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Geometry Processing and Geometric Deep
Learning
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Today

* Last week: geometric characterization of surfaces

* Optimization of geometric energies for shape matching
 The matching problem
* Topology
* Surface parametrization

* Surface deformation



Surface Correspondence Problem

* Which points on one object correspond to points on another?

* Two approaches:

1. Look for shared geometric structure

2. Seek best alignment



Deformation Transfer

https://www.youtube.com/watch?v=9SDWKIVHnUM



https://www.youtube.com/watch?v=9SDWKIVHnUM

Segmentation Transfer

Functional Maps: A Flexible Representation of Maps Between Shapes



Statistical Shape Analysis
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Map-Based Exploration of Intrinsic Shape Differences and Variability



Paleontology

Computer Algorithm’s ~ Observer’s
Correspondences Correspondences

Algorithms to Automatically Quantify the Geometric Similarity of Anatomical Surfaces



L
Mapping Problem

- Given a pair of shapes, find corresponding points

- An ideal map:

- Preserves important features
- |s fast to compute
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L
Mapping Problem

- Given a pair of shapes, find corresponding points

- An ideal map:
- Preserves important features
- |s fast to compute
- Has low distortion (preserves geodesic distances)
- Is continuous and bijective 7




L
Surface to Surface Map On Meshes

Map between meshes:
* Vertex to vertex

» Vertex to face

* Vertex to edge

« Edge to vertex

- Bijective mappings between meshes are difficult to parse



Vertex-To-Vertex Map

* Nearest neighbors on HKS and heat diffusion
* Partial matching
* No topological matching
* Low cost
* No continuity

One Point Isometric Matching with the Heat Kernel



Common Methods For Computing Maps

Spectral methods: Laplacian eigenfunctions
* Fast and very flexible but no guaranties

Cross parametrization: find correspondences in a common domain
* Slow but bijective and continuous

Deformations: non-rigid alignment of surfaces
* Slow but does not guaranty continuity
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Cross-Parameterization and Compatible Remeshing of 3D Models Divergence-Free Shape Interpolation and Correspondence



Parameterization for Matching

Seamless Surface Mappings



Cross Parameterization for Continuous
Maps

o Topological obstruction to the computation of maps

- Triangle mesh parametrization

- Tutte embedding
- Conformal mappings
- And more...

- Computing correspondences

Seamless Surface Mappings



Topological Obstruction

* There is no continuous bijective map between these two shapes

Discontinuity!

=




L
Topology

* Local geometry fully determines a surface (cf. first lecture)

* Topology studies global characteristics




L
Topology

* Equivalent paths: equal up to a continuous deformation.

* Two paths are independent if they are not related by a continuously
deformation

Equivalent Independent



L
Topology

* Contractible loop: closed path that can be continuously contracted to a point.

* Otherwise, non-contractible loops.

Contractible Non-contractible



Topology

* Contractible loop: closed path that can be contracted to a single vertex.

* Otherwise, non-contractible loops.

All loops are contractible Some loops are
non-contractible



Topology

* Contractible loop: closed path that can be contracted to a single vertex.

* Otherwise, non-contractible loops.

SR




Topology

* Genus: number of independent loops divided by 2 (“number of holes”)




Topology and Continuous Deformation

* There exists a continuous and bijective map between any two surfaces with

Same genus




L
Topology and Continuous Deformation

* There is no continuous bijective map between these two shapes

Discontinuity!

Genus 0 Genus 1



Manifold Meshes without Boundaries

# edges genus
* Euler-Poincaré formula F' — F +V =2 — 2g¢

# faces # vertices
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https://www.ics.uci.edu/~eppstein/junkyard/euler/

Manifold Meshes without Boundaries

* Euler-Poincaré formula F' — F +V =2 — 2g¢

20 proofs



https://www.ics.uci.edu/~eppstein/junkyard/euler/

Topological Conclusion

* The genus is a global invariant of a surface
* The genus is easily computed with Euler-Poincaré formula
* Surfaces with same genus can continuously mapped into each

other




Cross Parameterization for Continuous
Maps

- Topological obstruction to the computation of maps

o Triangle mesh parametrization

- Tutte embedding
- Conformal mappings
- And more...

