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We propose a novel way to capture and characterize distortion between pairsalong the surface, whereas extrinsic quantities are those that must
of shapes by extending the recently proposed framework of shape differ-be de ned using surface normal vectors and/or an embedding into
ences built on functional maps. We modify the original de nition of shape space. A crowning result of classical differential geometry describes
differences slightly and prove that, after this change, the discrete metric is local geometry in terms of two quantities: the rst and second fun-
fully encoded in two shape difference operators and can be recovered bydamental forms, which capture the intrinsic Gaussian and extrinsic
solving twolinear systems of equations. Then, we introduce an extension of mean curvatures, respectiveidnnet 186F.
the shape difference operators using offset surfaces to capture extrinsic or Considerable research in geometry processing has been dedicated
embedding-dependent distortion, complementing the purely intrinsic nature to measuring intrinsic and extrinsic curvature in an attempt to repli-
of the original shape differences. Finally, we demonstrate that a set of four cate this attractive characterization of shape. From a practical stand-
operators isomplete capturing intrinsic and extrinsic structure and fully  point, however, this task remains challenging for potentially noisy or
encoding a shape up to rigid motion in both discrete and continuous settings.irregular meshes considered in geometry processing. After all, sur-
We highlight the usefulness of our constructions by showing the complemen- face curvature is a second-derivative quantity whose approximation
tary nature of our extrinsic shape differences in capturing distortion ignored on a piecewise-linear mesh requires discretization and molli cation
by previous approaches. We additionally provide examples where we recoverto deal with noise. Measurement of curvature aside, algorithms for
local shape structure from the shape difference operators, suggesting shapeecovering geometry from discrete curvatures remain dif cult to
editing and analysis tools based on manipulating shape differences. formulate for many discretizations.

In this paper, we formulate an alternative characterization of
surface geometry suited for analysis, comparison, and synthesis
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—be naturally expressible on continuous surfaces and on triangle
mesh discretizations, and
—admit an inverse operator for reconstructing the embedded shape.

1. INTRODUCTION . o ,
. ) . In short, we wish to pass from pointwise embeddings to a “dual”

One classic approach to comparing surfaces separates metrics ofpace featuring a more democratic treatment of intrinsic and extrin-

S|m||ar|ty into intrinsic andextrinsicmeasurements. Intrinsic quantl‘ sic shape propertieS. The themes Of mu'tisca'e, dua' expressions

ties are those that can be expressed exclusively in terms of distancegf correspondence is a central tenet of the reiemttional maps

framework Pvsjanikov et al2012, which we aim to leverage in

— our work.

Equal contribution , , We approach this task by extending the theorglupe differ-
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2 E. Corman et al.

these changes on inner products of functions and their gradients2012. Functional maps express maps between surfaces through
They are written as linear operators whose restriction to a multi- linear operators transporting functions on one surface to functions
scale basis like the Laplace—Beltrami eigenfunctions distinguishes on another. Beyond the technique proposed in the original paper,
features at different levels of detail and allows for straightforward many algorithms exist for computing functional maps, e.g., via spar-
discretization via piecewise-linear nite elements (FEM). sity [Pokrass et al2013, joint diagonalization Kovnatsky et al
We modify and extend this framework to derive a shape represen-2013, consistency fluang and Guibas 20],3supervised learn-
tation that is complete, encoding both the intrinsic and the extrinsic ing [Corman et al2014, matrix completion Kovnatsky et al2015,
distortion without loss of information in both the continuous and dis- or estimation from a point-to-point magérman et al. 2015
crete cases. To this end, we begin by reexamining the discretization Our goal of using functional maps to characterize local and global
of shape differences on triangle meshes. We modify the original def- geometry builds upon the machinerystfape differencg®Rkustamov
inition of discrete area-based shape difference and prove an analoget al 2013; seex4 for a summary. Rustamov and colleagu2813
of a continuous property mentioned iRiistamov et aR013 that show that in the case of smooth surfaces, shape differences fully
shape differences fully capture intrinsic structure. Inspired by this encode intrinsic geometry. They do not, however, pursue a corre-
fully-discrete result, we proceed to ask whether shape differencessponding analysis for the discrete case. Furthermore, their work
also can capture extrinsic structure. Toward this goal, we de ne focuses solely on intrinsic geometry and hence cannot character-
an additional pair of shape differences on a thickened surface thatize extrinsic bending, critical for describing differences between
captures extrinsic geometry. nearly-isometric shapes like articulated bodies and cloth.
We show that our full set of differences is suf cient to reconstruct
a shape up to rigid motion in the discrete setting, under mild assump- Shape-from-LaplacianRecovering structure from intrinsic
tions. This provides amvertibility property: We can take different  shape differences is closely linked to recovering structure from
embeddings of a mesh with xed topology R®, convert those Laplacian operators. Both in the continuoBogenberg 199and
embeddings to shape differences, and convert back to embeddingsliscrete Zeng et al 2013 cases, the Laplace-Beltrami operator
without losing any information. We additionally provide convex fully encodes intrinsic surface geometry, namely the Riemannian
techniques for recovering geometric information like triangle areas metric for smooth manifolds and edge lengths for discrete meshes.
and edge lengths in the case that a shape difference is truncated t&or triangle meshes, de Goes and colleag2644 provide convex
low-frequency components or noisy. In this case, the inverse shape-machinery for recovering the intrinsic structure of the mesh; their
difference-to-shape-embedding problem is underconstrained, but weencoding of intrinsic structure using only Laplacian matrices is more
show empirically that our machinery recovers reasonable estimatescompact than our pair of area and conformal shape differences, at
To summarize, our main contributions are: the cost of a nonlinear objective sensitive to incomplete information.
The theoretical and practical contributions proposed in this paper
provide considerable insight beyond the fundamental mathematical
contributions in these other works. Speci cally, the convex opti-
mizations in Zeng et al2012 de Goes et ak014 operate in the
Case oftcomplete, noise-free informatiomhey cannot be used for
. ; I itiscal imation in th | projection-style problems, e.g. nding the closest set of edge lengths
gv;ananpe—as well as multiscale approximation in the Laplace- to a noisy input Laplacian approximation or to nding an intrinsic
eltrami basis. ) ] ] structureconsistentith a truncated spectral approximation of the
—A novel set of shape differences aimed at capturing and characy|| operator. Additionally, we show how to use related machinery
terizingextrinsicor embedding-dependent information, with an  tg encode extrinsic bending rather than only edge lengths.
associated observation that generically this set of shape differ-
ences is complete and encodes shapes up to rigid motion. Encoding extrinsic geometnA natural question is whether
—A set of approaches for recovering geometric structure and anintrinsic structure can be used to reconstruct a surface embedding
embedding from the shape differences with theoretical guaranteesup to a global rigid transformation. Numerous examples of iso-
of recovery in the presence of complete information, which we metric smooth surface pairs disprove this notion in the continuous
apply to shape editing operations based on manipulating shapecase Kreyszig 1959 While exact isometries of triangle meshes are
differences. rare with the exception of inward/outward “popping” of valence-
three vertices, near-isometries can often arise and have signi cant
Ydifferences in the embedding, making shape recovery from intrinsic
data like edge lengths a numerically ill-conditioned problem; these
near-isometries appear because small variations in the input edge
lengths can lead to large changes in the resulting embedding. Nev-
ertheless, Boscaini and colleagu281g provide an algorithm for
recovering a surface embeddingRd from shape differences or
equivalent structures. They apply the SMACOF algorittuedguw
2. RELATED WORK et al 1977 for multidimensional scaling to generate an extrinsic
embedding that replicates shape differences in a least-squares sense.

