Algorithmic Data Analysis

Esther Galbrun
Autumn 2022
Part VII

Outlier Analysis
Basics
What is an outlier?
What is an outlier?
What is an outlier?
What is an outlier?
An outlier is an observation which deviates so much from the other observations as to arouse suspicions that it was generated by a different mechanism.

D. M. Hawkins, 1980
What is an outlier?

Outliers can be seen as a complementary concept to clusters.

Clusters are groups of data points that are similar.

Outliers are individual data points that are not similar to the rest of the data.

Outliers are also known as anomalies, abnormalities, discordants or deviants.
Applications

The distinction between noise and interesting outliers can be difficult to make, in general. **Outliers** result from fluctuations during *data generation*. **Noise** are caused by artifacts of the *data collection* process.

Detecting measurement errors
Outliers detection methods are sometimes used to identify measurement errors, seen as noise, that should be removed before further processing.

One man’s noise is another man’s signal

E. Ng, 1990
Credit card fraud detection

Credit card companies maintain a record of transactions, including attributes such as user identifier, amount spent, timestamp, geographic location.

Fraudulent transactions often show up as unusual combinations of attributes.

Unusual patterns of credit card activity as a result of fraud, much rarer than the normal patterns, can be detected as outliers.
Quality control and fault detection
Track the number of defective units produced to detect anomalies in a manufacturing process

Continuous monitoring of production line robot, engine, built infrastructure
Typically involves tracking various parameters simultaneously
Early detection is desired, to organise preventive maintenance and avoid interruptions
Applications

Web log analytics and intrusion detection
Web sites, networks and computer systems generally automatically track agent behavior

Detect anomalous behavior from web logs or system logs
 e.g. user trying to break into password protected website
Identify unusual sequences of actions
Applications

Medicine and public health

Unusual symptoms or test results may indicate health problem of a patient.

Whether or not a result is abnormal often depends on characteristics of the patient, e.g. age, gender, etc.

Track occurrences of particular diseases across hospitals.
Detect problems with, e.g. vaccination program.
Sports statistics
Record various parameters about the performance of athletes and players
Identify outstanding players, detect cheating
Applications

Credit card fraud detection
Quality control and fault detection
Web log analytics and intrusion detection
Medicine and public health
Sports statistics

...
Swamping and masking

Swamping happens when the number of normal instances increases or they become scattered so that normal instances are wrongly identified as outliers.

Masking happens when the number of outliers increases, forming dense clusters of anomalous data points and concealing their own presence.

Both issues are consequences of too large amounts of data used for the detection of outliers. This can be solved by using subsampling.
Analysis scenarios

Supervised scenario
Training data containing data points labelled as normal and abnormal is provided
There might be multiple normal and abnormal categories
This corresponds to a classification problem, often highly unbalanced

Semi-supervised scenario
Only partial labels are provided, e.g. data points only from the normal categories

Unsupervised scenario
In most cases, outlier detection is performed in an unsupervised manner, with no training data
Unsupervised scenario
In most cases, outlier detection is performed in an unsupervised manner, with no training data.

Unsupervised outlier detection is closely related to clustering. Many clustering algorithms do not assign all points to clusters to account for noisy data points.

However, clustering algorithms are optimized to find clusters, not outliers. Multiple similar abnormal data points might be reported as a separate cluster.
Analysis approaches

Reference set with respect to which normality is evaluated

Global vs. local approaches
Analysis approaches

Reference set with respect to which normality is evaluated

Global approaches
The reference set contains all other data points
Assumption: single normal generating mechanism
Drawback: other outliers in the reference set may falsify results

Local approaches
The reference set consists of a selected subset of data points
No *assumption* on number of normal generating mechanisms
Drawback: relies on appropriate choice of reference subset

Some approaches let the reference set vary from a single data point (local) to the entire dataset (global) automatically or depending on a user-defined parameter
Analysis approaches

Type of output

Labelling vs. scoring approaches
Analysis approaches

Type of output

Labelling approaches
Binary output, label data points as either normal or abnormal, inliers or outliers

Scoring approaches
Real-valued output, compute a score for each data point e.g. probability of being an outlier
Allows to sort data points according to their scores

Scoring approaches typically focus on top-r outliers for user-defined parameter r
Choosing a threshold value turns scores into binary labels
Evaluating an outlier detection algorithm requires ground truth data, i.e. to know which points are true outliers.

Outlier detection algorithms are typically evaluated on:

- synthetic data with identified outliers or
- considering the rare class of labelled real-world data as ground truth.

Rare classes do not always reflect all natural outliers in the data, but are generally representative enough when the evaluation is repeated over many datasets.
Consider the (rare) class of outliers as the positive class and the rest of data points as the negative class.

For algorithms that return an outlier score, this score is turned into a binary label using a threshold.

A strict threshold will lead to reporting fewer outliers, both true outliers as well as falsely detected ones, i.e. low true positive rate (TPR) and false positive rate (FPR).

A relaxed threshold will lead to reporting many outliers, i.e. high true positive rate (TPR) and false positive rate (FPR).

