we compare against open source implemen-

tations of Instant Meshes [Jakob et al. 2015],QuadriFlow [Huang et al.

2018], and QuadWild [Pietroni et al. 2021], as well as Exoside [Rouca
2019], commercial software invoked by thousands of users via inte-

gration with ZBrush. For all methods we use the authors’ reference

implementation with default parameters, targeting approximately

the same element count.

6.4.1 Hard Surface Models. We evaluated performance on hard

surface meshing using 88 CAD models from the MAMBO dataset

[Ledoux 2022] (Figure 8). Overall, RSP yields more rectangular el-

ements than past methods, on all but a few examples where the

mean difference in worst angle is around just 1
◦
(Figure 25). (See

supplemental material for mesh data and more detailed statistics.)

We omit models where quantization via [Coudert-Osmont et al.

2024] failed—though our field optimization and parameterization

0° 10° 20° 30° 40°
0
5

10
15
20
25

# models RSP vs. Exoside

0° 10° 20° 30° 40°
0
5

10
15
20

# models RSP vs. Instant Meshes

0° 10° 20° 30° 40°
0
4
8

12

# models RSP vs. �adriflow

Fig. 25. Increase in error relative to RSP (on the MAMBO dataset), quanti-
fied as the mean deviation of corner angles from 90

◦. Overall, our method
produces more rectangular elements than established alternatives, in turn
providing better geometry (e.g., planarity and discrete conjugacy) and faster
solver convergence (e.g., for quadrilateral FEM).

steps succeed for all models. In a real implementation, one could

achieve greater robustness with a less simplistic integration step

and/or more robust quantization (see Section 7).

6.4.2 Organic Models. Asymptotically, the best quadrilateral ap-

proximation of a positively-curved smooth surface aligns mesh

edges with principal curvature directions [D’Azevedo 1999]. To get

such a mesh, we first compute principal directions  1,  2 and curva-

tures �1, �2 in each triangle, via the method of Cohen-Steiner and

Morvan [2003]. These directions are smoothed via a vector diffusion

equation
�
��  � = �Δ∇ � to obtain the reference field � 0

, where Δ∇ is

the connection Laplacian of Knöppel et al. [2013], and the variable

diffusion rate � := 1/(|� | + �) helps adapt smoothing to local fea-

ture size [Sharp and Crane 2018, Section 5.6] (where � is Gaussian

curvature and � = 10
−3
). We then minimize an objective

Φcurv (�, 
, � ) := Φ
align

(�, 
, � ) + ‖
 − 
0‖2
2
,

where ‖ · ‖2 is the area-weighted ℓ2 norm, and 
0 := 1

2
log(� ) en-

courages rectangles to have a target aspect ratio of � := |�1/�2 |,
which is optimal for minimizing �∞ gradient error [Shewchuck

2002; Nebel and Chern 2023]. Examples are shown in Figure 27, and

a comparison with other methods is provided in Figure 26.

6.5 Finite Element Simulation
Beyond standard synthetic metrics of element quality, we evaluated

how overall mesh quality affects performance in end-to-end sim-

ulation of microfluidic circuits. These systems drive fluid through

narrow channels to induce interactions between chemical com-

pounds or biological species, enabling “lab on a chip” devices [Oh

et al. 2012]. Since channels are shallow relative to overall circuit di-

mensions, they are well-modeled by two-dimensional low-Reynolds-

number flows. To track mixing dynamics we use quadrilateral FEM
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Instant Meshes �adriFlow �adWild
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R
SP (ours)  |F|=33k

Fig. 26. For remeshing smooth, organic shapes our integrable rectangular
approach leads to good normal approximation, and a natural flow of mesh
topology that improves even on retopology tools in the commercial ZBrush
modeling package (Exoside). Here we show both flat shaded (gray) and
corresponding Catmull-Clark subdivision (yellow) surfaces.

45 90 135

45 90 13545 90 135

45 90 135

45 90 135

45 90 135

45 90 135

Fig. 27. Curvature-guided parameterizations (checkerboard pattern), show-
ing cuts (yellow) and positive/negative cone points (red/blue), as well as the
resulting quad mesh (visualized as Catmull-Clark surfaces). Histograms show
the distribution of corner angles, which are tightly centered around 90

◦.

for Stokes flow, and a low-order upwind finite volume scheme for

advection–diffusion. In such problems, meshes cannot be tailored to

a single solver, but must work well across different discretizations.