Representation and manipulation of extrinsic and intrinsic structure A It i t a0 lqorithm f
is a vast theme pervading the geometry processing literature. We/*S an alternative,Ranozzo et a2014 propose an algorithm for
embedding from local approximations of the metric tensor; we will

refer to Botsch et al201( for discussion of the basic questions of tensi £ this alaorithmsid. 3. Both of th thod
representation and interaction with continuous differential geometry, YS€ @n extension of this algorithmaxm.3. Both of these methods,
however, operate using only intrinsic information and are subject to

Here, we highlight research linked to our particular approach. ! =F . - X ; .
. the ambiguity and instability caused by isometry invariance.
Functional maps.We study relationships between surfaces  Adding extrinsic information to a shape representation allows
through the lens diunctional mapsintroduced in Qvsjanikov et al it to be embedded iR® up to rigid motion. In theory, the Gauss—

—Theoretical discussion establishing that properly modi ed shape
difference operators fromRustamov et al2013 fully encode
the intrinsic metric of a triangle mesh. Unlike more direct rep-
resentations of meshed edge lengths, these operators enjoy co
nection to smooth theory—providing some degree of tessellation

We demonstrate the usefulness of these contributions on a variet
of tasks, ranging from the exploration of cloth simulation data us-
ing our novel extrinsically-sensitive shape difference operators to
the accurate transfer of intrinsic functions like geodesic distances,
and nally to recovering shape embedding even in the presence of
approximate or truncated functional correspondences.
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Functional Characterization of Intrinsic and Extrinsic Geometry 3

Codazzi equations fully characterize surfaces from the rst and 4, STRUCTURE OF DISCRETE INNER

second fundamental form8¢nnet 1867 (see [Carmo 1976 pg. PRODUCTS
236]). In geometry processindgzigensatz et ak00§ reconstructs
surfaces from prescribed principal curvatures, whi@hlich and By examining the derivation of formulas for computing shape differ-

Botsch 201]1use nonlinear optimization methods to recover shape ences, we can reveal how they are related to local surface geometry.
from dihedral edge lengths. These methods and many subsequenthis analysis not only elucidates the information encoded in a given
techniques employ nonlinear least-squares ts with few guarantees shape difference but also will inform our design of algorithms for
or characterization of their behavior. Wang, Liu, and To2@1[2 recovering shape embeddings from shape differences.
propose a linear technique for embedding meshes from their edge
lengths, dihedral angles, and axes of rotation across mesh faces. 4.1 Smooth Shape Differences

In this paper, we make use of offset surfaces to introduce ex-
trinsic information to the shape difference representation. Offset
surfaces have appeared in geometry processing for some relate
tasks, including cage generatid®dgn-Chen et al2009 and shape
optimization for printing Musialski et al. 201p While techniques

In the continuous case, Rustamov et 2013 consider two inner
@roducts between functiorfsg 2 C! (M) de ned over a two-
dimensional surfacl _ R3:

z

cqiM =

like [Jung et al2004 are needed to generate “clean” offset surfaces Higin = " FO)g(x)d (x)

for geometry editing purposes, in our case self-intersection and re- z

lated artifacts are acceptable since the offset surface is not used for H;giy := hr f (x);r g(x)id (x):
M

display but rather for geometric computatioGghen-Steiner and

Morvan 2003 HOfmenn et a.l 2014] pI‘OVide curvature theories for This pair of Operators is preserved if and OnIMf undergoes iso-

discrete surfaces using offset geometry. metric deformation, showing that they fully determine the intrinsic
geometry oM . The produch; i',\(' is the “area-based inner prod-
uct” on M, encapsulating its distribution of local area elements,
and the produch; i¢ is the “conformal inner product” oM ,

3. OVERVIEW encapsulating local angle measurements.

Suppose- : C1 (M) ! C!'(N) is a linearfunctional map

Our two main goals are to modify and extend the de nition of the taking functions oM to functions onN . Given any inner prod-

shape difference operators of Rustama013 so as to capture Y - N
extri%sic distortion zfnd to facilitate shape ii[?erence, i.e. toprecover ucth 1on M and a _correspondlng inner produrt i on N,
the metric and potentially the embedding of a target shape, given athe Riesz Representation Theorem guarantees the em_sﬁence of an
base shape and a collection of shape differences. operatoDyp,; : L3 (M) ! L*(M) such thatF (f);F(g)i~ =

We achieve these goals in several stages. The main ingredientf; D h;igi'\" forall f;g 2 L2(M) [Brezis 2010. The area-based
for constructing both smooth and discretized shape differences isshape difference betwed&h andN with respect td- is the operator
the computation of inner products between functions. So, ratherDa := Dy;;, and the corresponding conformal shape difference is
than working directly with shape differences, we largely focus on the operatoD¢ := Dy, :
matrices of functional inner products, which can be constructed In our discussion of discrete problems, we will rst focus on
on a single shape rather than a pair. Hence, after reviewing thediscretizing and analyzing the inner product functibns ) and
smooth construction of shape differences.), we reexamine the - M since these can be understood without relalingo a sec-
discretization 'of intrinsic inner products on trlanglg meshes and 54 surfaceN . We then transition from inner products to shape
show how a simple modi cation of the area-based inner product gitterences irx6. In the discrete case, the latter is a consequence

fully encodes intrinsic geometry in an easily-inverted fashieh3). of basic linear algebra rather than the Riesz Representation Theo-
We then_capture_ extrinsic shape structure by introducing two op- rem; essentially if a matri® de nes an inner produdw: wip :=

erators built from intrinsic inner products on .offset surfaces .of a (Pv)> (Pw), then we can refactor to write; wip = v Dw where

base shapex®). We accompany our construction with theoretical = p>p

characterization of the new information provided by extrinsic prod-

ucts Q<_5.3)_and conclude by making explicit how our cons_truction_s 4.2 Discrete Inner Products

involving inner product matrices apply to the construction of dif-

ferencedetweershapesxp). In this section, we also consider how Each quantity above is straightforward to discretize in the language

truncating shape differences written in the Laplace—Beltrami basis of nite elements over a triangle mesh; s&r¢nner and Scott 2007

affects the linear systems we pose. Sayas 2008Strang and Fix 20(J8or general introductions to this
With our new de nitions and analysis in place, we propose op- approach. To this end, suppdgeis represented using a connected,

timization procedures for recovering intrinsic and extrinsic shape orientable, and manifold triangle mesh with vertisésand triangles

structure from the shape difference operators, potentially expressedT . We model functions as vectois2 RV interpolated to triangle

in a reduced basix?). While the basic machinery for recovering interiors in piecewise-linear fashion.

metric information from shape differences is purely linear, we pro-  We will begin our ne-grained examination of shape differences

pose the use of more general convex optimization tools that add by posing functional inner products on these meshes in terms of dis-

resilience to noise and incomplete information by explicitly en- crete geometry. Our ultimate goal is to show that before truncation in

forcing the triangle inequality and/or smoothness. We conclude by a low-frequency basis, the area-based and conformal inner product

demonstrating the ability of our constructions to capture and char-matrices completely encode the intrinsic structure of meshed geom-

acterize extrinsic distortion ignored by previous approack@d) etry. This property is also stated iR{istamov et al2013 in the

We furthermore apply our methods to recovering the metric and continuous case; their discretization, however, does not admit such

shape embedding and to facilitating novel shape editing operationscompleteness due to the use of lumped area weights, as explained

via manipulating shape difference operato.4). below.
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4 E. Corman et al.