The curve showing the trade-off FPR vs. TPR is called the receiver operating characteristic (ROC) curve.
The curve showing the trade-off FPR vs. TPR is called the **receiver operating characteristic (ROC) curve**

Compare different algorithms by comparing their ROC curves

All regions of the curve might not be equally important depending on the application

Using the ROC curve and the area under the curve (AUC) to tune an algorithm can lead to drastic overestimation of the accuracy
Dataset: 20 normal data points, 5 anomalies
Consider three algorithms that rank data points by decreasing likelihood of being anomalous
Compare by looking at the positions of the anomalies in respective rankings

\[\langle 1, 3, 4, 5, 9 \rangle \quad \langle 1, 2, 6, 7, 8 \rangle \quad \langle 2, 4, 7, 11, 16 \rangle \]
Depth-based methods

Assumption: outliers lie at the border of the data space, whereas inliers lie in the center of the data space.

Organize the data points into convex hull layers.
i.e. peel the data layer by layer, like an onion.
Depth of layer is used as score.
Points on the ℓ outermost layers are declared outliers.
Depth-based methods

Peel the data layer by layer, like an onion
Depth of layer is used as score
Points on the ℓ outermost layers are declared outliers

\[\delta \leftarrow 1 \]

while $\mathcal{D} \neq \emptyset$ do
 \mathcal{H} corners of the convex hull of \mathcal{D}
 $o_x \leftarrow \delta$, for $x \in \mathcal{H}$
 $\mathcal{D} \leftarrow \mathcal{D} \setminus \mathcal{H}$
 $\mathcal{D} \leftarrow \mathcal{D} \setminus \mathcal{H}$
 $\delta \leftarrow \delta + 1$

return \{ $x \in \mathcal{D}, o_x \leq \ell$ \}
Depth-based methods
Depth-based methods

Peeling the outer layer of the data
Depth-based methods

Peeling the outer layer of the data
Depth-based methods

Peeling the outer layer of the data
Depth-based methods

Peeling the outer layer of the data
Depth-based methods

Depth of layer as outlier score
Depth-based methods

Peel the data layer by layer, like an onion
Depth of layer is used as score
Points on the ℓ outermost layers are declared outliers
All points on the same layer are treated equally

Typically, increased dimensionality leads to increase of

- computational complexity of finding the convex hull
- fraction of points at corners of the convex hull
- number of undistinguishable points
Assumption: outliers are the outermost points in the dataset

For a given set of points, the outliers are those points that do not fit the general characteristics of the set, the variance of the set is minimized when removing them.
Assumption: outliers are not similar to the rest of the data.
If we compress the data using normal patterns, outliers will increase the encoding length.
Density-based methods

Assumption: outliers are not similar to the rest of the data

For univariate data, construct a histogram, i.e. discretize the data into bins of equal width, and compute the number of data points in each bin.

Points lying in very low frequency bins are reported as outliers. Use the number of other points in the bin as outlier score.

With smaller bins widths, more points are reported as outliers. With larger bins widths, anomalies and normal points might be merged, preventing detection.

Choosing a suitable bins width is difficult.

This approach is very local, when granularity is high, an isolated group of points may result in an artificially dense bin.
Density-based methods
Density-based methods

Histogram for bin width 2 and anchor point 0
Density-based methods

Histograms for different bin widths and anchor points

![Histograms for different bin widths and anchor points](image)
Density-based methods

Assumption: outliers are not similar to the rest of the data

For multivariate data, construct a grid, i.e. partition each dimension into intervals of equal width, and compute the number of data points in each cell.

Points lying in very low frequency cells are reported as outliers.

Use the number of other points in the cell as outlier score.

Choosing a suitable cells widths is difficult.

This approach is very local, when granularity is high, an isolated group of points may result in an artificially dense cell.

As dimensionality increases, the grid becomes sparser and the expected number of points per cell decreases exponentially.
Density-based methods
Density-based methods

Histogram for bin width 2 and anchor point (0, 0)
Density-based methods

Histogram for bin width 2 and anchor point (1, 1)
Density-based methods

Histogram for bin width 5 and anchor point (0, 0)
Density-based methods

Histogram for bin width 5 and anchor point (2, 1)
Density-based methods

Assumption: outliers are not similar to the rest of the data

Given a radius ρ and a threshold $\tau \in [0, 1]$, a data point x is reported as outlier if at most a fraction τ of the other points are at distance at most ρ from it, i.e. if

$$\left| \{x' \in \mathcal{D} \setminus \{x\}, d(x, x') \leq \rho \} \right| \leq \tau(n - 1)$$
Density-based methods

Looking at points in radius ρ
Assumption: probability distribution underlying the data generation process
Normal data points occur in high probability regions whereas outliers occur in low probability regions
The parameters of the chosen statistical distribution are estimated assuming all data points were generated by the distribution
Points that have a low probability under the estimated distribution are declared outliers
Data points lying in the low probability regions of the distribution constitute extreme values
Univariate extreme values