Figure 29 demonstrates a gradient generator, where compounds

progressively flow through several serpentine mixers to achieve a

uniform concentration gradient. Such mixers compensate for the

lack of turbulent mixing in laminar flow. RSP provides an anisotropic

quadmeshwhich, due to boundary alignment, naturally follows flow

characteristics. We first solve a time-independent Stokes’ equation

Δu + ∇� = 0, ∇ · u = 0,

for velocity u and pressure � . Positive Dirichlet conditions on u at

inlets drives two species through the circuit. We use zero-Dirichlet

conditions on � at the outlet, and zero-Neumann conditions every-

where else. We then solve a time-dependent advection equation

�
��
� = −∇ · (�u)

for the concentration � , until reaching equilibrium. At each step we

update the concentration � in each quad via

� = � + � 1
�

4∑
�=1

ℓ�n� · u��+� ,

where � is the quad area, ℓ� is the length of the �th edge, n� is its
inward unit normal, u� is the fluid velocity, and �+

�
is the upwind
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GMSH
Parallelogram Packing

RSP
(ours)

MeshLab
[Tarini et al 2010]

�adriFlow
[Huang et al 2018]

�adWild
[Pietroni et al 2021]

InstantMeshes
[Jakob et al 2015]

GMSH
Frontal Delaunay �ad

Exoside
[Rouca 2019]
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F=31k

Exoside
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Instant Meshes

numerical
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(photograph)

Fig. 28. Though 2D quad meshing is often viewed as a “solved problem,” it
is deceptively hard to obtain correct results for end-to-end simulation. Here
we test a variety of mesh generators on our microfluidic simulation. Most
meshes led to INF/NaN values; the few that gave meaningful values still
failed to reproduce the piecewise concentration observed in the real physics,
due to numerical diffusion (even at higher element counts than RSP).

concentration at edge � , equal to the value of � in either the quad or

its neighbor depending on the sign of n� · u� . The time step � > 0

is chosen according to a CFL condition, namely, � must be smaller

than the minimum over all quads of �/∑4

�=1 |u� ℓ� · n� |.
As shown in Figure 29, simulation on the mesh generated by RSP

yields not only the expected velocity and linear pressure profile, but

also a concentration gradient stratified over the number of mixers in

the final stage—just as in physical experiments. Figure 28 compares

with other mesh generators, including those listed in Section 6.4,

plus tools from MeshLab [Tarini et al. 2010] and Gmsh [Remacle

et al. 2013; Baudouin et al. 2014]. Though some of these methods

are “robust” in the sense that they reliably generate a topologically

valid mesh, element quality can still be quite poor. As a result, most

meshes lead to invalid solutions with INF/NaN values. Moreover,

even the successful examples (Exoside, Instant Meshes) exhibit non-

physical diffusion—even with significantly more elements than the

RSP mesh. Post-processing to improve element orthogonality will

not solve this problem, since not all mesh connectivity admits a

rectangular mesh aligned to flow characteristics. The fact that RSP

provides explicit control over singularities and boundary behavior

is hence hence a major advantage for real-world anisotropic mesh

generation.

6.6 Chebyshev Nets
A Chebyshev net is a mapping � (�,�) : � → R�

over a region

Ω ⊂ R2
such that ��� ����

��� =
��� ����

��� = �

for some constant � > 0, i.e., that preserve lengths in the two

coordinate directions. Such nets provide a model of loosely woven

textiles made from inextensible threads, which easily shear but

do not scale or stretch (cheesecloth, gauze, fishnet, etc.). Finding a
Chebyshev parameterization of a surface hence provides a cutting

pattern for which the surface can be made out of a piece of cloth. For

instance, a hemisphere can be perfectly covered by a single diamond-

shaped piece of inextensible cloth, à la Figure 30, top center.

1

1

A slight tweak of RSP enables us to

compute high-quality Chebyshev param-

eterizations. The basic observation is

that infinitesimal squares in the plane

are mapped to infinitesimal rectangles

of constant diagonal, so long as the sum

of squares of scale factors is constant

(see inset). Since �, � are scale factors go-

ing from the surface to the plane, we can

express this condition as

1/�2 + 1/�2 = �2 . (21)

Contouring diagonals rather than isolines (equivalently: rotating �

by 45
◦
) then yields a Chebyshev net (Figure 30).

For simplicity we let � = 1 (since any other � is obtained via

global rescaling), and encourage Equation 21 via a corresponding

penalty, which is convex in log scale factors:

Φ
Chebyshev

(�, 
, � ) :=
∑

���∈�
����

(
−2���� + log

(
�2���� + �−2����

))
2

,

where ���� := 1

3
(�� + � � + �� ), and likewise for 
��� .

Figure 31 shows that our maps are both smoother and closer to

Chebyshev nets than those from the special-purpose algorithm of

Oehri et al. [2024]. Like Oehri et al. [2024], and unlike Sageman-

Furnas et al. [2019] or Liu et al. [2020], we can generate Chebyshev

nets without any singularities—needed for fabricating garments

from standard woven fabric (which has no irregular points).

