Algorithmic Data Analysis

Esther Galbrun

Autumn 2020
Suppose that a classification training algorithm requires $O(n^r)$ time for training on a data set of size n. Here r is assumed to be larger than 1. Consider a data set \mathcal{D} with an exactly even distribution across k different classes.

In particular, consider $r = 3$, $n = 1000$ and $k = 5$

Compare the running time of the one-against-rest approach with that of the one-against-one approach.
Q1.2: Unbalance

Compare the characteristics of resampling vs. reweighting when dealing with unbalanced datasets.

- efficiency
- flexibility
- out of the box
- randomness
Q1.3: Boosting

Boosting is a \{ \text{data-centered} \quad \text{model-centered} \} \text{ ensemble learning approach}\]

aiming to reduce \{ \text{bias} \quad \text{variance} \}.\]
Q1.4: Bag and boost

Would you rather use a *linear SVM* or a *kernel SVM*?

a) To create the ensemble components in *bagging*

b) To create the ensemble components in *boosting*