Assumption: probability distribution underlying the data generation process
Normal data points occur in high probability regions whereas outliers occur in low probability regions

Considering a univariate probability density function $f_D(x)$ the tails of the distribution are the two extreme regions where $f_D(x) \leq \theta$ for some user-defined threshold θ

For distributions that are not symmetric, lower and upper tails may not have the same probability
Some distributions, e.g. exponential, have a tail only at one end

Data points lying in the tails of the distribution constitute extreme values
Univariate extreme values

Assuming a univariate Gaussian distribution, the parameters are estimated as the mean μ and standard deviation σ over all data points in \mathcal{D}

The probability density function of the Gaussian distribution is

$$f_{\mathcal{D}}(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

For a data point x the standardized value $z = (x - \mu)/\sigma$ is called its z-number

Points in the lower tail correspond to large negative z-numbers
Points in the upper tail correspond to large positive z-numbers
Univariate extreme values

Normal distribution estimated from all univariate data points

\[\text{density} \]

\[\mu - \sigma \quad x \quad \mu + \sigma \]

\[0 \quad 0.1 \quad 0 \quad 30 \]
Univariate extreme values

Computing z-numbers

\[x = \mu - \sigma, \quad \mu - \sigma, \quad \mu, \quad \mu + \sigma, \quad \mu + \sigma \]
Univariate extreme values

Assuming a univariate Gaussian distribution, the parameters are estimated as the mean μ and standard deviation σ over all data points in \mathcal{D}.

The probability density function of the Gaussian distribution is

$$f_D(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

For a data point x the standardized value $z = (x - \mu)/\sigma$ is called its z-number.

The probability density function can be written in terms of the z-number

$$f_D(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{z^2}{2}}$$
Univariate extreme values

The probability density function can be written in terms of the z-number

\[f_D(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{z^2}{2}} \]

Hence, the cumulative Gaussian distribution can be used to determine the area of the tail that is more extreme than \(z \)

When the number of available data points \(n \) is limited, Student \(t \)-distribution with \(n \) degrees of freedom is used instead.

Points are typically declared outliers if the absolute value of their z-number is greater than 3, i.e. if they deviate more than 3 times the standard deviation from the mean.
Univariate extreme values

...more than 3 times the standard deviation from the mean
Univariate extreme values

Normal distribution estimated from all data points
Univariate extreme values

Normal distribution estimated from cluster of data points

\[
\begin{align*}
\mu - 3\sigma & \quad \mu - \sigma & \quad \mu + \sigma & \quad \mu + 3\sigma \\
\end{align*}
\]
Univariate extreme values

Normal distributions estimated from cluster vs. all data points
Multivariate extreme values

The same ideas can be extended to multidimensional data, i.e. \(m \)-dimensional data points.

Assuming a multivariate Gaussian distribution, the parameters are estimated as the mean \(\mu \) and \(m \times m \) covariance matrix \(\Sigma \) over all data points in \(\mathcal{D} \).

The probability density function of the Gaussian distribution is

\[
f_{\mathcal{D}}(x) = \frac{1}{\sqrt{\det(\Sigma)} \cdot (2\pi)^m} e^{-\frac{(x-\mu)^T \Sigma^{-1} (x-\mu)}{2}}
\]

where \(\det(\Sigma) \) is the determinant of the covariance matrix.
Multivariate extreme values

Probability density function estimated from all data points
The **Mahalanobis distance** from data point x to a distribution with mean μ and covariance Σ is

$$D_\Sigma(x, \mu) = \sqrt{(x - \mu)^T \Sigma^{-1} (x - \mu)}$$

Can be seen as a multidimensional extension of the z-number, measuring the number of standard deviations by which the data point differs from the mean of the distribution.

Computing the Mahalanobis distance is equivalent to computing the Euclidean distance after rotating the data to the principal directions and dividing each of the transformed coordinate by the corresponding standard deviation.
Mahalanobis distance

Comparing $||x - \mu||$ and $D_{\Sigma}(x, \mu)$
Comparing $\|x - \mu\|$ and $D_\Sigma(x, \mu)$
Multivariate extreme values

The probability density function can be written in terms of the Mahalanobis distance

\[f_D(x) = \frac{1}{\sqrt{\det(\Sigma)} \cdot (2\pi)^m} e^{-\frac{(D_\Sigma(x, \mu))^2}{2}} \]

Each of the independent component of the Mahalanobis distance can be modeled as a one-dimensional standard normal distribution \(\mathcal{N}(0, 1) \)

The sum of squares of \(m \) such variables follows a \(\chi^2 \) distribution with \(m \) degrees of freedom

The cumulative probability of the region of the \(\chi^2 \) distribution with \(m \) degrees of freedom for which the value is greater than \(D_\Sigma(x, \mu) \) can be reported as the extreme value probability of \(x \)
Multivariate extreme values

- **Curse of dimensionality**
 As dimensionality increases, the Mahalanobis distances of all points become more similar

- **Robustness**
 The estimation of parameters is sensitive to outliers
Assumption: clustering aims at finding groups of similar points, whereas outliers are not similar to the rest of the data