7 Limitations and Future Work
Since Equation 19 is nonconvex, the solver could get stuck at a

local minimum or infeasible point. In practice, however, we find

our optimization strategy not only succeeds reliably, but produces
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fluid velocity

fluid pressure concentration
0 0 1max

rectangular mesh

serpentine channel

mixture concentration (photograph)

microfluidic gradient generator

species A species B

inflow

Fig. 29. Our method is suitable for generating high-quality 2D rectangular meshes of domains with complex geometry, as needed for numerical simulation.
Here we simulate a microfluidic gradient generator, which uses a series of serpentine mixers to produce a more uniform concentration gradient of two input
species. Left: schematic and photograph of a real gradient generator. Center: a rectangular mesh automatically generated via RSP captures flow characteristics,
without any unwanted singularities. Right: simulation on this mesh accurately models the concentration gradient (qualitatively matching the photograph),
even with a low-order numerical method.

rectangular
parameterization

Chebyshev
parameterization texture

rotate
by 90°

Fig. 30. Chebyshev nets are broadly used in architecture, textile design or,
as shown here, to design literal sheet bend nets that wrap around curved
surfaces. Our method can be used to generate high-quality Chebyshev nets
by contouring diagonals of a rectangular parameterization rather than its
isolines.

RSP [ours] [Oehri et al 2024]

1000x lower error

220x
lower
error

8x lower
error

4x lower

1.5x lower error

Fig. 31. By simply reinterpreting our rectangular parameterizations, we
reliably obtain lower-distortion Chebyshev nets than methods explicitly
designed for this purpose. Here we measure error using the metric of Oehri
et al. [2024, Equation 12].
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the same high-quality minimizer independent of initialization (Sec-

tion 6.2). This situation is no different from existing field genera-

tion techniques, which are largerly nonconvex [Viertel and Osting

2019; Sageman-Furnas et al. 2019; Jakob et al. 2015; Diamanti et al.

2015], apart from a few exceptions [Crane et al. 2010; Knöppel et al.

2013]. RSP is also of course more expensive than linear integrability

schemes—but well-worth it, given that the real-world engineering

bottleneck is typically human time spent on tweaking mesh genera-

tion and repairing defective meshes.

As discussed in Section 2.1, local injectivity can in principle fail

due to discretization error, though rarely happens in practice. If local

injectivity is crucial, one might replace our simple Poisson integra-

tion with a more robust approach [Myles et al. 2014]. An interesting

question is whether there is an exact, mimetic discretization of rect-

angular maps in the spirit of discrete conformal equivalence [Gillespie
et al. 2021b], which guarantees local injectivity.

Another question is whether existence of a rectangular parameter-

ization implies existence of a seamless rectangular parameterization

with the same cones/constraints. We have never found a counterex-

ample, and suspect the answer is “yes”, but lack a formal proof.

Our automatic cone placement strategy already works quite well

(Section 5.3.2), but since singularity placement for rectangular pa-
rameterization is a new topic, there is of course room for improve-

ment. Here one might build on recent insights from the conformal

case [Soliman et al. 2018; Fang et al. 2021b; Li et al. 2022, 2023].

Since our method (like many in this space) discretizes a partial

differential equation, its behavior will of course be influenced by the

input mesh quality. However, since RSP is purely intrinsic—and we

have been careful to express its discretization in intrinsic terms—it

can be implemented without modification on intrinsic triangula-
tions [Sharp et al. 2021], where intrinsic Delaunay refinement can
be used to guarantee robustness on essentially arbitrarily bad input

meshes [Sharp et al. 2019; Gillespie et al. 2021a].

Finally, our original motivation for this approach was establishing

better tools for volumetric hexahedral meshing [Pietroni et al. 2022;

Fang et al. 2021a]. Since our basic strategy (writing out derivatives

of a moving rectangular frame) does not depend inherently on a

2D domain (or holomorphic functions), we are optimistic about its

extension to 3D. However, significant open questions remain, e.g.,
how to move from point-like singularities to 1D curve networks.
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A Transformation of Connection Forms under Rotation
We here give a proof of Lemma 3.1, showing that the connection

form for a frame rotated by an angle 𝜃 can be expressed as

𝜔𝜃
12

= 𝜔0

12
− 𝑑𝜃,

where 𝜔0

12
is the connection form for 𝑋 0

. First note that

𝑑𝜎𝜃
1

= − sin(𝜃 )𝑑𝜃 ∧ 𝜎0
1
+ cos(𝜃 )𝑑𝜎0

1

+ cos(𝜃 )𝑑𝜃 ∧ 𝜎0
2
+ sin(𝜃 )𝑑𝜎0

2
.

Making substitutions 𝑑𝜎0
1
= −𝜔0

12
∧ 𝜎0

1
and 𝑑𝜎0

2
= −𝜔0

21
∧ 𝜎0

2
from

the first structure equation (Equation 1) and collecting terms gives

𝑑𝜎𝜃
1
= −(𝜔0

12
− 𝑑𝜃 ) ∧ (− sin(𝜃 )𝜎0

1
+ cos(𝜃 )𝜎0

2
) .

From Equation 9, we know that the second factor is equal to 𝜎𝜃
2
.

Hence, we get 𝑑𝜎𝜃
1
= −(𝜔0

12
− 𝑑𝜃 ) ∧ 𝜎𝜃

2
. Again invoking the first

structure equation 𝑑𝜎𝜃
1
= −𝜔𝜃

12
∧ 𝜎𝜃

2
, we must therefore have 𝜔𝜃

12
=

𝜔0

12
− 𝑑𝜃 , as desired.
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