w Fig. 2. A mesh for whictC (*2; ) is not invertible when = 1.
Fig. 1. Notation for the conformal product. Notation for thev 6 w case is shown in Figure e v denotes an
edgee adjacent to vertex, and”, is the length of the correspond-
Consider a single triangle onM , and supposg andg are af ne ing edge. This matrix is the familiar cotangent Laplacian matrix cast
functions onT; in other wordsf andg are evaluated in the interior  in terms of edge lengths and triangle areas; this form also appears
of T via barycentric interpolation of the three scalar valugd ,; f 3 e.g. in Boscaini et al2015. Comparing(1) and(2), scaling the

andgs; g2; gs de ned on the vertices of the triangle. Multiplying  edge lengths of a mesh by some factawill correspondingly scale
these functions and integrating reveals that the inner proddct of A by 2 while C will be left unchanged; unless otherwise noted, we

andgonT is given by scale meshes in our experiments to have unit surface area to remove
0 21 11 0 1 dependence on global scaling.
Hoqil = (T) fof f. @1 2 1A @91 A - A crucial observation that we make here is that if the triangle
QA= 5 Tt ts 112 % 7 areas encoded inare xed then the mapping(*2; ): RIEi |
G RIVii Vitaking squared edge lengti’s2 RIEi to a conformal inner
where (T) is the area of andf;;g denote the values éfg on product matrixC is linear. Note also tha€ is fully determined by
vertexv; . As a sanity check, taking = ¢ =1 8i recoversthearea  its valuesCyy forv — w. Thus, if we represent the list of inner
of T. This is theexactL 2 inner product of andg de ned over the productsCy,, as avectocin RI®J thenfora xed set of area weights

meshed surface using piecewise-linear interpolation, without mass , there exists a matri® such thac = B ". The entries 0B
lumping commonly introduced in nite element discretizations; this are, of course, given in e). In the pipeline that we propose below,

distinction is critical for our construction. we will rstrecover the triangle areas and then use those to recover
Taking inner products over all 8l requires summing over trian-  €dge lengths from the corresponding inner products. The following

glesT. If f;g 2 RIVi, thentf;gi" is given byf > Ag, where proposition shows that “generically” the matix is invertible, i.e.,

8 p the set of weights for whichB is singular has measure ORI,

1 <P 1. (T) whenv=w . . .
A = — (T)  whene=(v;w) 1) ProOPOSITION 2. Assume that the mesh is manifold without
w120 T8 o - “2.
0 otherwise, boundary. Then, for almost all choices of aregsghe mapC("4; )

uniquely determines which is recoverable via a linear solve.
whereT v denotes iteration over triangles adjacenvtand . L : 20y .
T (v;w) denotes iteration over triangles adjacent to egev): This proposmonllmplles that the Ilnear may “; )is |nvert|ple
ThisjVjj V] “Galerkin mass matrixA is nondiagonal but positive ~ for @ small (possibly zero) perturbation of any set of area weights
de nite, integrating products of piecewise linear functions exactly. Nevertheless, there exist cases in which the sqyzared edge lengths are
See e.g.$trang and Fix 20Q&hapter 10, (32)] for an example of not recoverable via inversion of the linear mag #; ) fora xed

its appearance in nite elements. set of area weights. One example of such a.shape is shovyn in Figure
We can think ofA as a linear operatdk( ): RTi 1 RVii Vi 2, consisting of two tetrahedra glued at their pases. In this case, all
that constructs the area-based functional inner product matrix  the triangles have equal area weights, and it can be seen that the
given a vector 2 RITI of triangle areas. We can show thet ) is resulting linear systemis smgu_lar. We also remark tha_t the co_ndltlon
invertible in the following sense: of no boundary is necessary in the Pr@@mbove, as it is possible

to construct meshes for which the m@p'?; ) is singularfor all

PROPOSITION 1. SupposéM has a boundary or at least one  choices of (e.g., a pair of triangles glued along a shared edge). For

interior vertex with odd valence. TheA( ) uniquely determines  all the meshes that we tried in practio@), we have observed that
, recoverable via a linear solve. the resulting system is both invertible and typically well-conditioned.

The proof of this proposition and others below is in the appendix. A W€ l€ave the formulation of the necessary and suf cient conditions
proposition of this nature doe®t hold if masses are lumped down on ‘h‘? mesh and the weightsfor the invertibility of C(**; ) asa
the diagonal oA\ This observation is intuitive in that a triangle mesh  duestion for future work.
has approximately two times the number of triangles as vertices.

If f andg are piecewise-linear functions &, then their gra- 5. ENCODING EXTRINSIC STRUCTURE
dients are piecewise-constant and expressible using one vector pe
triangle. Taking dot products of these gradients and integrating over
M shows thatf;gi¥ = f>Cg, where

P

[ntrinsic inner products capture the metric tensor ( rst fundamental
form) of a surface, so to complete our representation we show how a
related structure can be used to encode its second fundamental form.

8 u v Cuw whenv = w In keeping with previous discussion, we will use additional inner
Co = 1 (T) ¢z, "2 °2) h 2 product matrices to derive a multiscale representation of this missing
w g s (T 1z, e ey whenv w o (2) information. While there exist many possible ways to measure ex-
"0 otherwise. trinsic distortion, this “functional” language facilitates a connection
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Functional Characterization of Intrinsic and Extrinsic Geometry 5

" increases
decreases

(a) Dihedral angle (b) Dual edge length

Fig. 3. Two potential ways to encode extrinsic mesh structure.

7S TS /
between continuous and discrete characterizations and uni es our W4 5\// SZ/‘/'/
treatment of intrinsic and extrinsic distortion. A —

These added structures complement the area-based and conformal
products by making our representation of a shape unique up to rigid
motion. In addition to providing a lossless representation of surface
geometry in the presence of complete information, we demonstrate Fig. 4. Edge lengths change according to curvature of the offset surface.

how the new products can capture and encode geometric relation- . )
ships that are not captured by purely intrinsic analysis. nal. In a sense, however, we can view the offset surface construction

proposed below as a means of smoothing out this construction.
.. . Before proceeding, we should remark that strictly speaking it may
5.1 Extrinsic Alternatives not be necessary to provide extrinsic information at all. According
In discrete language, the inner product matriags) andC(*2; ) to a classical result by GIucIiQ?_ﬂ,_ almost all tna_ngulated §|mp_ly
determine the edge lengths of a triangle mesh but not its dihedralonnected closed surfaces are rigid. Although this result might imply
angles, illustrated in Figur@(a). Additionally providing dinedral  that riangle edge lengths are, in general, suf cient to reconstruct
angles is suf cient to recover a mesh up to rigid motion. There the mesh up to rigid motion, this is only true if the metric is known
are many expressions of extrinsic shape that potentially encode®x@ctly moreover, itis highly nontrivial to recover an embedding
these angles; before presenting our nal solution, we mention a few €Ven if one is known to exist. When the edge-lengths are perturbed
straightforward alternatives to explain why they are less desirable. O are approximated, the corresponding embedding might either
At the most basic level, any technique encoding one value per N0t €xist or be very far from the desired shape. As we show below,
edge of a triangle mesh could be used to represent dihedral angle§.he presence of explicit information about the extrinsic distortion

For instance, since the angles are in a vect@r REi, we could can greatly help in both direct and inverse problems and is largely
use an analog of Propositi@to store them in the matri€( ; ). complementary to the intrinsic distortion addressed by prior methods
That is, from a mechanical perspective Proposioshows we In practice.

can take one value per edge in a vectd R/ and generate a

matrix C( ; ) without losing information. One could plausibly re- 5.2 Offset Surfaces

place edge lengths in—the original intention of this construction—  oyr construction of an extrinsic shape representation is an extension
with dihedral angles; this roughly corresponds to taking products of the dual mesh idea froxb.1 that does not suffer from sign am-
gf functional gradients under the second fundamental foras biguity. Instead, we are able to rely upon the positive de niteness

h(r f; r g) dA. The resulting matrix is not positive semide nite,  of inner product matrices directly to encode both intrinsic and ex-
however, which prevents a smooth analog from the Riesz Repre+rinsic information. In short, rather than encoding a metric and its
sentation Theorem (which applies only to positive de nite inner gerivative, we encode a metric and a slightly deformed metric, both
products) and causes numerical issues due to departure from they which admit natural positive de nite representations.
cone of semide nite matrices. Dihedral angles also are known only  The intuition for our construction is illustrated in FiguteSup-
up to a period of , providing potential for ambiguity in the expres-  pose we wish to recover the embedding of the blue torus. As dis-
sion of the vector. » ) . cussed in the previous section, it may be dif cult to reconstruct the

In an attempt to bring back the positive de niteness enjoyed torys purely from its list of edge lengths. Instead, suppose we gen-
by the intrinsic formulation, we might attempt to encode the edge erate aroffset surfacdy displacing each vertex and face along its
lengths of adual mesh, shown in Figur(b). These lengths indi-  oytward normal a xed distance The operation is extrinsic, since
rectly encode dihedral angles up to sign but are unable to distinguishthe mesh moves through the surrounding space, modulating edge
between inward and outward folding directions, as shown in the g- |engths’ based on the curvature of the surface. The edge lengths in
ure. Obvious techniques for disambiguating the inward and outward the interior of the torus shrink while the edge lengths on the exterior
folds generally accompany edge lengths with signs, reintroducing expand, effectively distinguishing the bend direction.