Cluster the data and report as outliers points that have a large raw distance to the closest cluster centroid

The raw distance is not well suited if the clusters are elongated and have varying densities

Use the Mahalanobis distance with respect to the clusters, i.e. local Mahalanobis distances
Clustering models

Assumption: clustering aims at finding groups of similar points, whereas outliers are not similar to the rest of the data

Assuming that k clusters have been detected. The Mahalanobis distance from point x to the j^{th} cluster, having mean μ_j and covariance matrix Σ_j, is

$$D_{\Sigma_j}(x, \mu_j) = (x - \mu_j)^T \Sigma_j^{-1} (x - \mu_j)$$

Report $\min_{j=1,...,k} D_{\Sigma_j}(x, \mu_j)$ as outlier score of point x
Clustering models

\[
\min \left(D_{\Sigma}(x, \mu), D_{\Sigma}(x, \mu), D_{\Sigma}(x, \mu) \right) \text{ as outlier score}
\]
Clustering models

In the case of EM clustering with Gaussian mixture model, each cluster C_i is modelled as a Gaussian distribution $\mathcal{N}(\mu_i, \sigma_i)$ with probability density function f_i and associated to a prior probability α_i

The probability that data point x is generated by the model is

$$\sum_i \alpha_i f_i(x)$$

Points that are highly unlikely to be generated by the model, i.e. have very low fit, are reported as outliers
Distance-based models: k-NN distance

Assumption: outliers are not similar to the rest of the data, i.e. they are far apart from their neighbors

Report the distance from a point to its k-nearest neighbor as the outlier score
Distance-based models: k-NN distance

Distance to k-nearest neighbor, $k = 1$
Distance-based models: k-NN distance

Distance to k-nearest neighbor, $k = 9$
Assumption: outliers are not similar to the rest of the data, i.e. they are far apart from their neighbors

Report the average distance from a point to its k-nearest neighbors as the outlier score
Distance-based models: k-NN distance

Average distance to k-nearest neighbors, $k = 10$
Distance-based models: k-NN distance

Assumption: outliers are not similar to the rest of the data, i.e. they are far apart from their neighbors.

Construct the k-nearest neighbor graph for the dataset, where each data point x is represented by a vertex v_x and there is a directed edge from v_x to $v_{x'}$ if x' is among the k-nearest neighbors of x.

Report point x as outlier if the in-degree of v_x is less than user-defined threshold τ.
Distance-based models: k-NN distance

\[O \leftarrow \emptyset \ r \text{ top outliers} \]
\[\lambda \leftarrow 0 \ k\text{-NN distance of top } r \text{ outlier} \]

\textbf{for each } \mathbf{x} \in \mathcal{D} \text{ do}

\[N \leftarrow \emptyset \ k \text{ nearest neighbors of } \mathbf{x} \]
\[\delta \leftarrow \infty \ \text{distance to } k \text{ nearest neighbor of } \mathbf{x} \]

\textbf{for each } \mathbf{x}' \in \mathcal{D} \setminus \{\mathbf{x}\} \text{ do}

\[\text{if } d(\mathbf{x}, \mathbf{x}') < \delta \text{ then} \]

\[\text{insert } \mathbf{x}' \text{ into } N \text{ and update } \delta \text{ accordingly} \]

\[\text{if } \delta > \lambda \text{ then} \]

\[\text{insert } \mathbf{x} \text{ into } O \text{ and update } \lambda \text{ accordingly} \]

\textbf{return } O
Distance-based models: k-NN distance

Distance-based models have a finer granularity than clustering models, but it comes at the cost of higher computational complexity.

Computing the k-nearest neighbor distance requires $O(n)$ time for each data point when a sequential scan is used, i.e. $O(n^2)$ time for the entire dataset, which is not scalable.

Early termination

In most cases the scores of all data points are not required, only the top r outliers.

The scan for a data point can be terminated if the *upper bound estimate* on its k-nearest neighbor distance falls below the current r^{th} top outlier score.
Distance-based models: k-NN distance

\[
O \leftarrow \emptyset \quad r \text{ top outliers}
\]
\[
\lambda \leftarrow 0 \quad k\text{-NN distance of top } r \text{ outlier}
\]

for each $x \in \mathcal{D}$ do

\[
N \leftarrow \emptyset \quad k \text{ nearest neighbors of } x
\]
\[
\delta \leftarrow \infty \quad \text{distance to } k \text{ nearest neighbor of } x
\]

for each $x' \in \mathcal{D} \setminus \{x\}$ do

if $d(x, x') < \delta$ then

insert x' into N and update δ accordingly

if $\delta < \lambda$ then drop x early termination

if $\delta > \lambda$ then

insert x into O and update λ accordingly

return O
Distance-based models: k-NN distance

Distance-based models have a finer granularity than clustering models, but it comes at the cost of higher computational complexity.

Computing the k-nearest neighbor distance requires $O(n)$ time for each data point when a sequential scan is used, i.e. $O(n^2)$ time for the entire dataset, which is not scalable.