- Computing correspondences

Seamless Surface Mappings



Parameterization Problem

Given a surface (mesh) M in R3 and a planar domain 2 :
Find a bijective map W : ) «+— M.
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Cutting To a Disk

* For non-disk topology: need to creates artificial boundaries

* For high genus, the cut graph is constructed from non-contractible loops




Parameterization for Texture Mapping
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Parameterization — Applications

Mesh simplification:
« Approximate the geometry using few triangles

|dea:
« Decouple geometry from appearance

~600 triangles

~600k triangles



Parameterization — Applications

Mesh simplification:
« Approximate the geometry using few triangles

|dea:
« Decouple geometry from appearance

Angle of
Incidence 9

Angle of

uals Reflection

Incident Ray Reflected Ray

PLANE MIRROR

Observation: appearance (light reflection) depends on the geometry +
normal directions.



Parameterization — Applications

Normal Mapping with parameterization:
« Store normal field as an RGB texture.

290000 facets
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Parameterization — Applications

Normal Mapping

|dea:
« Decouple geometry from appearance
 Encode a normal field inside each triangle

simplified mesh Cohen et al., ‘98

original mesh
4M triangles

and normal mapping

S00angles Cignoni et al. ‘98



Parameterization — Applications

General Idea: Things become easier in a canonical domain
(e.g. on a plane).

Other Applications:

« Surface Fitting

« Editing

 Mesh Completion

* Mesh Interpolation

* Morphing and Transfer
« Shape Matching

* Visualization

« Feature Learning




Parameterization Problem

Given a surface (mesh) M in R3 and a planar domain 2 :
Find a bijective map W : ) «+— M.
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Parameterization — Many Possibilities

SN

We need to quantity the distortion induced by the map



Parameterization onto the plane

Recall a related problem.

Mapping the Earth: find a parameterization of a 3d object onto a
plane.




L
Mapping the earth

Mercator: meridians and latitudes are mapped to straight lines

Gerardus Mercator (1569)



L
Mapping the earth

Mercator: undefined at poles, distorts areas

Gerardus Mercator (1569)



L
Mapping the earth

Mercator: undefined at poles, distorts areas, preserves angles




L
Mapping the earth

Lambert cylindrical projection: distorts angles, preserves areas
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Johann Heinrich Lambert (1772)



Mapping the earth

Cahill-Keyes polyhedral projection: compromise




Different kinds of parameterization

Lambert
Preserves area

Mercator Cahill-Keyes
conformal
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Different kinds of Parameterization

Various notions of distortion:

1. Equiareal: preserving areas
2. Conformal: preserving angles of intersections

3. Isometric: preserving geodesic distances

Theorem: Isometric = Conformal + Equiareal



Parameterization Problem

Given a surface (mesh) M in R3 and a planar domain 2 :
Find a bijective map W : ) «+— M.
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Distortion of a Triangle

tel

J; : Jacobian of the transformation

Distortion energy: E(f) — Z distortion(Jt)

tel



Distortion Minimization

us (T
J; : Jacobian of the transformation z — t(z)

ve ()
teTl

Ou  Ju
Jp = (%X %X> = (Vu Vo)
oy oY

1. Isometric mapping: JtTJt — ]
2. Conformal mapping: VU = n X VU
3. Equiareal mapping: det J, = 1

Distortion energy can be non-linear and difficult to optimize for.



Distortion Minimization

1. Isometric mapping: JtTJt — ]

(local rotation)

2. Conformal mapping: Vv = n x Vu (local rotation + scaling)

3. Equiareal mapping: det J, = 1

s

(same local area)

\\\ \\ // // 7
N\ [ [/ /
NN\ [/ /)
N\ [/ ///

[/

S

Conformal

Isometric

Initial grid

N\
N

iz

NN /7777

Equiareal

Distortion energy can be non-linear and difficult to optimize for.
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E(f):

Define a measure of distortion

Define a parametrization as the minimum of energy

boundary

conditions

given

(uopt7 'Uopt) — arg min E(f)

(u,v)

f=



Parametrization with Fixed Boundary

« Can we compute a parametrization by solving a linear system
« Assume we know exactly where the boundary must go




L
Spring Model for Parameterization

Given a mesh (T, P) in 3D find a bijective mapping g(p;) = u;
given constraints: g(b,;) = u, for some {b;}

Model: imagine a spring at each edge of the mesh.
If the boundary is fixed, let the interior points find an equilibrium.