the problems discussed in the previous paragraph. . In the continuous case, we can formalize the effect of offsetting a
An alternative construction might de ne extrinsic shape differ- gyrface as follows:

ences via th&auss mapor map from a surface into the unit sphere . . )

based on normal direction; sedgyer et al 2003 for an example _PROPOSITION 3. Suppos#/ is a compact orientable Rieman-
in geometry processing. While the Gauss map is used in classicallian 2-manifold vylthqut boundary. Consider a family of immersions
differential geometry to derive extrinsic properties of surfaces, we Ft 1M ! R® satisfying

nd it to be unstable within the shape difference framework. In @rF

particular, the image of the Gauss map is composed of many over- @(p) =n(P8(p:t)2M  Rs;

lapping spherical triangles that change rapidly from vertex to vertex. )

Projection of this information into low-frequency Laplace-Beltrami Wheren denotes the outward unit normal bf, := Fo(M ) when
bases tends to remove the majority of the meaningful geometric sig-t =0. If g; := h%; %i is the metric of the embedded surface
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6 E. Corman et al.

T

\ \ Mesh (blue) and offset (red) Thickening
KT P VAN A
/ —l/ Upward-facing Mesh edge Downward-facing

Bottom layer Top I.ayer Fig. 6. Canonical thickening (top right) of a triangle mesh (top left); types
of tetrahedra in the thickening (bottom).
Fig. 5. Topology of offset mesh.

= W@R . @nj i intuition is con rmed by Propositior8 and the Gauss—Codazzi

andhy = h@% ey S its second fundamental form, then equationsBonnet 1867Carmo 197§ since offset geometry pro-
@g @ vides extrinsic curvature information, which in turn determines an

—_— = 2hjj jio and — =H; embedding. We chose the topology of the offset mesh (Figure

@t @t speci cally to allow for a canonical “thickening” of the offset slice

whereH := (gi h; )iz is the mean curvature at = 0 and into a tetrahedral mesh, shown in Figé:dJsing mesh-based shape

differences, we can recover the edge lengths of the bottom and top

= detgji=o : Furthermore, for any smooth :M ! R, . ; f
Hit=0 y layers of the thickening. By construction of the offset mesh, we are

@ Por — oh(r .t . able to recover the lengths of the interior edges of the thickening,
@9( LA (r or oo effectively proving the following proposition:

where | := Fo b= F, !, and gradients are along . L

M = F((M). PROPOSITION 4. Suppose a medi satis es the criteria in

Propositionsl and 2. Given the topology ofl , the area-based
Results of this nature are fairly well-known for offset surfaces; see and conformal product matrices( ) andC(*2; ) of M, and the
e.g. [Patrikalakis and Maekawa 200f@r related discussion. More  area-based and conformal product matrieeg ;) andC('?; ;)
informally, the proposition shows that the second fundamental form of M., the geometry ol can (almost always) be reconstructed up
of M is encoded through the change in metric while the surface is to rigid motion.
being offset along its normal directions.

WhenM is an oriented triangle mesh, there are many potential A tormal argument for this proposition is in the appendix.

constructions of discrete offset surfaces, and several likely would
suf ce for the proofs in this paper. For mathematical simplicity, we
choose the construction in FiguseOn the left we show triangles 5.4 Discussion
of the original mestM in blue. On the right, we de ne the topology
of the offset mesh in red, which contains a vertex for every vertex
of M and every triangle oM . For a xed constant > 0, we
place the vertices distant@boveM along its face/vertex normals;
any reasonable de nition of a unit-length vertex normal suf ces.
Offset vertices associated with triangles are placed directly above
the barycenter of the triangle.

We pause to summarize the theoretical development in the previous
sections. We began by reconsidering the construction of inner prod-
ucts and shape differences from rst-order nite elements. When
area elements are not lumped, we showed that inner product matri-
ces fully determine the edge lengths of a mesh and that they can
be recovered by solving two linear systems of equations: one for
recovering the triangle areas, and the other for recovering the edge
lengths. Moreover, generically, both systems are non-singular.
In both the continuous and discrete cases, these intrinsic measure-
In the end, we encode the geometry accompanying a xed triangle ments are not enough to distinguish isometric shapes. Even worse,
mesh topology using four structures: the intrinsic area-based andthe space of near-isometric shapes can be very large. Hence, we
conformal inner product operators and the same operators for thepropose generating an offset surfade from a mesh or surfadd! .
offset surfaces with xed normal offset distance 0. We denote In the continuous case, the geometry\f determines thextrinsic
the offset surface dfl asM;. In this section, we show—at least  structure ofM by encoding its second fundamental form. In the
before truncation—that these four difference matrices are suf cient discrete case, combining edge length8/ofwith edge lengths of
for fully reconstructing a shape. M fully determinesM up to rigid motion. The main development
The challenge of reconstructing a triangle mesh from its edge is that we cartompletelydetermine a shape using functional inner
lengths arguably comes from the fact that there are many ways toproducts via the constructions above.
glue together two adjacent triangles by xing different dihedral Our theoretical contributions deal with the noise-free, non-
angles. Rigidity may imply that only one such embedding exists, but truncated case. Roughly, they show ttiantrinsic/extrinsic shape
it is not obvious from local relationships. Contrastingly, an oriented differences were computed from an embedded ni&shith xed
tetrahedralmesh is easy to reconstruct from its list of edge lengths topology,thenthe embedding d almost always can be covered
simply by gluing individual tetrahedra face by face. from those differences up to rigid motion. We evaluate sensitivity
Hence, our intuition for why a mesh plus its offset are enough to noise and the possibility of recovering geometry from truncated
to reconstruct the mesh comes from a volumetric perspective. Thisshape differences empirically k8.

5.3 Recovery of Embedding
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6. FROM INNER PRODUCTS TO SHAPE
DIFFERENCES

With the goal of working with quantities that exist when meshes are
not in vertex-for-vertex correspondence, we shift from working with
matrices of inner products to shape differences. This shift is needed
to propose algorithms ir7 for estimating the dense structure of a

and a functional map matrix 2 RV~ ii VM taking functions writ-
ten in the M basis onM to functions in the N basis onN.
Following [Rustamov et ak013 x5], we de ne shape differences
in this case as

M. N
D, ' =F°F

. 6
D, " =diag(f Mg)*F>diag(f Ng)F: ©

target mesh given a source mesh and an approximate relationship ] i o
between the source and the target, represented as a functional ma§/hereas the truncated shape differenceg)recontain a limited

computed e.g. using assorted correspondence techniques.

6.1 Discrete Shape Differences

We begin by considering two meshigls andN in vertex-for-vertex
correspondence, with areag ; v 2 RITi and squared edge
lengths'Z, ;"2 2 RIEI. Based on the continuous de nitions in
x4.1, the “full” area-based and conformal shape difference between
meshedv andN are Rustamov et al. 20135, “option 1"]

Da=A(wm) *A( n)
Dé C(‘,%:A; M) l'é:([%] N ©)

A straightforward corollary of the discussiony4.2is that these
two differences completely determine the edge lengths and triangle
areas o given the geometry dfl . Notice the rst relationship
is still linear in y and the second i, , preserving the proposed
system of equations for reconstruction.

Similarly, the extrinsic differences are simply the shape differ-
ences between the offset surfaces:

DE A(\Mt) 1A( Nt)\
DE C(ﬁ/l‘; Mt) 1C( rz\h; Nt):

The discussion ix5.3implies that the tupl¢D 5 ;D¢ ;DE;DE) is
suf cient to reconstruciN up to rigid motion giverM .