Early termination

Two steps method with sample

Compute distances exhaustively for a small sample of points. Compute distances for other points that are potential outliers.
Distance-based models: *k*-NN distance

Compute distances exhaustively for a small sample of points

\[S \leftarrow \{ s \text{ data points sampled randomly from } D, s \ll n \} \]

compute \(d(x, x') \) for \(s \cdot n \) pairs \((x, x') \in S \times D\)

\(\Delta_{S,k}(x) \) denotes the distance from \(x \) to its \(k \) nearest neighbor in \(S \)

\[O \leftarrow \langle r \text{ top outliers from } S \rangle \text{ i.e. } r \text{ points } x \in S \text{ with highest } \Delta_{S,k}(x) \]

\(\lambda \leftarrow k\text{-NN distance of top } r \text{ outlier from } S \text{ i.e. } \Delta_{S,k}(O[r]) \)

Compute distances for other points that are potential outliers

for each \(x \in D \setminus S \) do

if \(\Delta_{S,k}(x) < \lambda \) then drop \(x \) early termination

\(N_k \leftarrow k \text{ nearest neighbors of } x \text{ in } S; \ \delta \leftarrow \Delta_{S,k}(x) \)

for each \(x' \in D \setminus S \) do

if \(d(x, x') < \delta \) then

if \(d(x, x') < \delta \) then insert \(x' \) into \(N_k \) and update \(\delta \) accordingly

if \(\delta < \lambda \) then drop \(x \) early termination

if \(\delta > \lambda \) then insert \(x \) into \(O \) and update \(\lambda \) accordingly

return \(O \)
Distance-based models: k-NN distance

Compute distances exhaustively for a small sample of points
\[S \leftarrow \{s \text{ data points sampled randomly from } D, s \ll n\} \]
compute \(d(x, x') \) for \(s \cdot n \) pairs \((x, x') \in S \times D \)
\(\Delta_{S,k}(x) \) denotes the distance from \(x \) to its \(k \) nearest neighbor in \(S \)
\[O \leftarrow \langle r \text{ top outliers from } S \rangle \text{ i.e. } r \text{ points } x \in S \text{ with highest } \Delta_{S,k}(x) \]
\[\lambda \leftarrow k\text{-NN distance of top } r \text{ outlier from } S \text{ i.e. } \Delta_{S,k}(O[r]) \]

Compute distances for other points that are potential outliers
for each \(x \in D \setminus S \) ordered by decreasing \(\Delta_{S,k}(x) \) do
 if \(\Delta_{S,k}(x) < \lambda \) then drop \(x \) early termination
 \[N_k \leftarrow k \text{ nearest neighbors of } x \text{ in } S; \quad \delta \leftarrow \Delta_{S,k}(x) \]
 for each \(x' \in D \setminus S \) ordered by increasing \(\Delta_{S,k}(x') \) do
 if \(d(x, x') < \delta \) then
 if \(d(x, x') < \delta \) then
 insert \(x' \) into \(N_k \) and update \(\delta \) accordingly
 if \(\delta < \lambda \) then drop \(x \) early termination
 if \(\delta > \lambda \) then insert \(x \) into \(O \) and update \(\lambda \) accordingly
return \(O \)
Distance-based models: k-NN distance

The k-NN distance is sensitive to the neighborhood density.

Need for corrections to account for local variations in density.

Local outlier factor (LOF)

Normalizes distances with average local density.
Sometimes seen as a density-based method.
Sometimes as a distance-based method.
Both types of methods rely on proximity.
Local outlier factor

Let $\Delta_k(x)$ denote the distance from x to its k nearest neighbor. Let $N_k(x)$ denote the points within distance $\Delta_k(x)$ of x

$$N_k(x) = \{x' \in \mathcal{D} \setminus \{x\}, d(x, x') \leq \Delta_k(x)\}$$

Due to ties, $N_k(x)$ might contain more than k points.

The reachability distance of point x with respect to x' is

$$R_k(x, x') = \max(d(x, x'), \Delta_k(x'))$$

The reachability distance is not symmetric.

Intuitively, when x' is in a dense region and the distance between x and x' is large, $R_k(x, x')$ equals the true distance, whereas when the distance between x and x' is small, $R_k(x, x')$ is smoothed out by the k-NN distance of x'.

UEF//School of Computing

ADA:Outlier Analysis
Local outlier factor

Let $\Delta_k(x)$ denote the distance from x to its k nearest neighbor.
Let $N_k(x)$ denote the points within distance $\Delta_k(x)$ of x.