L
Spring Model for Parameterization

Recall: potential energy of a spring stretched by distance x:

1
E(x) = §kx2

k: spring constant.



L
Spring Model for Parameterization

Given an embedding (parameterization) of a mesh, the potential
energy of the whole system:

1
F = Z §D€Huel — u62H2

n
1 1 2
~ 5 SJ SJ §Dij”ui —u;f|” N; set of vertices adjacent to |
i=1 5€N;

Where D, = D,; is the spring constant of edge ¢ between i and j

Goal: find the coordinates {u;} that would minimize E.

Note: the boundary vertices prevent the degenerate solution.



Parameterization with Barycentric Coordinates

Finding the optimum of:

1 < 1
b= 5;: > > Dij[[wi =y

oF
fo=0= ) Dij(wi—u) =0
JEN;

D;
= W = E AijWj, where \;; = 5 JD--
jENi ]ENz tJ

|.e. each point u; must be an convex combination of its neighbors.

Hence: barycentric coordinates.



Parameterization with Barycentric Coordinates

To find a minimizer of E in practice:

1. Fix the boundary points b;,i € B
2. Form linear equations

u; = b, ifie B
ui—Z)\ijuj:O, 1f2¢8
JEN;

3. Assemble into two linear systems (one for each coordinate):

1 ifi=j
LU=U, LV=V Lij{—&j if j € N, i ¢ B

0 otherwise

4. Solution of the linear system gives the coordinates: u; = (ui, vi)
Note: system is very sparse, can solve efficiently.



Parameterization with Barycentric Coordinates

Does this work?

Tutte’s spring-embedding theorem:

Every barycentric drawing of a 3-connected planar graph
(triangle mesh) is a valid embedding if its boundary is
convex.




Laplace Operator

Laplace operator in Euclidean space:
Given a function f : R™ — R"

V-(Vf)= Af = f

~ Jx?
1

Af=Lf



Laplacian Matrix

Our system of equations (forgetting about boundary):

D..
u; = Z Aijuj, where \;; = ”D
JEN; ZjeNi %]
1 ifi=j
LU =0 Lij=4¢ —X\j ifjenN, L is not symmetric
0 otherwise

Alternatively, if we write it as:
u; Z Dij = Z Dz-juj
jGNi jGNZ
We get: { Spen. Diy ifi=j L is symmetric

LU =0 Liy=

0 otherwise



Parameterization with Barycentric Coordinates

Uniform weights:

Example:

Df,;j:1

- X

000000000

0000000000

000000000

000000000

000000000

000000000

000000000




Parameterization with Barycentric Coordinates

Linear Reproduction:
 If the mesh is already planar we want to recover the original
coordinates.

Problem:
« Uniform weights do not achieve linear reproduction
« Same for weights proportional to distances.




Parameterization with Barycentric Coordinates

Linear Reproduction:
« If the mesh is already planar we want to recover the original

coordinates.

Problem:
« Uniform weights do not achieve linear reproduction
« Same for weights proportional to distances.

Solution:
 If the weights are barycentric with respect to original points:

p; = Z AiiPj, Z Aij =1

JEN; JEN;
The resulting system will recover the planar coordinates.



Parameterization with Barycentric Coordinates

Solution:
« Barycentric coordinates with respect to original points:

P = Z Aij Py Z Aij =1

jENZ‘ ]ENZ
P;

 If a point p; has 3 neighbors, then the
barycentric coordinates are unique.

PJ
* For more than 3 neighbors, many
b possible choices exist.