(4)

6.2 Source-Truncated Correspondence

More commonly, suppose 2 RV ¥ contains the orthonormal
Laplace—Beltrami basis &fl , truncated t& functions. Assuming

M andN are still in vertex-for-vertex correspondence, we can write
“reduced” shape differences as

DA .>A( N)
D. =diag( f Mag)* >C(%: n)

Q)

where the eigenvalues of the LaplacianMnare M . These differ-
ences no longer determine angles and edge lengths exactly but stil
encode a multiscale notion of geometry that is valuable for under-
standing the relationships betwelgnandN ; extrinsic differences
can be de ned analogously from the offset surface. We can still
de ne linear systems for computingy and*2 fromDa,Dc, w,
and'Z using these relationships, although they are unlikely to be
full-rank for smallk; we provide regularizers in the next section.

window of values from the full shape difference matrix, in this nal
case the non-truncated entries of the shape difference matrices also
undergo some change. This is because even if a functionh @

in the column space of™ | it will not be transported fully toN by

the functional mag- due to removal of high frequencies.

These shape differences are discretizations of analogous linear
operators in the smooth setting. For this reason, even though the
differences in(6) no longer satisfy exact equality relationships like
those in(5) for recovering areasy and squared edge lengttfs
from shape differences and the geometrivbf we will poseap-
proximaterelationships

DA, (MYA(M N M
diag(f Mag)* M>C(CZ i m n) M:

M

DC
The unknown variablesy y and'2,  can be thought of as
pullbacks of the metric o to that ofM , in the sense that they
attempt to assign areas and edge lengths to the topololgly tof
mimic inner products ol . The rst conditionislinearin y n 2
Ri™v i and the second i, , 2 RiEm I,

Since the shape differences() are the most realistic test cases,
we will assume in our experiments that truncated shape differences
are computed in this fashion unless noted otherwise. That is, we
will assume that we are given a source- and tatgeteatedshape
difference. The experiments ¥8.2 verify that this approximation is
reasonable as long &g andky are suf ciently large.

)

7. RECOVERY OF INTRINSIC AND EXTRINSIC

STRUCTURE

Having established theoretical aspects of intrinsic and extrinsic
shape differences, we now provide algorithms for recovering a shape
N given a base shapé and shape differences kb and its offset.
First, we recover triangle areas from the base and offset surfaces
from corresponding area-based shape differences. With these areas
Ixed, we then recover edge lengths, which were showxbirBto
completely determine the surface.

Both steps can be carried out using linear solves when shape
differences are not truncated. When dealing with truncated or inexact
functional maps, we augment the optimization with constraints
ruling out unreasonable structures. We also show how to apply
existing techniques for recovery of an embedding from edge lengths

These truncated differences essentially correspond to remov-of the surface and its offset.

ing rows and/or columns from the full shape differences after
writing them in the Laplace—Beltrami eigenbasis. Such a compu-
tation can be useful for multiscale analysis of surface deforma-
tions, in which vertex-for-vertex correspondence is known but high-
frequency changes may not be useful to analyze. What remains
however, is to consider the case whdnandN are not in vertex-
for-vertex correspondence and both have incomplete bases.

6.3 Source- and Target-Truncated Correspondence

Suppose we are given truncated basés 2 RVvI kv and
N' 2 RN kn for the eigenspaces &l andN , respectively,

7.1 Triangle Area Computation

We rst show how to recover areas of triangles given an area-based
shape difference. Our approach is an extension of the basic linear
technique outlined in the proof of Propositi@nextended to deal
with truncation and noise.

Following x6, supposeD » is the area-based shape difference
betweerM andN in the Laplace—Beltrami basisy . Recall that
our goal is to pull the geometry &f back to the mesh d¥l . Hence,
the area-based difference frdvh to the reconstructed target shape
N should satisfyD , wA( n) w:Ifthe reduced basisy
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onM hask functions, this linear system foi, hask? equations
andjTj unknowns. So, we need at le&st = jTj to have a well-
posed system.

The quality of the solution found by solving this system without
regularization depends on two factors: the qualitypgf and the
conditioning of the resulting linear problem. We nd that both limi-
tations are improved considerably by introducing a nonnegativity
constraint, leading to the following optimization problem fay:

K K/IA( N) M DAk|2:m (8)
n (T) 08trianglesT:

We solve this and other convex programs using the Mosek tool-
box [MOSEK ApS 201% We additionally add a regularizing vis-
cosity term"k v k3 for small” > 0, under the assumption

min
s.t.

that triangle areas should change minimally unless there is evidence

to do otherwise; we sét = 10 4 in all the experiments in this
paper. This regularizer allows the problem to be solved wihgn

is truncated, which would otherwise make it underdetermined, and
regardless improves stability whén, is noisy.

7.2 Edge Length Computation

Now that we can compute triangle areas, we can recover edgef

lengths. As in the last section, we start from Proposifida pro-
pose a basic linear system for squared edge lengths and then provid
regularization techniques for dealing with inexact or truncated dif-
ferences.

The conformal shape difference encodes the transformation of the
cotangent Laplacian through the deformation. Again borrowing from
x6, the geometry oN can be pulled back thl via the following
linear condition on squared edge lengtfsgiven xed areas y :

diagg M)Dc= 5C(CZ: n) wm: )

Solving this linear system of equations f@ depends critically
on the approximated areag ; numerical or discretization error
from the method inx7.1 invalidates this step, regardless of the
quality of D¢ : To provide resilience to this issue and to noise in
D¢, we add constraints to this system ruling out unrealistic edge
lengths' .

Todenea triangulatioB, the squared edge lengéhsmust be
nonnegative; furthermore, “Z (T) must respect the triangle in-
equality in each mesh triangle. We enforce the latter constraint
via the following proposition:

PrROPOSITION 5. The symmetric matriE de ned by
0

1 2Xq X3 X1 X2 X2 X1 X3
E = E @X3 X1 X2 2X2 X1 X2 X3A
X2 X1 X3 X1 Xz Xs 2X3

is positive semide nite if and only ¥, X, X3 are nonnegative and
their square roots satisfy the triangle inequality.

We also can link squared edge lengths to the computed triangle
areas y (T). This link is provided by the submatricés de ned
as
1 Xi
E Xk 2Xj

wherefi;j; k g= f1;2;3g: With this de nition in place, we lever-
age the following proposition:

2Xi
Xi

X Xi
Ex = K L

X

PROPOSITION 6. E is positive semide nite ifand onlyxy 0
forall k 2 f 1;2;3ganddet(E;) O: Moreover, ifE 0, then
det(Ex) =4 (T)2:

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date

Enforcing constraints derived from these relationships in the com-
putation of edge lengths from a shape difference leads to the follow-
ing optimization problem:

min‘ﬁ, k WCCR: n) m
st.’3 0
det(Es(T)) =4 n(T)?2 8trianglesT:

diag M)DckZ,

This problem, however, is large and non-convex due to the determi-
nant constraint. A convex relaxation is possible by noticing that the
cone of symmetric positive semide nite matrices with determinant
1is convex; this observation derives from the convexity of the
functionA 7! log(det A)) [Boyd and Vandenberghe 200&o0,
the former problem can be relaxed to a convex problem:
minz k 5 CCR{5 n) m diag  M)Dcki,
st.'3 0 (10)
det(E3(T)) 4 n(T)? 8trianglesT:
The determinant constraint is handled using the rotated quadratic
cone optimization in the Mosek toolboMPDSEK ApS 2015
While (10) contains a relaxation of the full set of constraints, we
nd empirically that this relaxation generally is tight; we leave it to
uture work to prove conditions for “exact recovery” akin to those
in [Dym and Lipman 201}6for mesh alignment problems.

€ As'in x7.1, we can additionally regularize by additifk 2

*2 k2 to the objective; our experiments uss= 10 “:

7.3 Global Extrinsic Reconstruction

At this point, we have presented algorithms for recovering edge
lengths for the entire canonical thickening de nedk®3. As sug-
gested in the proof of Propositiah if these edge lengths are com-
puted without error, the thickening can be reconstructed greedily;
then, the embedding df from M is the inner envelope of this
thickening.