The reachability distance of point x with respect to x' is

$$R_k(x, x') = \max(d(x, x'), \Delta_k(x'))$$

The average reachability distance of point x with respect to its neighborhood is

$$AR_k(x) = \frac{1}{|N_k(x)|} \sum_{x' \in N_k(x)} R_k(x, x')$$

The local outlying factor of point x is

$$LOF_k(x) = \frac{1}{|N_k(x)|} \sum_{x' \in N_k(x)} \frac{AR_k(x)}{AR_k(x')}$$
Local outlier factor

Let $\Delta_k(x)$ denote the distance from x to its k nearest neighbor. Let $N_k(x)$ denote the points within distance $\Delta_k(x)$ of x.

$$R_k(x, x') = \max(d(x, x'), \Delta_k(x'))$$

$$AR_k(x) = \frac{1}{|N_k(x)|} \sum_{x' \in N_k(x)} R_k(x, x')$$

$$LOF_k(x) = \frac{1}{|N_k(x)|} \sum_{x' \in N_k(x)} \frac{AR_k(x)}{AR_k(x')}$$

Typically, LOF_k values for points in a cluster are close to 1 if the points are distributed homogeneously. Points with $LOF_k \gg 1$ are reported as outliers.

In practice, determine the best neighborhood size k by taking the maximum LOF_k over a range of values.
Local outlier factor

Distance to tenth-nearest neighbor Δ_{10}
Local outlier factor

$AR_{10}(x) \text{ vs. } AR_{10}(x'), \quad x' \in N_{10}(x)$, computing $LOF_{10}(x)$
Local outlier factor

\(AR_{10}(x) \) vs. \(AR_{10}(x') \), \(x' \in N_{10}(x) \), computing \(LOF_{10}(x) \)
Local outlier factor

$AR_{10}(x) \text{ vs. } AR_{10}(x'), \quad x' \in N_{10}(x), \text{ computing } LOF_{10}(x)$
Local outlier factor

$AR_{10}(x) \text{ vs. } AR_{10}(x'), x' \in N_{10}(x)$, computing $LOF_{10}(x)$
Local outlier factor

Local outlier factors LOF_{10}
Distance-based models: k-NN distance

The k-NN distance is sensitive to the neighborhood shape.
Need for corrections to account for local variations in shape.

Instance-specific Mahalanobis distance
Compute Mahalanobis distance that accounts for the local covariance structure.
Instance-specific Mahalanobis distance

Determine the k-neighborhood of point x following an agglomerative approach

$$N \leftarrow \{x\}$$

for $i = 1, \ldots, k$ do

$$N \leftarrow N \cup \{\arg\min_{x' \in D \setminus N} \min_{u \in N} d(x', u)\}$$

return N

Use $D_{\Sigma_N} (x, \mu_N)$ as outlier score for point x, with μ_N and Σ_N respectively the mean and covariance matrix of the k-neighborhood N of x, i.e. the Mahalanobis distance that accounts for the local covariance structure
Instance-specific Mahalanobis distance

\[D_{\Sigma_N}(x, \mu_N) \] for the \(k \)-neighborhood \(N \) of \(x \), \(k = 19 \)
Instance-specific Mahalanobis distance

\[D_{\Sigma_N}(x, \mu_N) \] for the \(k \)-neighborhood \(N \) of \(x \), \(k = 19 \)
High-dimensional data
High-dimensional approaches

As dimensionality increases the distances between pairs of points become more similar, outliers become increasingly more difficult to tell apart from normal points.

Angle-based method

More stable than distances in high-dimensional spaces e.g. cosine based similarity measure for text data.

Assumption: outliers lie at the border of the data space, whereas inliers lie in the center of the data space.

The rest of the data is in a similar direction from an outlier, in varying directions from an inlier.
High-dimensional approaches

Outliers typically present anomalous behavior only in a small subset of attributes while other dimensions are irrelevant to the anomaly detection process.

Subspace outlier detection

An outlier is defined in association with one or more subspaces that are specific to it. Consider projections into lower dimensional subspaces to detect associated outliers.
Subspace outlier detection

There is an analogy between subspace clustering and subspace outlier detection but the levels of difficulty are not similar.

It is much easier to determine frequent characteristics of a dataset than rare characteristics.

Dense subspaces can be determined by aggregate analysis of the data points whereas detecting outliers requires to explore subspaces in a way that is specific to individual points.

For a d-dimensional dataset, there are 2^d subspaces. Only a small fraction of them will expose the anomalous behavior of an individual point.
Grid-based sparsity coefficient

Partition each attribute into \(p \) bins containing each an equal fraction \(f = 1/p \) of data points.

Selecting \(k \) attributes and one bin from each defines a \(k \)-dimensional grid cell or cube.

Under the independence assumption, the presence or absence of an individual point in such a cube is a Bernoulli random variable with success probability \(f^k \).

When the total number of points \(n \) is large, the number of points in the cube follows a normal distribution with \(\mu = n \cdot f^k \) and \(\sigma^2 = n \cdot f^k \cdot (1 - f^k) \).
Grid-based sparsity

Histogram for bins containing 10% of data points
Grid-based sparsity coefficient

Partition each attribute into p bins containing each an equal fraction $f = 1/p$ of data points.

Selecting k attributes and one bin from each defines a k-dimensional grid cell or cube.