Pj 7



Barycentric (cotangent) weights

@
cot(a ) + cot(B ) |

2 L¢3

« Weights can be negative — not always valid
« Weights depend only on angles - close to conformal
« 2D reproducible

=5
23

y - 2% \ - N . 5

" ms’& N I

NNMB\
ol

% 1%;;'

Mesh Parameterization Methods and Their Applications, 2006



Barycentric (mean value) weights

o tan(y, /2)+ tan(3, / 2)
I AA]

* No negative weights — always valid

R S

« 2D reproducible

N1/

A
/ S
* Result visually similar to harmonic \)/

Mesh Parameterization Methods and Their Applications, 2006



Barycentric Coordinates

uniform

harmonic

2
mean-value 0 il WY\ R

b,




Fixed vs Free boundary
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Tutte embedding



Fixed vs Free boundary




Conformal Mappings

ug(x
J; : Jacobian of the transformation z — t(z)
ve ()

Conformal mapping: VU = n X Vu

Riemann Mapping Theorem:

Any surface topologically equivalent to a disk, can be conformally mapped

to a unit disk.
f
y L» ’ T—»
u

X



Conformal Mappings

J; : Jacobian of the transformation x +— (

Conformal mapping: VU = n X Vu

Riemann Mapping Theorem:

e (
’Ut(

)

Any surface topologically equivalent to a disk, can be conformally mapped

to a unit disk.
Av = divVo
= div(n x Vu)
= curlVu
=\

Au =0

1.

X



Conformal Mappings

Jt : Jacobian of the transformation x +—

Conformal mapping: VU = n X Vu

Riemann Mapping Theorem:

Any surface topologically equivalent to a disk, can be conformally mapped
to a unit disk.

Output
Conformally
flattened
2 2D mesh

famap S — (u,v)is conformal
then both u and v are harmonic:

Asu =0 As’l} =0
A g : Laplacianon S.

#‘ 0«7 v‘o o S

'_5; 'ge ‘
o‘"
R %‘s-” ﬁ R

Like Tutte embeddings: each point
must be an convex combination of its
neighbors.



Conformal Free Boundary Method

ug(x
J; : Jacobian of the transformation z — t(z)
ve ()

Conformal mapping: Vv=nXx Vu

Solve in a least-squares sense:

Ec(u,v) = ZAtHVU —nXx VUH% , A; area of triangle t
teT

—u' Wu+v'Wo — Z (wjv; — ujv;)

1J at bnd

%% Cotangent matrix

Spectral Conformal Parametrization, 2008



Conformal Free Boundary Method

-
: U W M\ (u
IglglEo(u,fU) = (v) (MT W) (v) Subject to:  ||ul|® + [|v]|* = 1

Equivalent to the eigenvalue problem:

WM Y = A\ 4 0 b ith A th tri
MT W v — 0 A v Wi e area matrix

Optimal solution: eigenfunction associated to the third smallest eigenvalue
The first eigenfunctions are constant

Spectral Conformal Parametrization, 2008



Conformal Free Boundary Method

Spectral Conformal Parametrization, 2008



Conformal Mappings




Reducing Distortion - More Cuts




Going Further: Curvature Prescription

- Parametrization: find a deformation to a surface with zero Gaussian
curvature

- Gather Gaussian curvature into “cone points”
Target curvature is not O everywhere

- Cuts must pass through cone points

- Position of the cuts has no impact on the distortion



Going Further: Curvature Prescription

Adding more and more cone singularities...

(Texture courtesy NASA Earth Observatory), from Soliman et al. 2018



Free boundary methods ...

Solve for the (u,v) coordinates

— MIPS [Hormann et al., 2000]

— Stretch optimization [sander et al., 2001]

— LSCM (conformal, linear) [Levy et al., 2002]
— DCP (conformal, linear) [pesbrun et al., 2002]

Solve for the angles of the map (conformal)
— ABF [sheffer et al., 2001], ABF++ [Sheffer et al., 2004]
— LinABF (Iinear) [Zayer et al., 2007]

Solve for the edge lengths of the map by prescribing
curvature

— Circle patterns [Kharevych et al., 2006]
— CPMS (Iinear) [Ben-Chen et al., 2008]
— CETM [Springborn et al., 2008]

Balance area/conformality
— ARAP [Liu et al., 2008]

* More...



Some results

Linear Methods:

O® 1

mean value conformal

Purely linear methods can cause a very significant distortion.