In reality, the squared edge lengths fn likely exhibit numerical
error. For this reason, we employ the algorithmBapozzo et al
2014 for reconstructing a triangle mesh given its edge lengths. We
adapt their approach to take into account the tetrahedra de ned by
the offset surface, by using the same ARAP-style deformation en-
ergy, de ned on each triangle facet of each tetrahedron, and using
the same alternating optimization strategy. We note, in particular,
that this approach does not require embedded surfaces to be man-
ifold, and can easily incorporate edges shared by more than two
triangles, which only changes the computation of the gradient of the
energy. Hence this allows us to reconstruct the entire set of triangles
in the canonical thickening rather than the inner or outer surfaces
only. We provide the thickening & as a starting point for their
alternating optimization algorithm. Whereas their method is subject
to isometric ambiguity when embedding manifold meshes, recon-
structing the entire thickened structure reduces ambiguity and more
reliably provides an extrinsically correct embedding.

8. EXPERIMENTS

In this section we illustrate the utility of the constructions presented
above in a variety of practical application scenarios. We start by
showing how the extrinsic shape differences can be useful for shape
exploration and analysis, by complementing the information pro-
vided by the intrinsic differences of Rustamov et 2013. We

then show how our metric and shape recovery methods can be used
to both infer shape structure and ultimately recover the embedding
from approximate, truncated shape differences.

1 XXXX 2016.
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Fig. 7. PCA on collections of shape differences reveals the axes of variability within a collection; each shape on the left is colored the same as its corresponding

points in the plots. The area-based and conformal differences are unable to distinguish the inward and outward bumps in the top example, leading to clusters of
four points.
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Fig. 8. Human models from Figuiésorted by the rst PCA dimension for area-based shape differences (top) and area-based differences including an offset
surface (bottom). The differences without offsets distinguish body type, while the differences with offsets distinguish pose.
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8.1 Shape Space the body type of the model and are invariant to the pose of the
L . arms and legs; this ordering re ects the property that articulated
An example application of shape differences that deesrely — geformations of humans are nearly isometric. Complementing this
on exact reconstruction of local geometry involves the extraction embedding, the extrinsic differences distinguish pose and are less
of variability within a collection of related shapes. Suppose we gangsitive to body type. This property is also visible in Figdre
choose an arbitrary base shape and compute its shape differencgjnce the area-based embeddings without and with the offset are
matrices with the remaining shapes in a collection. Then, a simple transposed from one another.
low-dimensional description of shape variability is to do PCA on Figure9 shows a similar experiment applied to shapes from indi-
the collection of matrices, resulting in the embedding of each shape yjqyal frames of animation sequences. Both intrinsic and extrinsic
as a pointin PCA space. _ shape differences are able to recover the cyclic structure of a gal-
We use PCA experiments to illustrate the power of our proposed |oping horse animation; this indicates that the galloping motion
extrinsic differences. For instance, Figltdlustrates embeddings  contains both intrinsic and extrinsic deformation modes. Contrast-
of two-parameter shape collections into the plane using the procengly, the intrinsic differences severely underperform in recovering
dure aboveKy =50;ky = 100). The top row illustrates the need 4 animated sequence of deforming cloth. The physics of cloth natu-
for extrinsic differences most clearly. Here, we generate cubes with 51y avoids intrinsic stretching and shearing, maintaining the initial
smooth bumps, smoothly varying from an inward bump to an out- gevelopable structure. Thus, intrinisic shape differences provide
ward bump. Intrinsic shape differences are identical for inward and |ittje-to-no information, while the extrinsic differences capture the
outward bumps, leading to PCA embeddings that cluster sets of four ayq|ution of the animation.
shapes together. Adding extrinsic information disambiguates the  From a wider perspective, the experiments in this section reveal
embedding problem, separating the clustered points. Similarly, the the value of explicitly representing both intrinsic and extrinsic de-
extrinsic area-based shape difference best separates the parametrigrmation in navigating datasets of 3D surfaces. A sizable fraction
human models evenly among the two ax&&2% variability along of geometry processing algorithms, including the original work on

the principal axis38:3% along the secondary axis); interestingly, shape differences, focuses on shape exploration based exclusively
conformal shape differences among offset surfaces do not exhibit o intrinsic structure. Yet, motions like the deformation of a piece
much variability for this particular class of surfaces. of cloth cannot be captured by this representation. While cloth de-
Figure8 highlights how intrinsic and extrinsic shape differences  formation may be an extreme example, based on these results we
can measure different properties of shape. We sort the collectionagyocate inclusion of both intrinsic and extrinsic structures in shape

of human models by the one-dimensional embeddirgs) of analysis rather than discarding the extrinsic information.
intrinsic (top) and extrinsic (bottom) area-based shape differences

(km =50;ky =100). The intrinsic shape differences distinguish
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Fig. 10. Effects of truncation on computation of mesh structure x8&dor discussion.

8.2 Effects of Truncation of the target mesh. Even on challenging tasks like recovering the
. o . ) full spectrum of the target mesh—beyond the eigenvalues used to
The propositions in this paper show that discrete shape differencescompute the shape difference—our algorithm has some success.
completely encode geometric structure when they are writtenina  The choice oky is particularly important. Intuitively, this phe-
full basis. For many applications, however, we approximate shape nomenon might be explained by the fact that modulatiggchanges
differences in a truncated low-frequency spectrum. While the effects the values in the shape difference matrices rather than just their size.
of this truncation are dif cult to characterize mathematically, in this  The top row of the matrix also exempli es a pattern we observed
section we evaluate the effects of this approximation numerically. 5cr0ss our experiments; below a certain valuekfpr, there is not

There are two potential sources of truncation error in the twice- gnoygh information to get a meaningful indication of local geometry
truncated differences discussed3 The choice oky and the from the shape difference matrices.

choice ofky : As mentioned inx6.3 these two parameters have
slightly different effects; decreasirig, corresponds to removing
rows or columns of the shape difference matrices, while decreasing
kn can affect the values of the entries. 8.3 Intrinsic Recovery
Figurel0illustrates the results of an experiment varykag and
ky for intrinsic shape differences and using the pipeline describe
in X7 to recover areas and edge lengths; recall that this technique
extracts areas and edge length\bmising calculations oM . We
choose a pair of meshes with a ground-truth map to avoid additiona
error due to map approximatiojMy j = jVn j = 1000).
Each color plot shows the relative error of assorted quantities
extrapolated from the truncated shape differences: face argas ( i ; SO
edge lengths'}, truncated eigenvalues (g%, ), full eigenvalues area weights) is an intrinsic structure,we can use our computed
' i=1 /) vectors and” to pull backthe Laplacian operator fromd to M .

(f d%l), and entries of the Laplacian . We assuméy ki , This technique is illustrated in Figufiel. In this experiment, we
providing the upper-triangular structure of the plots; the vertical compute shape differences froml@0 200 functional map to
axis representiy (rangeky 2 [60;500]) and the horizontal axis  compute and’ on the source surface; we then {&pto construct
representky (range:ky 2 [60;500). We choose’ so thatthe  a new Laplacian operator di using and" pulled back from
viscosity regularizer contributes 10% of the optimal objective. N and show eigenfunctions of the resulting operator. Not only do
These plots show that even truncated shape differences can behe eigenvalues of the pulled-back Laplacian better approximate
used to extract per-face and per-edge information about the meshnhe aplace—Beltrami eigenvalueshf but qualitatively the eigen-
using our pipeline. Even with5% of the Laplacian eigenvectors,  functions of the pulled-back Laplacian exhibit more structure in
we can relatively reliably extract the face areas and edge lengthscommon with the eigenfunctions of . Boxed examples in Fig-

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2016.

d The experiments ix8.2illustrate a remarkable observation, that we
are able to recover local information about the target of a shape dif-
ference from a truncated shape difference. That is, the nonnegativity
| and semide nite constraints proposeddnpaired with regulariza-
tion are suf cient to avoid the null space of the truncated linear
systems for recovering areas and edge lengths.