The sparsity coefficient for cube \mathcal{R} containing $n_\mathcal{R}$ data points is

$$S(\mathcal{R}) = \frac{n_\mathcal{R} - n \cdot f^2}{\sqrt{n \cdot f^k \cdot (1 - f^k)}}$$

A negative sparsity coefficient indicates that the number of points in the cube is significantly lower than expected.
Grid search for subspace outliers

Individual dimensions provide no information about the combination of dimensions
Level-wise algorithms are not practical
Consider an evolutionary (genetic) algorithm

Genetic algorithms mimic the process of biological evolution to solve optimization problems
Genetic algorithms

Candidate solutions to the optimization problem are represented by a *population of individuals*. Each feasible solution has a string *encoding*, akin to its chromosome.

The *fitness* of an individual is the objective value of the corresponding solution.

The *selection operator* accounts for the fact that fitter individuals are more likely to survive and multiply. The *crossover* and *mutation operators* allow individuals to evolve.
Genetic algorithms

The selection operator replicates individuals in the population with a bias towards fitter individuals.

The crossover operator exchanges the segments of two encodings to the right of a randomly chosen position. An optimized crossover operator selects the outcomes of possible recombinations and selects the best one.

The mutation operator flips positions in the encoding with a predefined probability.
Genetic algorithm for subspace outliers

In the grid search for subspace outliers encodings are strings of length \(d \)
Each position specifies a bin for the corresponding attribute or that the dimension is not included, \(\{1, \ldots, p, *\} \)
Each encoding corresponds to a cube

The fitness of an individual is the sparsity coefficient of the cube associated to its encoding
Grid-based sparsity
The process starts with a population of \(q \) random individuals and iteratively repeats the process of selection, crossover, mutation. Individuals in the population progressively improve in fitness and become more similar. A position in the encoding has converged when a predefined fraction of the population has the same value for that position. The population has converged when all positions in the encoding have converged.

Keep track of the best solutions encountered, i.e. cubes with most negative sparsity coefficients. Data points contained in those cubes are reported as outliers.
Isolation-based methods

Assumption: outliers are few, not similar to the rest of the data and located in sparse regions, hence susceptible to isolation.

Grow binary decision trees at random until all distinct data points are in a node of their own.

Data points that are reached via short paths are reported as outliers.
Isolation trees: training

Build an isolation tree with recursive algorithm $iTree$

$iTree(S)$:
if S cannot be divided then
 return leaf node
else
 $a \leftarrow$ select attribute of S at random
 $v \leftarrow$ select value in $[\min_{x \in S} x_a, \max_{x \in S} x_a]$ at random
 return node with test $x_a \geq v$,
 left child $iTree(\{x \in S, x_a < v\})$ and
 right child $iTree(\{x \in S, x_a \geq v\})$
Isolation trees: training

Build an isolation tree with recursive algorithm **iTree**
Collect trees built on \(\theta \) different random data samples of size \(\kappa \)
to form a decision forest

\[
\mathcal{F} \leftarrow \emptyset \\
\text{for } i = 1 \ldots \theta \text{ do} \\
\quad S \leftarrow \text{sample } \kappa \text{ data points from } D \text{ at random} \\
\quad \mathcal{F} \leftarrow \mathcal{F} \cup \{ \text{iTree}(S) \} \\
\text{return } \mathcal{F}
\]
Isolation trees: evaluation

The outlier score of a data point x is the average length of paths from root to leaf in trees of the forest

Run x through each tree in the forest until reaching a leaf
Return the average length of the path from root to leaf node over the different trees

In practice, the depth of trees is limited during training
Path lengths are normalized to account for this limit and for the sample size
Temporal data
Outliers in temporal data

In the context of temporal data, *outlier detection* is also known as *event detection*, especially when performed in real-time.

A sudden change at a given timestamp of a time-series or sequence is referred to as *contextual outlier* or *point outlier*.

An anomalous pattern of consecutive data points is referred to as *collective outlier*, as well as *shape outlier* in the context of time-series and *combination outlier* in the context of discrete sequences.
The detection of point outliers is closely related to forecasting. A data point is considered an outlier if it deviates significantly from its forecasted, i.e., expected, value.
Build a probabilistic suffix tree from historical data, capturing the typical behavior of the sequence

The probability of observing a specific value at a given position, in the context of the values occurring at the previous position(s) can be retrieved from the tree

Positions where this probability is very low are reported as anomalies
Given a multivariate time-series $\mathcal{S}_X = \langle x^{(1)}, x^{(2)}, \ldots, x^{(n)} \rangle$, with $x^{(i)} \in \mathbb{R}^m$, the aim is to detect unexpected events.
Point outliers in multivariate time-series

Given a multivariate time-series $S_x = \langle x^{(1)}, x^{(2)}, \ldots, x^{(n)} \rangle$, with $x^{(i)} \in \mathbb{R}^m$, the aim is to detected unexpected events

1. Predict the values at each timestamp using some time-series modelling approach

Let $y^{(i)}$ be the m-dimensional vector of forecasted values at timestamp i
Point outliers in multivariate time-series

Given a multivariate time-series \(S_X = \langle x^{(1)}, x^{(2)}, \ldots, x^{(n)} \rangle \), with \(x^{(i)} \in \mathbb{R}^m \), the aim is to detect unexpected events.