Some results

Non-linear Methods:

$¢ S € 8y

ABF++ circle patterns MIPS stretch

-l
Jah o B

(=
Jmn




Conclusions

Surface parameterization:

- No perfect mapping method
- A very large number of techniques exists

- Conformal model:
- Nice theoretical properties
- Leads to a simple (linear) system of equations
- Closely related to the Poisson equation and Laplacian operator

- More general methods
- Can get smaller distortion using non-linear optimization
- Very difficult to guarantee bijectivity in general



Cross Parameterization for Continuous
Maps

- Topological obstruction to the computation of maps

- Triangle mesh parametrization

- Tutte embedding
- Conformal mappings
- And more...

o> Computing correspondences

Seamless Surface Mappings



Parametrization for Correspondences

Input: a set constrained points and cut graph

Where to cut so that the parametrization of A and B are
the same?

Aigerman et al. 2015



Parametrization for Correspondences

Seamless parametrization: set constrained points and cut
graph, add global linear constraints on duplicated edges

qg: R2 — R?
Affine transition functions: . (a b>x+7

—b a

Aigerman et al. 2015
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Parametrization for Correspondences

In practice:

1. Find the duplicated boundary vertices %,,%; € B
2. Fix the constrained points b;,7 € C
3. Solve the linear system of equations:

u; = b;, if1e€C

u;,. —u;. = ga(u@-l — Ujl), ifi,7€B

ui—Z)\ijuj:(), 1fZ§§B
JEN;

4. Solution of the linear system gives the coordinates: u; = (us, v4)



Parametrization for Correspondences

Same cut graphs, same mapping.

Aigerman et al. 2015 Parametrization domain lack structure!



Toric Seamless Parameterizatior

Three point cuts

Rotation constraints on cuts
Spring distortion

Tiles the entire space

Orbifold Tutte Embeddings, Aigerman et al. 2015






Toric Parameterization

Three point cuts

Rotation constraints on cuts
Spring or LSCM distortion
Tiles the entire space

Cuts are invisible!
Orbifold Tutte Embeddings, Aigerman et al. 2015



Toric Parameterization

« Compute continuous maps between surfaces from few constraints

Orbifold Tutte Embeddings, Aigerman et al. 2017



Toric Parameterization

 Different space tiling
» Different parametric spaces

M <A

2w 27 2w 27
2”2 3’3’3 T35 6

{7T7T7T7T}

Orbifold Tutte Embeddings, Aigerman et al. 2015
Spherical Orbifold Tutte Embeddings, Aigerman et al. 2017




Toric Parameterization

« Use image CNN on parametrization for segmentation

Convolutional Neural Networks on Surfaces via Seamless Toric Covers, Maron et al.



Conclusion

Toric parametrization

- Compute bijective maps from a small set of landmarks
- Very efficients
- Little control over the distortion
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Surface Non-Rigid Alignment

* Compute a deformation for aligning shapes

Divergence-Free Shape Interpolation and Correspondence



L
Simpler problem: Rigid Alignment

* Given a pair of shapes, find the optimal Rigid
Alignment between them.

- The unknowns are the rotation/translation parameters of the
source onto the target shape.



L
Simpler problem: Rigid Alignment

- What does it mean for an alignment to be good?

Intuition: want corresponding points to be close after transformation.

Problems
1. We don’t know what points correspond.
2. We don’t know the optimal alignment.



lterative Closest Point (ICP)

- Approach: iterate between finding correspondences and
finding the transformation:

L1
ﬁ%cv — /\/~
Y2
Given a pair of shapes, X and Y, iterate:

1. For each z; € X find nearest neighbor y; € Y.
2. Find deformation R, t minimizing:

N
Z IRz; +t — yi|5

1=1



L
lterative Closest Point (ICP)

- Approach: iterate between finding correspondences and
finding the transformation:

|

Given a pair of shapes, X and Y, iterate:
1. For each z; € X find nearest neigr)vbor Yi €Y.
2. Find deformation R, ¢ minimizing: )  |Rx; +t — ysll3

1=1
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lterative Closest Point

- Approach: iterate between finding correspondences and
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lterative Closest Point
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1=1



lterative Closest Point

- Approach: iterate between finding correspondences and
finding the transformation:

Given a pair of shapes, X and Y, iterate:
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1=1



lterative Closest Point

- Approach: iterate between finding correspondences and
finding the transformation:

Given a pair of shapes, X and Y, iterate:
1. For each z; € X find nearest neigr)vbor Yi €Y.
2. Find deformation R, ¢ minimizing: )  |Rx; +t — ysll3

1=1



lterative Closest Point

- Approach: iterate between finding correspondences and
finding the transformation:

Given a pair of shapes, X and Y, iterate:
1. For each z; € X find nearest neigr)vbor Yi €Y.
2. Find deformation R, ¢ minimizing: )  |Rx; +t — ysll3

1=1



lterative Closest Point

- Approach: iterate between finding correspondences and
finding the transformation:

Given a pair of shapes, X and Y, iterate:
1. For each z; € X find nearest neigr)vbor Yi €Y.
2. Find deformation R, ¢ minimizing: )  |Rx; +t — ysll3

1=1



lterative Closest Point

- Requires two main computations:

1. Computing nearest neighbors.

2. Computing the optimal transformation




I 1111l ~r:nlEiin
Non-Rigid Alignment Problem

* Compute a deformation for aligning shapes

* Non-rigid deformation!

https.//erkaman.qgithub.io/posts/sorkine2007.html
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As-Rigid-As Possible Deformation

* Compute a deformation for aligning shapes

https.//erkaman.qgithub.io/posts/sorkine2007.html



Formalizing Deformation

How do you solve this problem numerically
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Define a measure of distortion

Define the deformation as the minimum of energy

argmin F(f) Possibly given

(Uopta Vopt » wopt)

handle conditions

(w,v,w)

f:



As-Rigid-As Possible Deformation

* Deformation of vertex neighborhood N limited to a rotation

117;—11]' :Ri(Xi—Xj) ]

 Energy for edges incident to i:

> willw — vy — Ri(x; — %)
JEN;

* Energy on all vertices:

E(u, R) = Z Z wz’jHui —u; — Ri(Xi - Xj)||2

1
w;; = §(C0t a;; + cot ;)
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As-Rigid-As Possible Deformation

* Solving the optimization problem:
min E(u, R) Z > wijllug — Ri(x; — x;)|%
u, R =1 jEN,

* [terates between:

* Minimization for U (solve three linear systems of size nxn)

« Minimization for each rotation /2; (compute SVD at each vertex)



AR :
As-Rigid-As Possible Deformation

Finding the optimum for the variable u:

oF 1
e =0= > wi((ug —uy) — 5 (i + Rj)(x; —%;)) =0
u; ;
JEN;
W; 4
= (W)= Y R+ Ry)(xi - x)))
JEN;

VW Cotangent matrix



AR :
As-Rigid-As Possible Deformation

Finding the optimum for the variable R;:
E(w,R)=> Y wijllu; —u; — Ri(x; — %)
i=1 jEN;

Under the constraint: RiTRi =1, detR; =1

Equivalent to solving:

rrll%e:X<Ri, B;)r, with B; = z;\/ wi;(w; —uy)(x —x5) "
JeEN;

Orthogonal Procrustes problem: there exists a closed form solution using the SVD

1 0 0

B, = UXV " with U, V orthogonal matrix Ri=U (0 1 0 ) v
0 0 det(UVT)
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As-Rigid-As Possible Deformation

* Solving the optimization problem:

n
min E(u, R) = Z Z ’winU-z' —u; — Ri(Xz' - Xj)||2
u,R i=1 jEN;

* Iterates between:
* Minimization for (solve three linear systems of size nxn)
* Minimization for each rotation (compute SVD at each vertex)

As-Rigid-As-Possible Surface Modeling
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Non-Rigid Surface Alignment

Given a pair of shapes, X and Y, iterate:
1. For each z; € X find nearest neighbor y; € Y.
2. Find the deformation of X minimizing the
distance: E(u,R) =) > willw —u; — Ri(y; — y))I°

IV
PN

Non-Rigid Registration Under Isometric Deformations
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Non-Rigid Surface Alignment

- Pros:
- Need to find a good deformation model

- Strong regularization of the deformation (volume preservation,
basis of deformation)

- Lots of research and good theoretical understanding

- Cons:
- Approximative matching (no continuity, no bijectivity)

- Computationally slow
- Often limited to small deformations