As the cotangent Laplacian of a triangle mesh (with or without
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Fig. 11. Our machinery can be used to pull back Laplacian operators from a target mesh to a source. Here, we use a truncated functional map (100 Laplace—
Beltrami basis functions on source, 200 on target) to compute revised edge lengths on the source mesh. Eigenfunctions of the Laplacian before and after edge
length adjustment are shown with eigenvalues; boxed columns provide examples where the eigenfunction changes structure signi cantly.

d=0 d=0:0163 d=0:0421
Source geodesic  Target geodesic Exact pullback Reconst. pullback Func. map pullback
d=0 d=0:0417 d=0:1594
Source WKS Target WKS Exact pullback Reconst. pullback Func. map pullback

Fig. 12. Our technique can be used to recover the pullback metric and therefore compute geodesic distances without direct access to the target mesh. We
compare three geodesic pullbacks on the source mesh: the exact pullback using point-to-point correspondence, the geodesic computed by reconstruction of the
metric from the shape differences, and the pullback of the geodesic function using a functional map. For each pullback we cdmipdittaheed to the

exact version. Our method achieves better reconstructions than the direct usage of a functional map.

urellshow particularly striking differences between the source and this is due to truncation of the functional map, which removes high
reconstructed eigenfunctions. frequencies e.g. at the center point of the geodesic function.
Figure 12 illustrates an application of recovering edge lengths
from truncated shape differences. Without constructing an embed-8.4 Reconstruction
ding, we use pulled-back edge lengths to compute two commonly- ) . ) ) )
used intrinsic functions: single-source geodesic distances and the-igures13, 14 and15illustrate experiments in which geometry is
wave kernel signatureubry et al 2011]. Our edge lengths enable reconstrycted after estimating Iocgl structure from. sh.ape dlfferences.
computation of these functions on the source mesh using the metricT0 highlight our method's effectiveness on extrinsic motion, we
of the target, given a functional map between them. As a baseline,Show behavior on human shapes and cloth simulation data.
computing these functions on the target and pulling them back to ~ Figure 13 applies our method to reconstructing models of hu-
the source using the functional map (right column) is less accurate;mans from shape differences. From a coarse human base mesh
(iVmj = jWnj = 502; ky = 100;ky = 200 in truncated ex-
periments), we recover various poses. We compare reconstructions
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dy =0:036 dy =0:054 dy =0:013 dy =0:030 dy =0:058
dy =0:083 dy =0:140 dy =0:023 dy =0:116 dy =0:147
dy =0:064 dy =0:110 dy =0:0153 dy =0:105 dy =0:132
Source Target Intrinsic+Extrinsic  Intrinsic only| Intrinsic+Extrinsic  Intrinsic only| [Boscaini et al. 2016
Truncated Truncated Full Full Full

Fig. 13. Mesh recovery from a source mesh and shape differences, with (left) and without (middle) the extrinsic shape difference. Intrinsic mesh recovery
using a concurrent method (right). The distance to the taligeils measure by the Hausdorff distance on the prealigned point cloud.

0:5 1 15
Source Target Interpolation Factor

Fig. 14. Mesh recovery and interpolation from a source mesh and the intrinsic/extrinsic shape differences. The target meshes come from a cloth simulation
sequence.

using only the intrinsic shape difference (right of each pair) to re- tends to smooth out the sharp creases as they are represented as high
constructions using intrinsic and extrinsic differences together (left frequency features.

of each pair); we also compare using a truncated basis for shape In Figure 14, we interpolate between frames of an animation
differences (second column) to using a full basis (third column). sequencej¥u j = jVnj = 1089;ky = 100;ky = 200). After

As a baseline, we compare tBdscaini et al2019, which uses running a cloth simulation with coarse time steps, we compute
only intrinsic geometry (rightmost column). Reconstruction from the shape difference between subsequent fram2s[Q; 1]). We
intrinsic information shows considerable artifacts due to the non- then use the method k¥.3to construct plausible motion between
uniqueness of the solution of the embedding problem. Our provably the frames by interpolating linearly between the computed shape
complete intrinsic/extrinsic description is much more stable and differences{ = 0:5). We further extrapolate the motion beyond the
close to the solution. The truncation of the basis, discussggl. t 2 [0; 1] range tat = 1:5, effectively exaggerating the deformation
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0:5 1 15
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Fig. 15. Mesh recovery and interpolation. The source mesh has different connectivity than the target. The target meshes come from a cloth simulation sequence.

between the frames. As expected, the extrinsic shape differencegyuidance for the minimal-sized shape differences needed to recon-
allow for reconstruction of largely isometric cloth motion. struct a shape; spectral truncation is a common part of the geometry
Figure 15 illustrates a more challenging experimejM(j = processing pipeline, so any relevant theory would have the potential
669;jVyj = 1089;ky = 60;ky = 180). In this case, we recon- to affect understanding of many existing algorithms.
struct the same cloth simulation sequence but vary the topology of On the practical side, the primary limitation of our proposed re-
the source and target meshes. Now it is impossible to pull back the construction methods is the introduction of semide nite constraints
deformation exactly to the new mesh topology, but we still recon- in computing the squared edge lengthsnulti-scale or lighter-
struct plausible motion, with the notable exception of artifacts near weight optimization methods would enable application to larger-

the boundary of the patch. scale meshes. Furthermore, the regularization proposed for recovery
of and’ in x7 is very generic and can be ineffective for noisy or
8.5 Timings highly truncated shape differences. Application of machine learn-

) o L . ing techniques may allow for the characterization of edge length
Figure 16 shows timings by stage for our pipeline, applied to  and triangle area distributions speci ¢ to a given class of shapes,
meshes of various sizes and topologies. We employ a simplistic considerably reducing the search space for our recovery algorithms.
single-threaded implementation inAVILAB , using the Mosek tool- Figures17 and 18 show examples illustrating these potential
box [MOSEK ApS 2015in the CVX library for convex optimiza-  ayenues for improving our pipeline. Figut& shows how recon-
tion [Grant and Boyd 20T4for this reason, the timings should be  stryction can fail when shape differences are over-truncated; stronger
viewed as relatively pessimistic upper bounds. The “offset metric” regularizers might Il in missing information when truncated shape
meshes have more elements than their intrinsic counterparts thankgjifferences are insuf cient to recover edge lengths to high precision.
to the construction illustrated in Figufe The meshes in our experi-  Figure18 shows results of shape reconstruction in the presence of
ments have relatively few vertices; an obvious and important next ngise. Here, we add noise directly to the shape difference matrix
step for research will be to develop optimization techniques that can gg that it no longer corresponds to an embedded surface. At some

scale to larger models. point, increasingy does not improve the reconstruction result,
!oecause_ noise in the entries dominates added high-frequency shape
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In this paper, we introduced a new way to express intriasid
extrinsic shape information through functional shape differences. ACKNOWLEDGMENTS
Not only do we prove that discrete shape differences can be used toOmri Azencot participated in many discussions related to this work
recover shape, but we also extend to characterizing shapes up to rigicand contributed experiments and theory to early stages of our explo-
motion rather than isometry. Our four shape differences together—ration; the authors express their gratitude for his insights.
two intrinsic and two extrinsic—comprise a powerful description The authors also wish to thank Fernando de Goes, Adrian
of shape that applies to a wide range of variability, including not Butscher, Davide Boscaini, Michael Bronstein, and Tom Funkhouser
only non-isometric shapes but also models obtained from physical for discussions during the course of the project. J. Solomon acknowl-
simulation and animation. We also show that the inverse problem of edges the support of the NSF Mathematical Sciences Postdoctoral
recovering shape structure from shape differences can be meaningfuResearch Fellowship (award number 1502435). E. Corman thanks
even in the under-determined truncated case. the Direction &rérale de I'Armement (DGA) for nancial support.
While this work offers the possibility of direct application in M. Ben-Chen received support from ISF grant 699/12, ISF equip-
pipelines for shape search, embeddings of shape space, and approrent grant, Marie Curie CIG 303511. L. Guibas acknowledges NSF
imate reconstruction, it also suggests myriad avenues for future grants IIS 1528025 and 1546206, a Google Focused Research Award
research. On the theoretical side, a better understanding of the effecand a gift from the Adobe Corporation. M. Ovsjanikov acknowl-
of Laplace—Beltrami eigenfunction truncation may provide better edges Marie-Curie CIG-334283, a CNRS chaire d'excellence, chaire

ACM Transactions on Graphics, Vol. XXXX, No. XXXX, Article XXXX, Publication date: XXXX 2016.