2. Compute the multivariate time-series of deviations between the forecasted and the actual values.

Let \(\delta^{(i)} = y^{(i)} - x^{(i)} \) be the \(m \)-dimensional vector of deviations at timestamp \(i \).
Given a multivariate time-series \(S_X = \langle x^{(1)}, x^{(2)}, \ldots, x^{(n)} \rangle \), with \(x^{(i)} \in \mathbb{R}^m \), the aim is to detect unexpected events.

3. Compute the normalized deviation, i.e. z-number, for each timestamp and each variable.

Let \(\mu_j \) and \(\sigma_j^2 \) be the mean and variance of the deviations for variable \(j \) across the forecasted timestamps, \(\delta_j^{(1)}, \delta_j^{(2)}, \ldots, \delta_j^{(n)} \).

\[
Z_j^{(i)} = \frac{\delta_j^{(i)} - \mu_j}{\sigma_j}
\]
Given a multivariate time-series $S_X = \langle x^{(1)}, x^{(2)}, \ldots, x^{(n)} \rangle$, with $x^{(i)} \in \mathbb{R}^m$, the aim is to detect unexpected events.

4. Report as anomalies the pairs of timestamps and variables for which the z-number exceeds a chosen threshold value, typically 3.

Timestamp–variable pair (i, j) is reported as outlier if $z_j^{(i)} > 3$.

Depending on the application, one might aggregate the deviations at a given timestamp, taking for instance the maximum or average over the different variables, i.e. report timestamp i as outlier if $\max_{j=1 \ldots m} z_j^{(i)}$ or $\text{mean}_{j=1 \ldots m} z_j^{(i)}$, respectively, exceed the chosen threshold.
Point outliers in multivariate time-series

Given a multivariate time-series $S_X = \langle x^{(1)}, x^{(2)}, \ldots, x^{(n)} \rangle$, with $x^{(i)} \in \mathbb{R}^m$, the aim is to detect unexpected events.

1. Predict the values at each timestamp using some time-series modelling approach.
2. Compute the multivariate time-series of deviations between the forecasted and the actual values.
3. Compute the normalized deviation, i.e. z-number, for each timestamp and each variable.
4. Report as anomalies the pairs of timestamps and variables for which the z-number exceeds a chosen threshold value, typically 3.
The aim is to identify unusual combinations of values appearing in a sequence. Small windows of a chosen size, referred to as comparison units, are extracted from the sequence. Distances between comparison units can be computed using e.g. dynamic time warping (DTW) distance, edit distance, etc. The k-nearest neighbor distance can be used as outlier score.
Shape outliers are defined over windows of the time-series. Distance to k-nearest neighbors is used as outlier score.

1. Extract all candidates by sliding a window of length w over the time-series.
2. Compute the Euclidean distance from each candidate to all other non-overlapping windows.
3. Report candidates with highest k-nearest neighbor distance as outliers.

Use non-overlapping windows to prevent trivial matches. Pruning and early termination are used to improve efficiency.
Pruning and early termination are used to improve efficiency. It works best if true outliers are found early, i.e. more promising candidates need to be processed first.

The clustering behavior of candidates informs about how promising they are. Process candidates from clusters having fewest members first. Other candidates from the same clusters are considered first when computing the nearest neighbor distances.

Use **symbolic aggregate approximation (SAX)** representation to map candidate windows to clusters, one cluster for each distinct SAX word. Piecewise aggregation approximation is done with intervals of size $k < w$ resulting in SAX words of length w/k.

Shape outliers: HOTSAX

ADA: Outlier Analysis
Shape outliers: HOTSAX

IBM stock prices from Sept. 2013 to Sept. 2014
IBM stock prices from Sept. 2013 to Sept. 2014
SAX of candidate window maps to cluster
Training
Given a database of time-series of length n, some labelled as anomalous, the aim is to train a classifier that can identify anomalous series

1. Use the discrete wavelet transform to convert each time-series into a vector of coefficients
2. Discretize the wavelet representation, i.e. turn each dimension of the numerical wavelet representation into a categorical attribute by partitioning the range of values into intervals
3. Extract a set of rules by applying a rule-based classifier
Rule-based classifiers make predictions using a collection of rules of the form “if condition then conclusion”, $Q \rightarrow c$

The condition Q (a.k.a. antecedent) typically consists of a conjunction of tests on the data attributes.

The conclusion c (a.k.a. consequent) typically consists of a class label.

If an instance satisfies the conditions of a rule, we say that the rule covers the instance and that the instance triggers the rule.

A set of exhaustive and mutually exclusive rules can be generated from decisions trees.

An ordered list of rules can be extracted by growing them one by one using a sequential covering algorithm.
Predicting
To make a prediction for a given time-series, its discrete wavelet transform is computed then discretized in the same way as the training instances. The collection of rules is scanned, evaluating their conditions on the categorical transformed representation of the time-series. The time-series is reported as an outlier if it triggers some rule having the minority outlier class as its conclusion.