14 E. Corman et al.

# Eigenfunc. Intrinsic metric Offset metric Reconst Tet
iVij jFj JE] Area | Edge | jVj iFj JEj Area Edge
Human 100 502 | 1000 | 4500 | 4.7s | 9.0s | 1502 | 3000 | 4500 | 16.5s | 310.9s 195.6s
Cloth HD 200 1089 | 2048 | 3136 | 20.6s| 79.8s| 3135 | 6016 | 9150 | 430.5s| 1833.0s 912.6s
Cloth LD 60 669 | 1256 | 1924 | 6.0s | 3.8s | 1925| 3688 | 5612 | 31.5s | 73.2s 412.7s
Faces 180 588 | 1097 | 1687 | 8.5s | 18.8s| 1682 | 3208 | 4892 | 177.3s| 709.6s 204.2s
Horse 160 752 | 1500 | 2250 | 10.1s| 80.1s| 2252 | 4500 | 6750 | 293.1s| 666.6s 447.5s

Fig. 16. Performance measured on a 2015 iMac 3.3GHz.

dy =0:119 dy =0:069 dy =0:064 dy =0:036 dy =0:023
Source Target km =20 km =40 km =60 km =80 km =100

Fig. 17. Example of failure in mesh recovery from a source mesh and shape differences. As the size of the shape difference increases more details are added to
the reconstructed deformation. R = 100 and above we achieve a high-quality reconstruction.

Jean Marjoulet froncole Polytechnique, FUI project TANDEM 2 Proof of Proposition 2

and a Google Focused Research Award. By constructiorC("; ) takes squared edge lengthand outputs

the matrixC. Extracting elements & corresponding to edges on
M vyields a Iin8ear operatdd : REI | RIE] with matrix

APPENDIX
1< (T)1+ (TH 1 ifi=]
Bi = = if i, are edges of
A. PROOFS OF PROPOSITIONS '8 M othejrw|se ’
Proof of Proposition 1 Here, indices;j refer to edges oM ; for a given edgé, we label

Equation() givesA as a linear function of ( ). Hence, we must ~ Its adjacent trlanglﬁ. andTO Remark thaB can be written as a

show that this formula is invertible. weighted sumB = (Tk) 1BK; where eactB ¥ is a matrix
First we show how to recover the area of a single trianglelon ~ Such that: ¢

By the second row ofl), givenA we have the sum of triangle areas < 1 wheni = j, andi belongs to trianglé.

adjacent to any edge & . If M has a boundary, we then know the Bilj< = 1 wheni;j are edges of triangle.

areas of the boundary triangles. Otherwise, takéth odd valence, 0 otherwise.

and enumerate its adjacent triangle§as: : :; Ty for oddk. Since
we know the sums of adjacent areas, we have a linear system tdt is easy to see that the intersection of the kernels oBéllis
recover (T1);:::; (Ty): empty, sinceB¥ is non-singular when restricted to the values on
edges of trianglé&. Moreover, by considering the determinan®of
0,4 1 0 0 as a multivariate polynomial with real coef cients, we conclude that
11 (Ti) A12 B is either singular for any choice of values ofTy) !, or for a
o % (T2) § %AZ?’ § nite set of coef cients, which thus have measure zero.
o To complete the proof we note thatBf is singular fer any choice
11 (T ) Avs of values of (Ty) !, then the matrix pencB = = |, axB¥ is
1 1 k ki singular (i.e.B is smgular for any choice of coef cients ). Using
Lemma 3.4 from [Muhic and Plestenjak 200@nd the fact that
Consider carrying out forward substitution on the matrix. In each B* are symmetric, we see that in that case for every choieg of
iteration, only the bottom row changes, frafh; 0;:::;0;1) to there must exist a vector such thatx” BKx = 0 for everyBk,
(0; 1;0;:::;0;1), thento(0; 0; 1;0;:::; 0; 1) and so on with al- andBx = 0: Now, given the values af on some triangle, this
ternating sign. WheR is odd, in the last step thkeis augmented to means that its values on the adjacent triangle are either uniquely

a2, making the nal row(0;:::;0;2). In other words, the matrix determined by the corresponding two equations (one linear, one
reduces to an upper triangular matrix with nonzero diagonal, which quadratic), or these equations cannot be satis ed. By inspecting the
is invertible. resulting equalities, it is easy to see that at least two of the values

Hence, in either case we can recov¢T ) for at least ond . The on every triangle must be equal, and by considering any closed loop
remaining areas can be computed by ood lling outward frdm of triangles, these equations cannot be consistent for every choice
given the area on one side of an edge and the sum of the adjacendf weightsax. Thus,B cannot be a singular matrix pencil, and
areas, the adjacent area is recovered by subtraction. thereforeB is invertible for almost any choice of value§T,) *
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dqy =0:128 dy =0:073 dy =0:065 dy =0:036 dy =0:023

Target ky =100 kn =200 kn =300 kn =400 Full

dy =0:161 dy =0:161 dy =0:112 dy =0:109 dy =0:134

Target kn =100 kn =200 kn =300 kn =400 Full

Fig. 18. Impact of the basis truncation on from a source mesmaisgshape differences. In this experiment, we x the number of basis functions on the
source shape ty, = 100 and reconstruct the embedding for varidas. Top row: With no additional noise, the quality of the embedding increases with
kn . Bottom row: With added noise, largkeg —which normally yields better transfer of high frequency deformation—does not increase the quality of the
reconstruction. The noisy shape differences do not correspond to an actual embedding.

Proof of Proposition 3

The results come from direct computation (assume the following

expressions are evaluated at 0):

@ _

@t

@

@t
Dar ar 0=

@ @F @F it '
@t @x @ by de nition of g
%‘; %E %; @Q; by de nition of F;

2hy by de nition (and symmetry) ofy; .

_ @ deig

by de nition of

i @g by the chain rule

detggd h;j from the previous result
H by de nition of H;

@

@t Gjj

g*

@ @

by de nition of r
axax ¥

@ ; @ @ . 1
' ———— by multiplyingg and
@x @x y plyingg g

@Y @ @

@t

= —— —— —— since the rest is constant

@t @x @x

ik @g

g

@t

2g" hye g

2h(r

tf

@ @ by differentiatingg *

@x @x
@ @
—_—— h I
@x @ by the rstresult

t) by de nition of r :

Proof of Proposition 4

The previous propositions show that , , and ; are (almost
always) suf cient to recover the edge lengths of the base and offset
surfaces. The remaining edges of the canonical thickening are be-
tween the inner and outer layers and are recoverable essentially by
convention. Speci cally:

—The edges along surface normals are lendti de nition.

—The bottom edge lengths of the “upward-facing” tetrahedra (Fig-
ure 6) are known because they are on the base surfaces. The
remaining edges of these tetrahedra can be computed because the
upward-facing tetrahedron is generated via normal offset from
the barycenter of the base triangle by a distance

—"“Mesh edge” tetrahedra are adjacent to “upward-facing” tetrahe-
dra and outer faces of the thickening and hence have edge lengths
xed by their neighbors' construction.

—Similarly, “downward-facing” tetrahedra have one normal edge
of lengtht, and the remaining edges are on the outer surface or
adjacent to an “upward-facing” tetrahedron.

The embedding of a single oriented tetrahedron is xed up to rigid
motion given its edge lengths, so the proposition follows by gluing
the tetrahedra of the canonical thickening according to the topology
of the construction.

Proof of Proposition 5

We denotde; ; €;; e3) the canonical basis and the indideg; k g 2
f1; 2p39
P Xi +P X;, then there exist three points; ; v,; vs)

Whlch de ne an embeddlng of a triangle. LIEEtbe the matrix with
columnsvs V,,v; Vvzandv, VvqthenE = E”E. The matrix
E is therefore positive semide nite.

SinceE is symmetric positive semide nite, the Cauchy-Schwartz
inequality holds. Expanding the expressien+ ¢ ) E(e + ¢g)
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